期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2015年 第1卷 第2期 doi: 10.15302/J-ENG-2015041

组合材料芯片的个体化微区合成与表征

1 State Key Laboratory of Green Building Materials, China Building Materials Academy, Beijing 100024, China
2 Intematix Corporation, Fremont, CA 94538, USA
3 State Key Laboratory of Electronic Thin Films & Integrated Devices, School of Energy Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

收稿日期 :2015-06-11 修回日期 :2015-06-25 录用日期 : 2015-06-30 发布日期 :2015-06-30

下一篇 上一篇

摘要

用传统实验方法绘制材料相图,需要分别研究各个成分在一系列温度下的成相情况,这通常要汇集多个研究小组多年努力的成果。以高通量制备与表征为特征的组合材料芯片技术能够在一个覆盖完整成分分布的材料样品库上,测定某一温度下二元或三元材料体系的相图,显著提升了研究效率。但要完成整个温度区间的材料相图,仍需对多个材料样品库在一系列不同的温度下进行热处理。本文提出了一种“单芯片方法”, 即通过渐进的能量脉冲将组合材料芯片中某一微区独立地自低向高加热至不同温度,同时原位实时地监测这一微区在温度变化过程中的物相演化,从而获得该微区成分在完整温度区间内的物相信息。对组合材料芯片上各个微区分别独立地逐一重复该过程,就可以在一个组合材料芯片上通过一次实验构建出完整的二元或三元相图。我们采用“单芯片方法”测定了Ge-Sb-Te 三元合金体系非晶相与结晶相的相界,验证了这种方法的可行性。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

参考文献

[1]  X. D. Xiang, A combinatorial approach to materials discovery. Science, 1995, 268(5218): 1738−1740 链接1

[2]  M. L. Green, I. Takeuchi, J. R. Hattrick-Simpers. Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials. J. Appl. Phys., 2013, 113(23): 231101 链接1

[3]  R. A. Potyrailo, V. M. Mirsky. Combinatorial and high-throughput development of sensing materials: The first 10 years. Chem. Rev., 2008, 108(2): 770−813 链接1

[4]  S. S. Mao. High throughput growth and characterization of thin film materials. J. Cryst. Growth, 2013, 379: 123−130 链接1

[5]  L. Chen, J. Bao, C. Gao, S. Huang, C. Liu, W. Liu. Combinatorial synthesis of insoluble oxide library from ultrafine/nano particle suspension using a drop-on-demand inkjet delivery system. J. Comb. Chem., 2004, 6(5): 699−702 链接1

[6]  J. C. Zhao, M. R. Jackson, L. A. Peluso, L. N. Brewer. A diffusion multiple approach for the accelerated design of structural materials. MRS Bull., 2002, 27(04): 324−329 链接1

[7]  J. Montgomery. Chemistry. High-throughput discovery of new chemical reactions. Science, 2011, 333(6048): 1387−1388 链接1

[8]  J. M. Gregoire, D. Dale, A. Kazimirov, F. J. DiSalvo, R. B. van Dover. Cosputtered composition-spread reproducibility established by high-throughput x-ray fluorescence. J. Vac. Sci. Technol. A, 2010, 28(5): 1279−1280

[9]  J. M. Gregoire, D. Dale, A. Kazimirov, F. J. DiSalvo, R. B. van Dover. High energy x-ray diffraction/x-ray fluorescence spectroscopy for high-throughput analysis of composition spread thin films. Rev. Sci. Instrum., 2009, 80(12): 123905 链接1

[10]  E. Reddington, Combinatorial electrochemistry: A highly parallel, optical screening method for discovery of better electrocatalysts. Science, 1998, 280(5370): 1735−1737 链接1

[11]  X. Liu, Inkjet printing assisted synthesis of multicomponent mesoporous metal oxides for ultrafast catalyst exploration. Nano Lett., 2012, 12(11): 5733−5739 链接1

[12]  T. Wei, X. D. Xiang, W. G. Wallace-Freedman, P. G. Schultz. Scanning tip microwave near-field microscope. Appl. Phys. Lett., 1996, 68(24): 3506−3508 链接1

[13]  A. Oral, S. J. Bending, M. Henini. Scanning hall probe microscopy of superconductors and magnetic materials. J. Vac. Sci. Technol. B, 1996, 14(2): 1202−1205 链接1

[14]  I. Takeuchi, Monolithic multichannel ultraviolet detector arrays and continuous phase evolution in MgxZn1–xO composition spreads. J. Appl. Phys., 2003, 94(11): 7336−7340 链接1

[15]  S. Huxtable, D. G. Cahill, V. Fauconnier, J. O. White, J. C. Zhao. Thermal conductivity imaging at micrometre-scale resolution for combinatorial studies of materials. Nat. Mater., 2004, 3(5): 298−301 链接1

[16]  H. J. Kim, J. H. Han, R. Kaiser, K. H. Oh, J. J. Vlassak. High-throughput analysis of thin-film stresses using arrays of micromachined cantilever beams. Rev. Sci. Instrum., 2008, 79(4): 045112 链接1

[17]  C. Allibert, C. Bernard, N. Valignat, M. Dombre. Co-Cr binary system: Experimental re-determination of the phase diagram and comparison with the diagram calculated from the thermodynamic data. J. Less Common Met., 1978, 59(2): 211−228 链接1

[18]  K. Ishida, T. Nishizawa. The Co-Cr (cobalt-chromium) system. Bull. Alloy Phase Diagr., 1990, 11(4): 357−370 链接1

[19]  T. Nishizawa, K. Ishida. The Co-Fe (cobalt-iron) system. Bull. Alloy Phase Diagr., 1984, 5(3): 250−259

[20]  J. C. Tedenac. Cobalt-iron-nickel. In: G. Effenberg, S. Ilyenko, eds. Iron Systems, Part 2. Berlin: Springer Berlin Heidelberg, 2008: 653−672

[21]  V. Raghavan. Co-Fe-Ni (cobalt-iron-nickel). J. Phase Equilibria, 1994, 15(5): 526−527 链接1

[22]  Y. K. Yoo, Identification of amorphous phases in the Fe-Ni-Co ternary alloy system using continuous phase diagram material chips. Intermetallics, 2006, 14(3): 241−247 链接1

[23]  H. Chang, I. Takeuchi, X. D. Xiang. A low-loss composition region identified from a thin-film composition spread of (Ba1–x–y SrxCay)TiO3. Appl. Phys. Lett., 1999, 74(8): 1165−1167 链接1

[24]  Y. K. Yoo, Strong correlation between high-temperature electronic and low-temperature magnetic ordering in La1–xCaxMnO3 continuous phase diagram. Phys. Rev. B, 2001, 63(22): 224421 链接1

[25]  I. Takeuchi, Microstructural properties of (Ba, Sr)TiO3 films fabricated from BaF2/SrF2/TiO2 amorphous multilayers using the combinatorial precursor method. J. Appl. Phys., 2001, 90(5): 2474−2478 链接1

[26]  Y. K. Yoo, F. Duewer, H. Yang, D. Yi, J. W. Li, X. D. Xiang. Room-temperature electronic phase transitions in the continuous phase diagrams of perovskite manganites. Nature, 2000, 406(6797): 704−708 链接1

[27]  L. Fister, D. C. Johnson. Controlling solid-state reaction mechanisms using diffusion length in ultrathin-film superlattice composites. J. Am. Chem. Soc., 1992, 114(12): 4639−4644 链接1

[28]  I. Takeuchi, Combinatorial synthesis and evaluation of epitaxial ferroelectric device libraries. Appl. Phys. Lett., 1998, 73(7): 894−896 链接1

[29]  A. V. Kolobov. Information storage: Around the phase-change cycle. Nat. Mater., 2008, 7(5): 351−353 链接1

[30]  G. I. Meijer. Materials science. Who wins the nonvolatile memory race? Science, 2008, 319(5870): 1625−1626 链接1

[31]  G. Atwood. Engineering. Phase-change materials for electronic memories. Science, 2008, 321(5886): 210−211 链接1

[32]  H. F. Hamann, M. O’Boyle, Y. C. Martin, M. Rooks, H. K. Wickramasinghe. Ultra-high-density phase-change storage and memory. Nat. Mater., 2006, 5(5): 383−387 链接1

[33]  M. Wuttig, D. Lüsebrink, D. Wamwangi, W. Wełnic, M. Gillessen, R. Dronskowski. The role of vacancies and local distortions in the design of new phase-change materials. Nat. Mater., 2007, 6(2): 122−128

[34]  C. Peng, Improved thermal stability and electrical properties for Al-Sb-Te based phase-change memory. ECS Solid State Lett., 2012, 1(2): 38−41 链接1

[35]  X. Zhou, Phase transition characteristics of Al-Sb phase change materials for phase change memory application. Appl. Phys. Lett., 2013, 103(7): 072114 链接1

[36]  M. Belhadji, N. Benameur, J. M. Saiter, J. Grenet. Application of Gibbs-Di Marzio modified equation to the Ge-Te-Sb vitreous system. Phys. Status Solidi B, 1997, 201(2): 377−380 链接1

[37]  J. Siegel, C. N. Afonso, J. Solis. Dynamics of ultrafast reversible phase transitions in GeSb films triggered by picosecond laser pulses. Appl. Phys. Lett., 1999, 75(20): 3102−3104 链接1

[38]  H. J. Borg, Phase-change media for high-numerical-aperture and blue-wavelength recording. Jpn. J. Appl. Phys., 2001, 40(Part 1, 3B): 1592−1597 链接1

[39]  B. J. Kooi, J. Th. M. De Hosson. On the crystallization of thin films composed of Sb3.6Te with Ge for rewritable data storage. J. Appl. Phys., 2004, 95(9): 4714−4721 链接1

[40]  B. J. Kooi, W. M. G. Groot, J. Th. M. De Hosson. In situ transmission electron microscopy study of the crystallization of Ge2Sb2Te5. J. Appl. Phys., 2004, 95(3): 924−932 链接1

相关研究