期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2015年 第1卷 第2期 doi: 10.15302/J-ENG-2015039

氟化石墨嵌锂和嵌钠行为的第一性原理研究

1 Department of Physics, Jiangxi Normal University, Nanchang 330022, China
2 Laboratory for Solid State Ionics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

收稿日期 :2015-05-08 修回日期 :2015-06-17 录用日期 : 2015-06-20 发布日期 :2015-06-30

下一篇 上一篇

摘要

通过第一性原理计算研究了嵌入锂/钠后氟化石墨结构的演化过程。计算考虑了单层氟化石墨上和体相氟化石墨中的锂/钠嵌入。与锂的嵌入相比,将钠嵌入氟化石墨 (CF) 正极中所表现的循环性能更好,这是因为锂–氟间相互作用和钠–氟间相互作用的强度和特点不同。锂和氟之间的相互作用与钠和氟之间的相互作用相比更强且更集中。这种锂–氟之间强烈的库仑吸引作用破坏了F—C,并将氟原子拔出,从而导致在锂嵌入过程中形成单层石墨烯。

图片

图1

图2

图3

参考文献

[1]  N. Watanabe, M. Fukuda. Primary cell for electric batteries: US, 3536532A. 1970-10-27

[2]  N. Watanabe, M. Fukuda. High energy density battery: US, 3700502A. 1972-10-24

[3]  M. Fukuda, T. Iijima, D. H. Collins. Lithium-poly-carbonmonofluoride cylindrical type batteries. In: Proceedings of the 9th International Power Sources Symposium. London: Academic Press, 1974: 16

[4]  T. Nakajima. Carbon-fluorine compounds as battery materials. J. Fluor. Chem., 1999, 100(1−2): 57−61 链接1

[5]  G. G. Amatucci, N. Pereira. Fluoride based electrode materials for advanced energy storage devices. J. Fluor. Chem., 2007, 128(4): 243−262 链接1

[6]  C. Y. Ouyang, L. Q. Chen. Physics towards next generation Li secondary batteries materials: A short review from computational materials design perspective. Sci. China-Phys. Mech. Astron., 2013, 56(12): 2278−2292 链接1

[7]  W. Liu, H. Li, J. Y. Xie, Z. W. Fu. Rechargeable room-temperature CFx-sodium battery. ACS Appl. Mater. Interfaces, 2014, 6(4): 2209−2212 链接1

[8]  G. Kresse, J. Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter, 1996, 54(16): 11169−11186 链接1

[9]  P. E. Blöchl. Projector augmented-wave method. Phys. Rev. B Condens. Matter, 1994, 50(24): 17953−17979 链接1

[10]  Y. Wang, J. P. Perdew. Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling. Phys. Rev. B Condens. Matter, 1991, 44(24): 13298−13307 链接1

[11]  H. J. Monkhorst, J. D. Pack. Special points for Brillouin-zone integrations. Phys. Rev. B, 1976, 13(12): 5188−5192

[12]  W. Tang, E. Sanville, G. Henkelman. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter, 2009, 21(8): 084204 链接1

相关研究