期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2015年 第1卷 第2期 doi: 10.15302/J-ENG-2015036

超材料:重新塑造与重新思考

1 Kuang-Chi Institute of Advanced Technology, Shenzhen 518000, China
2 State Key Laboratory of Metamaterial Electromagnetic Modulation Technology, Shenzhen 518000, China

收稿日期: 2015-06-08 修回日期: 2015-06-20 录用日期: 2015-06-30 发布日期: 2015-06-30

下一篇 上一篇

摘要

超材料是一种复合材料,它在声学、电学、磁学或光学等方面的材料特性是由基体和基体中的微结构共同决定的,而且微结构在其中起到了决定性的作用。超材料在发展过程中不断地重新定义着材料科学的边界。在电磁学领域和其他领域,借助于定制化的材料特性和在外部刺激作用下的可调特性,这种材料展现出了优越的灵活性。在本文中,我们对超材料技术及其转化方面进行了介绍,对其工业化进程进行了分析,并且提供了自身的经验和对未来的展望。

图片

图1

图2

图3

图4

参考文献

[ 1 ] J. B. Pendry. Negative refraction makes a perfect lens. Phys. Rev. Lett., 2000, 85(18): 3966−3969 链接1

[ 2 ] D. R. Smith, J. B. Pendry, M. C. K. Wiltshire. Metamaterials and negative refractive index. Science, 2004, 305(5685): 788−792 链接1

[ 3 ] D. Schurig, Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006, 314(5801): 977−980 链接1

[ 4 ] A. Alù, N. Engheta. Plasmonic and metamaterial cloaking: Physical mechanisms and potentials. J. Opt. A: Pure Appl. Opt., 2008, 10(9): 093002 链接1

[ 5 ] A. Alù, N. Engheta. Plasmonic materials in transparency and cloaking problems: Mechanism, robustness, and physical insights. Opt. Express, 2007, 15(6): 3318−3332 链接1

[ 6 ] R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, D. R. Smith. Broadband ground-plane cloak. Science, 2009, 323(5912): 366−369 链接1

[ 7 ] R. M. Walser. Electromagnetic metamaterials. In: A. Lakhtakia, W. S. Weiglhofer, I. J. Hodgkinson, eds. SPIE Proceedings Vol. 4467, Complex Mediums II: Beyond Linear Isotropic Dielectrics. San Diego: SPIE Proceedings, 2001: 1−15

[ 8 ] C. G. Parazzoli, R. B. Greegor, K. Li, B. E. Koltenbah, M. Tanielian. Experimental verification and simulation of negative index of refraction using Snell’s law. Phys. Rev. Lett., 2003, 90(10): 107401 链接1

[ 9 ] M. Li, N. Behdad. Frequency selective surfaces for pulsed high-power microwave applications. IEEE T. Antenn. Propag., 2013, 61(2): 677−687 链接1

[10] C. H. Liu, N. Behdad. Investigating the impact of microwave breakdown on the responses of high-power microwave metamaterials. IEEE T. Plasma Sci., 2013, 41(10): 2992−3000 链接1

[11] C. H. Liu, J. D. Neher, J. H. Booske, N. Behdad. Investigating the physics of simultaneous breakdown events in high-power-microwave (HPM) metamaterials with multiresonant unit cells and discrete nonlinear responses. IEEE T. Plasma Sci., 2014, 42(5): 1255−1264 链接1

[12] S. Sajuyigbe, M. Ross, P. Geren, S. A. Cummer, M. H. Tanielian, D. R. Smith. Wide angle impedance matching metamaterials for waveguide-fed phased-array antennas. IET Microw. Antenna. P., 2010, 4(8): 1063−1072 链接1

[13] U. Leonhardt. Optical conformal mapping. Science, 2006, 312(5781): 1777−1780 链接1

[14] J. B. Pendry, D. Schurig, D. R. Smith. Controlling electromagnetic fields. Science, 2006, 312(5781): 1780−1782 链接1

[15] B. Edwards, A. Alù, M. G. Silveirinha, N. Engheta. Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials. Phys. Rev. Lett., 2009, 103(15): 153901 链接1

[16] N. Fang, H. Lee, C. Sun, X. Zhang. Sub-diffraction-limited optical imaging with a silver superlens. Science, 2005, 308(5721): 534−537 链接1

[17] B. A. Munk. Frequency Selective Surfaces: Theory and Design. New York: John Wiley & Sons, Inc., 2005

[18] R. Mittra, C. H. Chan, T. Cwik. Techniques for analyzing frequency selective surfaces—A review. Proc. IEEE, 1988, 76(12): 1593−1615 链接1

[19] R. W. Ziolkowski, A. D. Kipple. Application of double negative materials to increase the power radiated by electrically small antennas. IEEE T. Antenn. Propag., 2003, 51(10): 2626−2640 链接1

[20] S. Clavijo, R. E. Diaz, W. E. McKinzie. Design methodology for Sievenpiper high-impedance surfaces: An artificial magnetic conductor for positive gain electrically small antennas. IEEE T. Antenn. Propag., 2003, 51(10): 2678−2690 链接1

[21] F. Yang, Y. Rahmat-Samii. Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications. IEEE T. Antenn. Propag., 2003, 51(10): 2691−2703

[22] D. F. Sievenpiper, J. H. Schaffner, H. J. Song, R. Y. Loo, G. Tangonan. Two-dimensional beam steering using an electrically tunable impedance surface. IEEE T. Antenn. Propag., 2003, 51(10): 2713−2722 链接1

[23] F. Yang, Y. Rahmat-Samii. Electromagnetic Band Gap Structures in Antenna Engineering. Cambridge, UK: Cambridge University Press, 2008

[24] R. W. Ziolkowski, P. Jin, C. C. Lin. Metamaterial-inspired engineering of antennas. Proc. IEEE, 2011, 99(10): 1720−1731 链接1

[25] C. Caloz, T. Itoh. Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications. Portland, OR: Wiley-IEEE Press, 2005

[26] A. Grbic, G. V. Eleftheriades. Experimental verification of backward-wave radiation from a negative refractive index metamaterial. J. Appl. Phys., 2002, 92(10): 5930−5935 链接1

[27] L. Liu, C. Caloz, T. Itoh. Dominant mode leaky-wave antenna with backfire-to-endfire scanning capability. Electron. Lett., 2002, 38(23): 1414−1416 链接1

[28] R. W. Ziolkowski. Metamaterials: The early years in the USA. EPJ Appl. Metamat., 2014, 1: 5 链接1

[29] C. M. Soukoulis, S. Linden, M. Wegener. Physics. Negative refractive index at optical wavelengths. Science, 2007, 315(5808): 47−49 链接1

[30] C. M. Soukoulis, M. Wegener. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photonics, 2011, 5(9): 523−530

[31] X. Zhang, Z. Liu. Superlenses to overcome the diffraction limit. Nat. Mater., 2008, 7(6): 435−441 链接1

[32] J. Rho, Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies. Nat. Commun., 2010, 1(9): 143 链接1

[33] G. Dolling, M. Wegener, C. M. Soukoulis, S. Linden. Negative-index metamaterial at 780 nm wavelength. Opt. Lett., 2007, 32(1): 53−55 链接1

[34] T. Hand, S. Cummer. Characterization of tunable metamaterial elements using MEMS switches. IEEE Antenn. Wirel. Pr., 2007, 6(11): 401−404 链接1

[35] H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, R. D. Averitt. Reconfigurable terahertz metamaterials. Phys. Rev. Lett., 2009, 103(14): 147401 链接1

[36] B. Ozbey, O. Aktas. Continuously tunable terahertz metamaterial employing magnetically actuated cantilevers. Opt. Express, 2011, 19(7): 5741−5752 链接1

[37] T. S. Kasirga, Y. N. Ertas, M. Bayindir. Microfluidics for reconfigurable electromagnetic metamaterials. Appl. Phys. Lett., 2009, 95(21): 214102 链接1

[38] H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt. Active terahertz metamaterial devices. Nature, 2006, 444(7119): 597−600 链接1

[39] R. C. McPhedran, I. V. Shadrivov, B. T. Kuhlmey, Y. S. Kivshar. Metamaterials and metaoptics. NPG Asia Mater., 2011, 3: 100−108 链接1

[40] S. Guenneau, R. C. McPhedran, S. Enoch, A. B. Movchan, M. Farhat, N. A. P. Nicorovici. The colours of cloaks. J. Opt., 2011, 13(2): 024014 链接1

[41] M. Kadic, T. Bückmann, R. Schittny, M. Wegener. Metamaterials beyond electromagnetism. Rep. Prog. Phys., 2013, 76(12): 126501 链接1

[42] K. Sato, T. Nomura, S. Matsuzawa, H. Iizuka. Metamaterial techniques for automotive applications. In: PIERS proceedings. Hangzhou, China, 2008: 1122−1125

[43] F. Fitzek, R. H. Rasshofer, E. M. Biebl. Metamaterial matching of high-permittivity coatings for 79 GHz radar sensors. In: Proceedings of 2010 European Microwave Conference (EuMC). London: Horizon House Publications Ltd., 2010: 1401−1404

[44] K. M. Palmer. Metamaterials make for a broadband breakthrough. IEEE Spectrum, 2012, 49(1): 13−14

[45] N. Kundtz. Next generation communications for next generation satellites. Microwave J., 2014, 57(8): 14

[46] K. M. Alam, A. P. Singh, R. Starko-Bowes, S. C. Bodepudi, S. Pramanik. Template-assisted synthesis of π-conjugated molecular organic nanowires in the sub-100 nm regime and device implications. Adv. Funct. Mater., 2012, 22(15): 3298−3306 链接1

[47] R. Starko-Bowes, S. Pramanik. Ultrahigh density array of vertically aligned small-molecular organic nanowires on arbitrary substrates. J. Vis. Exp., 2013 (76): e50706

[48] D. J. Shelton, Strong coupling between nanoscale metamaterials and phonons. Nano Lett., 2011, 11(5): 2104−2108 链接1

[49] D. Shelton. Tunable infrared metamaterials (Doctoral dissertation). Orlando, FL: University of Central Florida, 2010

[50] J. B. Pendry, D. R. Smith. Reversing light with negative refraction. Phys. Today, 2004, 57(6): 37−43

[51] A. Bhattacharya. Modeling and simulation of metamaterial-based devices for industrial applications. 2013-09-26. https://www.cst.com/Applications/Article/Simulating-Metamaterial-Based-Devices-Industry

相关研究