期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2015年 第1卷 第3期 doi: 10.15302/J-ENG-2015034

蒸汽压力和超疏水纳米复合涂层对微电子器件可靠性的影响

1 Department of Mechanical Engineering, Lamar University, Beaumont, TX 77710, USA
2 State Key Laboratory of Solid State Lighting, Beijing 100083, China
3 School of Materials Science and Engineering, Georgia Tech, Atlanta, GA 30332-0245, USA
4 Delft University of Technology, Delft 2600 AA, the Netherlands
5 Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China

收稿日期: 2015-06-23 修回日期: 2015-07-04 录用日期: 2015-09-16 发布日期: 2015-09-30

下一篇 上一篇

摘要

由于高蒸汽压力可能导致微电子器件在高温和高湿度环境中失效,蒸汽压力的描述和模拟对研究微电子器件的湿度可靠性至关重要。为了最大程度地减小湿度的影响,可以在器件外表面涂抹一层超疏水涂层,以防止水分渗入。但是,超疏水涂层提高微电子器件可靠性的具体机制目前仍没有完全被理解。本文首先介绍了微电子高分子材料蒸汽压力的现有的一些理论。笔者还根据实验结果论述了超疏水涂层在防止水蒸气进入器件方面的机制和有效性。本文重点讨论了两个理论模型:基于微观力学的全场蒸汽压力模型和对流扩散模型。这两种方法都已成功用于说明无涂层样本的实验结果。但是,当器件上涂有超疏水纳米复合涂层时,笔者仍发现器件质量增加,其原因很可能是水蒸气可以透过超疏水涂层渗入。这种现象导致人们对超疏水涂层的有效性产生怀疑。根据理论和实验结果,笔者认为需要提出一种新的理论来理解水蒸气如何渗透超疏水涂层。

图片

图1

图2

图3

图4

图5

图6

图7

图8

参考文献

[ 1 ] X. Q. Shi, Y. L. Zhang, W. Zhou, X. J. Fan. Effect of hygrothermal aging on interfacial reliability of silicon/underfill/FR-4 assembly. IEEE T. Compon. Pack. T., 2008, 31(1): 94–103

[ 2 ] X. J. Fan, E. Suhir. Moisture Sensitivity of Plastic Packages of IC Devices. New York: Springer, 2010.

[ 3 ] X. J. Fan, G. Q. Zhang, W. D. van Driel, L. J. Ernst. Interfacial delamination mechanisms during soldering reflow with moisture preconditioning. IEEE T. Compon. Pack. T., 2008, 31(2): 252–259

[ 4 ] W. D. van Driel, M. A. J. van Gils, X. J. Fan, G. Q. Zhang, L. J. Ernst. Driving mechanisms of delamination related reliability problems in exposed pad packages. IEEE T. Compon. Pack. T., 2008, 31(2): 260–268

[ 5 ] B. Xie, X. J. Fan, X. Q. Shi, H. Ding. Direct concentration approach of moisture diffusion and whole-field vapor pressure modeling for reflow process-Part I: Theory and numerical implementation. J. Electron. Packag., 2009, 131(3): 031010.1–031010.7

[ 6 ] B. Xie, X. J. Fan, X. Q. Shi, H. Ding. Direct concentration approach of moisture diffusion and whole-field vapor pressure modeling for reflow process-Part II: Application to 3D ultrathin stacked-die chip scale packages. J. Electron. Packag., 2009, 131(3): 031011.1–031011.6

[ 7 ] L. S. Zhu, J. Zhou, X. J. Fan. Rupture and instability of soft films due to moisture vaporization in microelectronic devices. Computers, Materials & Continua, 2014, 39(2): 113–134

[ 8 ] Y. H. Xiu, L. B. Zhu, D. W. Hess, C. P. Wong. Superhydrophobic durable silica thin films from sol-gel processing for the application in antistiction of MEMS devices. Abstracts of Papers of the American Chemical Society, 2006: 231

[ 9 ] Y. Liu, W. Lin, Z. Lin, Y. Xiu, C. P. Wong. A combined etching process toward robust superhydrophobic SiC surfaces. Nanotechnology, 2012, 23(25): 255703 链接1

[10] Y. Liu, Z. Lin, W. Lin, K. S. Moon, C. P. Wong. Reversible superhydrophobic-superhydrophilic transition of ZnO nanorod/epoxy composite films. ACS Appl. Mater. Interfaces, 2012, 4(8): 3959–3964 链接1

[11] Y. Liu, Z. Lin, K. S. Moon, C. P. Wong. Superhydrophobic nanocomposite coating for reliability improvement of microelectronics. IEEE Trans. Compon. Packag. Manuf. Tech., 2013, 3(7): 1079–1083 链接1

[12] Y. H. Xiu, Y. Liu, B. Balu, D. W. Hess, C. P. Wong. Robust superhydrophobic surfaces prepared with epoxy resin and silica nanoparticles. IEEE Trans. Compon. Packag. Manuf. Tech., 2012, 2(3): 395–401

[13] Y. Liu, Y. Xiu, D. W. Hess, C. P. Wong. Silicon surface structure-controlled oleophobicity. Langmuir, 2010, 26(11): 8908–8913 链接1

[14] X. J. Feng, L. Jiang. Design and creation of superwetting/antiwetting surfaces. Adv. Mater., 2006, 18(23): 3063–3078 链接1

[15] L. Gao, T. J. McCarthy. The “lotus effect” explained: Two reasons why two length scales of topography are important. Langmuir, 2006, 22(7): 2966–2967 链接1

[16] X. J. Fan, S. W. R. Lee, Q. Han. Experimental investigations and model study of moisture behaviors in polymeric materials. Microelectron. Reliab., 2009, 49(8): 861–871 链接1

[17] E. H. Wong, S. W. Koh, K. H. Lee, K.-M. Lim, T. B. Lim, Y.-W. Mai. Advances in vapor pressure modeling for electronic packaging. IEEE Trans. Adv. Packag., 2006, 29(4): 751–759 链接1

[18] L. Chen, H. W. Chu, X. J. Fan. A convection-diffusion porous media model for moisture transport in polymer composites: Model development and validation. J. Polym. Sci. Pol. Phys., 2015, 53(20): 1440–1449 链接1

[19] X. J. Fan, J. Zhou, G. Q. Zhang, L. J. Ernst. A micromechanics-based vapor pressure model in electronic packages. J. Electron. Packag., 2005, 127(3): 262–267 链接1

[20] J. Adams, L. Chen, X. J. Fan. Vapor pressure prediction for stacked-chip packages in reflow by convection-diffusion model. In: Proceedings of the 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE). Budapest, Hungary, 2015

[21] Y. Wu, N. Katsube. A thermomechanical model for chemically decomposing composites—I. Theory. Int. J. Eng. Sci., 1997, 35(2): 113–128

[22] R. M. Sullivan. The effect of water on thermal stresses in polymer composites. J. Appl. Mech., 1996, 63(1): 173–179

[23] G. K. van der Wel, O. C. G. Adan. Moisture in organic coatings—A review. Prog. Org. Coat., 1999, 37(1−2): 1–14 链接1

[24] H. B. Hopfenberg, H. L. Frisch. Transport of organic micromolecules in amorphous polymers. J. Polym. Sci., Part B. Polym. Lett., 1969, 7(6): 405–409

[25] L. Chen, J. H. Lee, C. F. Chen. On the modeling of surface tension and its applications by the Generalized Interpolation Material Point Method. CMES-Comp. Model. Eng., 2012, 86(3): 199–224

[26] L. Chen. Using the generalized interpolation material point method for fluid-solid interactions induced by surface tension (Doctoral desseration). Fairbanks, AK: University of Alaska Fairbanks, 2013

[27] C. P. Wong. High-performance silicone gel as IC device chip protection-cure study and electrical reliability. Abstracts of Papers of the American Chemical Society, 1988: 102

[28] R. G. Mancke. A moisture protection screening test for hybrid circuit encapsulants. IEEE Trans. Compon. Hybrids Manuf. Technol., 1981, 4(4): 492–498 链接1

[29] J. L. Wu, R. T. Pike, C. P. Wong, N. P. Kim, M. H. Tanielian. Evaluation and characterization of reliable non-hermetic conformal coatings for microelectromechanical system (MEMS) device encapsulation. IEEE Trans. Adv. Packag., 2000, 23(4): 721–728 链接1

[30] R. N. Wenzel. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem., 1936, 28(8): 988–994 链接1

[31] A. B. D. Cassie, S. Baxter. Wettability of porous surfaces. Trans. Faraday Soc., 1944, 40: 546–551 链接1

相关研究