期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2015年 第1卷 第2期 doi: 10.15302/J-ENG-2015053

中国功能晶体研究进展

1 State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
2 Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100080, China
3 Department of Physics and Astronomy, Bowling Green State University, Bowling Green, OH 43403-0001, USA

收稿日期: 2015-06-22 修回日期: 2015-06-28 录用日期: 2015-06-30 发布日期: 2015-06-30

下一篇 上一篇

摘要

功能晶体是现代科学技术发展的基础材料之一,在当前信息时代发挥着重要和关键的作用。本文总结了若干功能晶体的研究进展,综述了中国功能晶体的现状及重大成就和重要应用,讨论了功能晶体面临的挑战和机遇,提出了可能的发展方向。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

图15

参考文献

[ 1 ] T. H. Maiman. Stimulated optical radiation in ruby. Nature, 1960, 187(4736): 493−494 链接1

[ 2 ] W. Koechner. Solid-State Lasers Engineering. W. Sun, Z. W. Jiang, G. X. Cheng, trans. Beijing: Science Press, 2002 (in Chinese)

[ 3 ] J. E. Geusic, H. M. Marcos, L. G. Van Uitert. Laser oscillations in Nd-doped yttrium aluminum, yttrium gallium and gadolinium garnets. Appl. Phys. Lett., 1964, 4(10): 182−184 链接1

[ 4 ] A. Kruusing. Underwater and water-assisted laser processing: Part 2—Etching, cutting and rarely used methods. Opt. Lasers Eng., 2004, 41(2): 329−352 链接1

[ 5 ] B. Jiang, Z. Zhao, G. Zhao, J. Xu. Thin disk solid state lasers and heat capacity solid state lasers. Laser & Optoelectronics Progress, 2006, 43(3): 3−8 (in Chinese)

[ 6 ] A. Heller. Efficiently changing the color of laser light. S&TR, 2006-10-19. https://str.llnl.gov/str/Oct06/Ebbers.html

[ 7 ] H. Yin, P. Deng, F. Gan. Defects in YAG:Yb crystals. J. Appl. Phys., 1998, 83(7): 3825−3828 链接1

[ 8 ] J. Dong, A. Shirakawa, K. Ueda, J. Xu, P. Deng. Efficient laser oscillation of Yb:Y3Al5O12 single crystal grown by temperature gradient technique. Appl. Phys. Lett., 2006, 88(16): 161115 链接1

[ 9 ] Y. H. Peng, Y. X. Lim, J. Cheng, Y. Guo, Y. Y. Cheah, K. S. Lai. Near fundamental mode 1.1 kW Yb:YAG thin-disk laser. Opt. Lett., 2013, 38(10): 1709−1711 链接1

[10] J. Brons, Energy scaling of Kerr-lens mode-locked thin-disk oscillators. Opt. Lett., 2014, 39(22): 6442−6445. 链接1

[11] X. Liang, Parasitic lasing suppression in high gain femtosecond petawatt Ti:sapphire amplifier. Opt. Express, 2007, 15(23): 15335−15341 链接1

[12] V. Yanovsky, Ultra-high intensity-300-TW laser at 0.1 Hz repetition rate. Opt. Express, 2008, 16(3): 2109−2114 链接1

[13] Z. Wang, C. Liu, Z. Shen, Q. Zhang, H. Teng, Z. Wei. High-contrast 1.16 PW Ti:sapphire laser system combined with a doubled chirped-pulse amplification scheme and a femtosecond optical-parametric amplifier. Opt. Lett., 2011, 36(16): 3194−3196 链接1

[14] T. J. Yu, S. K. Lee, J. H. Sung, J. W. Yoon, T. M. Jeong, J. Lee. Generation of high-contrast, 30 fs, 1.5 PW laser pulses from chirped-pulse amplification Ti:sapphire laser. Opt. Express, 2012, 20(10): 10807−10815 链接1

[15] Y. Chu, High-contrast 2.0 Petawatt Ti:sapphire laser system. Opt. Express, 2013, 21(24): 29231−29239 链接1

[16] V. Chvykov, K. Krushelnick. Large aperture multi-pass amplifiers for high peak power lasers. Opt. Commun., 2012, 285(8): 2134−2136 链接1

[17] H. Kiriyama, Temporal contrast enhancement of petawatt-class laser pulses. Opt. Lett., 2012, 37(16): 3363−3365 链接1

[18] D. B. Joyce, F. Schmid. Progress in the growth of large scale Ti:sapphire crystals by the heat exchanger method (HEM) for petawatt class lasers. J. Cryst. Growth, 2010, 312(8): 1138−1141 链接1

[19] A. Nehari, Ti-doped sapphire (Al2O3) single crystals grown by the Kyropoulos technique and optical characterizations. Cryst. Growth Des., 2011, 11(2): 445−448 链接1

[20] S. F. Shao, Research progress in numerical simulation for crystal growth by czochralski method. J. Synth. Cryst., 2005, 34(4): 687−692 (in Chinese)

[21] R. Peters, C. Kränkel, K. Petermann, G. Huber. Broadly tunable high-power Yb:Lu2O3 thin disk laser with 80% slope efficiency. Opt. Express, 2007, 15(11): 7075−7082 链接1

[22] N. S. Prasad, Recent progress in the development of neodymium-doped ceramic yttria. IEEE J. Sel. Top. Quant., 2007, 13(3): 831−837 链接1

[23] G. Boulon, Search of optimized trivalent ytterbium doped-inorganic crystals for laser applications. J. Alloy. Compd., 2002, 341(1−2): 2−7 链接1

[24] R. H. Hoskins, B. H. Soffer. Stimulated emission from Y2O3:Nd3+. Appl. Phys. Lett., 1964, 4(1): 22−23 链接1

[25] L. Fornasiero, E. Mix, V. Peters, E. Heumann, K. Petermann, G. Huber. Efficient laser operation of Nd:Sc2O3 at 966 nm, 1082 nm and 1486 nm. In: OSA Trends in Optics and Photonics Vol.26 Advanced Solid-State lasers (Optical Society of America, 1999). Boston, MA, US, 1999: 249−251

[26] L. Fornasiero, E. Mix, V. Peters, K. Petermann, G. Huber. New oxide crystals for solid state lasers. Cryst. Res. Technol., 1999, 34(2): 255−260 链接1

[27] K. Petermann, Highly Yb-doped oxides for thin-disc lasers. J. Cryst. Growth, 2005, 275(1−2): 135−140 链接1

[28] P. Klopp, V. Petrov, U. Griebner, K. Petermann, V. Peters, G. Erbert. Highly efficient mode-locked Yb:Sc2O3 laser. Opt. Lett., 2004, 29(4): 391−393 链接1

[29] C. R. E. Baer, Femtosecond Yb:Lu2O3 thin disk laser with 63 W of average power. Opt. Lett., 2009, 34(18): 2823−2825 链接1

[30] C. R. E. Baer, Femtosecond thin-disk laser with 141 W of average power. Opt. Lett., 2010, 35(13): 2302−2304 链接1

[31] L. Hao, Spectroscopy and laser performance of Nd:Lu2O3 crystal. Opt. Express, 2011, 19(18): 17774−17779 链接1

[32] J. R. O’Conner. Unusual crystal-field energy levels and efficient laser properties of YVO4:Nd. Appl. Phys. Lett., 1966, 9(11): 407−409 链接1

[33] P. A. Studenikin, A. I. Zagumennyi, Y. D. Zavartsev, P. A. Popov, I. A. Shcherbakov. GdVO4 as a new medium for solid-state lasers: Some optical and thermal properties of crystals doped with Cd3+, Tm3+, and Er3+ ions. Quantum Electron., 1995, 25(12): 1162−1165 链接1

[34] C. Maunier, J. L. Doualan, R. Moncorgé, A. Speghini, M. Bettinelli, E. Cavalli. Growth, spectroscopic characterization, and laser performance of Nd:LuVO4, a new infrared laser material that is suitable for diode pumping. J. Opt. Soc. Am. B, 2002, 19(8): 1794−1800

[35] B. Yao, Crystal growth and laser performance of neodymium-doped scandium orthovanadate. J. Cryst. Growth, 2010, 312(5): 720−723 链接1

[36] J. Liu, Pulse energy enhancement in passive Q-switching operation with a class of Nd:GdxY1–xVO4 crystals. Appl. Phys. Lett., 2003, 83(7): 1289−1291 链接1

[37] H. Yu, Enhancement of passive Q-switching performance with mixed Nd:LuxGd1–xVO4 laser crystals. Opt. Lett., 2007, 32(15): 2152−2154 链接1

[38] P. P. Yaney, L. G. DeShazer. Spectroscopic studies and analysis of the laser states of Nd3+ in YVO4. J. Opt. Soc. Am., 1976, 66(12): 1405−1414 链接1

[39] W. Li, E. Shi, W. Zhong, Z. Yin. Anion coordination polyhedron growth unit theory mode and crystal morphology. J. Synth. Cryst., 1999, 28(2): 117−125 (in Chinese)

[40] M. Wei, G. Li, Y. Zhu, X. Wu, Z. Yu, S. Teng. Raw material synthesis of yttrium vanadate crystals (Nd3+:YVO4:YVO4). J. Synth. Cryst., 1998, 27(2): 178−181 (in Chinese)

[41] X. Meng, L. Zhu, H. Zhang, C. Wang, Y. T. Chow, M. Lu. Growth, morphology and laser performance of Nd:YVO4 crystal. J. Cryst. Growth, 1999, 200(1−2): 199−203 链接1

[42] P. Shi, D. Li, H. Zhang, Y. Wang, K. Du. An 110 W Nd:YVO4 slab laser with high beam quality output. Opt. Commun., 2004, 229(1−6): 349−354 链接1

[43] L. Cui, 880 nm laser-diode end-pumped Nd:YVO4 slab laser at 1342 nm. Laser Phys., 2011, 21(1): 105−107 链接1

[44] J. J. Zayhowski, C. Dill Iii. Coupled-cavity electro-optically Q-switched Nd:YVO4 microchip lasers. Opt. Lett., 1995, 20(7): 716−718 链接1

[45] D. Nodop, J. Limpert, R. Hohmuth, W. Richter, M. Guina, A. Tünnermann. High-pulse-energy passively Q-switched quasi-monolithic microchip lasers operating in the sub-100-ps pulse regime. Opt. Lett., 2007, 32(15): 2115−2117 链接1

[46] H. Lin, J. Li, X. Liang. 105 W,<10 ps, TEM00 laser output based on an in-band pumped Nd:YVO4 Innoslab amplifier. Opt. Lett., 2012, 37(13): 2634−2636 链接1

[47] H. Zhang, Growth of new laser crystal Nd:LuVO4 by the Czochralski method. J. Cryst. Growth, 2003, 256(3−4): 292−297 链接1

[48] J. Liu, Continuous-wave and pulsed laser performance of Nd:LuVO4 crystal. Opt. Lett., 2004, 29(2): 168−170 链接1

[49] W. K. Jang, Q. Ye, J. Eichenholz, M. C. Richardson, B. H. T. Chai. Second harmonic generation in Yb doped YCa4O(BO3)3. Opt. Commun., 1998, 155(4−6): 332−334 链接1

[50] D. Vivien, F. Mongel, G. Aka, A. Kahn-Harari, D. Pelenc. Neodymium-activated Ca4GdB3O10 (Nd:GdCOB): A multifunctional material exhibiting both laser and nonlinear optical properties. Laser Phys., 1998, 8(3): 759−763

[51] Q. Ye, B. H. T. Chai. Crystal growth of YCa4O(BO3)3 and its orientation. J. Cryst. Growth, 1999, 197(1−2): 228−235 链接1

[52] Z. Wang, K. Fu, X. Xu, X. Sun, H. Jiang, R. Song, J. Liu, J. Wang, Y. Liu, J. Wei, Z. Shao. The optimum configuration for the third-harmonic generation of 1.064 μm in a YCOB crystal. Appl. Phys. B, 2001, 72(7): 839−842 链接1

[53] P. Yuan, G. Xie, D. Zhang, H. Zhong, L. Qian. High-contrast near-IR short pulses generated by a mid-IR optical parametric chirped-pulse amplifier with frequency doubling. Opt. Lett., 2010, 35 (11): 1878−1880 链接1

[54] G. Aka, Linear- and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3. J. Opt. Soc. Am. B, 1997, 14(9): 2238−2247 链接1

[55] O. H. Heckl, Continuous-wave and modelocked Yb:YCOB thin disk laser: First demonstration and future prospects. Opt. Express, 2010, 18(18): 19201−19208 链接1

[56] A. Yoshida, Diode-pumped mode-locked Yb:YCOB laser generating 35 fs pulses. Opt. Lett., 2011, 36(22): 4425−4427 链接1

[57] J. Y. Wang, H. H. Yu, H. J. Zhang, J. Li, N. Zong, Z. Y. Xu. Progress on the research and potential applications of self-frequency doubling crystals. Progress in Phys., 2011, 31(2): 91−110 (in Chinese)

[58] H. Yu, Efficient high-power self-frequency-doubling Nd:GdCOB laser at 545 and 530 nm. Opt. Lett., 2011, 36(19): 3852−3854 链接1

[59] T. Hahn. The International Tables for Crystallography. Myrtle Beach, SC: Springer Press, 1983

[60] G. Zhang, G. Lan, Y. Wang. Lattice Vibrational Spectroscopy. Beijing: Higher Education Press, 2001 (in Chinese)

[61] Z. Hu, Y. Zhao. A method and its apparatus for the large size nonlinear optical crystal growth by combination of crucible and seed crystal: CN, 101503819. 2009-08-12 (in Chinese)

[62] C. Chen, B. Wu, A. Jiang, G. You. A new type of ultraviolet SHG crystsl—β-BaB2O4. Sci. Sin. Ser. B, 1985, 28(4): 235−243

[63] D. N. Nikogosyan. Beta barium borate (BBO). Appl. Phys. A-Mater, 1991, 52(6): 359−368 链接1

[64] D. Perlov, S. Livneh, P. Czechowicz, A. Goldgirsh, D. Loiacono. Progress in growth of large β-BaB2O4 single crystals. Cryst. Res. Technol., 2011, 46(7): 651−654 链接1

[65] N. Ye, D. Tang. Hydrothermal growth of KBe2BO3F2 crystals. J. Cryst. Growth, 2006, 293(2): 233−235 链接1

[66] C. T. Chen. Recent advances in deep and vacuum-UV harmonic generation with KBBF crystal. Opt. Mater., 2004: 26(4), 425−429 链接1

[67] G. Wang, 12.95 mW sixth harmonic generation with KBe2BO3F2 crystal. Appl. Phys. B-Lasers. O., 2008, 91(1): 95−97 链接1

[68] C. T. Chen, G. L. Wang, X. Y. Wang, Z. Y. Xu. Deep-UV nonlinear optical crystal KBe2BO3F2—Discovery, growth, optical properties and applications. Appl. Phys. B-Lasers. O., 2009, 97(1): 9−25 链接1

[69] T. Kanai, X. Wang, S. Adachi, S. Watanabe, C. Chen. Watt-level tunable deep ultraviolet light source by a KBBF prism-coupled device. Opt Express, 2009, 17(10): 8696−8703 链接1

[70] G. Liu, Development of a vacuum ultraviolet laser-based angle-resolved photoemission system with a superhigh energy resolution better than 1 meV. Rev. Sci. Instrum., 2008, 79(2): 023105 链接1

[71] X. Wen. Theoretical and Experimental Study of Electrically Driven Traveling-Wave Thermoacoustic Refrigerator in Room Temperature Range. Beijing: Technical Institute of Physics and Chemistry, CAS, 2006 (in Chinese)

[72] C. Chen, Deep UV nonlinear optical crystal: RbBe2(BO3)F2. J. Opt. Soc. Am. B, 2009, 26(8): 1519−1525 链接1

[73] H. Dai, C. Chen. Realization methods of laser jamming in helicopter with mid-infrared lasers. Jour. Sichuan Ordnance, 2011, 32(1): 114−116 (in Chinese)

[74] D. Sandy. Electronic Warfare Handbook 2008. Berkshire: The Shephard Press Ltd., 2008

[75] G. A. Verozubova, A. I. Gribenyukov, Y. P. Mironov. Two-temperature synthesis of ZnGeP2. Inorg. Mater., 2007, 43(10): 1040−1045 链接1

[76] K. T. Zawilski, P. G. Schunemann, S. D. Setzler, T. M. Pollak. Large aperture single crystal ZnGeP2 for high-energy applications. J. Cryst. Growth, 2008, 310(7−9): 1891−1896 链接1

[77] G. A. Verozubova, A. I. Gribenyukov. Growth of ZnGeP2 crystals from melt. Crystallogr. Rep., 2008, 53(1): 158−163 链接1

[78] Z. Lei, C. Zhu, C. Xu, B. Yao, C. Yang. Growth of crack-free ZnGeP2 large single crystals for high-power mid-infrared OPO applications. J. Cryst. Growth, 2014, 389: 23−29 链接1

[79] S. Wang, Crystal growth and piezoelectric, elastic and dielectric properties of novel LiInS2 crystal. J. Cryst. Growth, 2013, 362: 308−311 链接1

[80] Q. Yu, Z. Gao, S. Zhang, W. Zhang, S. Wang, X. Tao. Second order nonlinear properties of monoclinic single crystal BaTeMo2O9. J. Appl. Phys., 2012, 111(1): 013506 链接1

[81] J. Cheng, Synthesis and growth of ZnGeP2 crystals: Prevention of non-stoichiometry. J. Cryst. Growth, 2013, 362: 125−129 链接1

[82] Y. Li, Z. Wu, X. Zhang, L. Wang, J. Zhang, Y. Wu. Crystal growth and terahertz wave generation of organic NLO crystals: OH1. J. Cryst. Growth, 2014, 402: 53−59 链接1

[83] Y. Li, J. Zhang, G. Zhang, L. Wu, P. Fu, Y. Wu. Growth and characterization of DSTMS crystals. J. Cryst. Growth, 2011, 327(1): 127−132 链接1

[84] X. Lin, G. Zhang, N. Ye. Growth and characterization of BaGa4S7: A new crystal for mid-IR nonlinear optics. Cryst. Growth Des., 2009, 9(2): 1186−1189 链接1

[85] J. Yao, BaGa4Se7: A new congruent-melting IR nonlinear optical material. Inorg. Chem., 2010, 49(20): 9212−9216 链接1

[86] C. Stolzenburg, W. Schüle, I. Zawischa, A. Killi, D. Sutter. 700 W intracavity-frequency doubled Yb:YAG thin-disk laser at 100 kHz repetition rate. In: W. A. Clarkson, N. Hodgson, R. K. Shori, eds. Proceedings of SPIE 7578, Solid State Lasers XIX: Technology and Devices. San Francisco, CA, USA, 2010: 75780A

[87] G. D. Goodno, Investigation of β-BaB2O4 as a Q switch for high power applications. Appl. Phys. Lett., 1995, 66(13): 1575−1577 链接1

[88] C. Stolzenburg, A. Giesen, F. Butze, P. Heist, G. Hollemann. Cavity-dumped intracavity-frequency-doubled Yb:YAG thin disk laser with 100?W average power. Opt. Lett., 2007, 32(9): 1123−1125 链接1

[89] M. Roth, N. Angert, M. Tseitlin. Growth-dependent properties of KTP crystals and PPKTP structures. J. Mater. Sci-Mater. El., 2001, 12(8): 429−436 链接1

[90] M. Roth, M. Tseitlin, N. Angert. Oxide crystals for electro-optic Q-switching of lasers. Glass Phys. Chem., 2005, 31(1): 86−95 链接1

[91] Yu. V. Shaldin, S. Matyjasik, M. Tseitlin, M. Roth. Specific features of the pyroelectric properties of actual RbTiOPO4 single crystals in the temperature range 4.2−300 K. Phys. Solid State, 2008, 50(7): 1315−1312 链接1

[92] M. Roth, M. Tseitlin. Growth of large size high optical quality KTP-type crystals. J. Cryst. Growth, 2010, 312(8): 1059−1064 链接1

[93] J. Y. Wang, Progress of the electro-optic crystal research and the symmetry dependence of electro-optic effect. Progress in Phys., 2012, 32(1): 33−56 (in Chinese)

[94] L. Wang, X. Cai, J. Yang, X. Wu, H. Jiang, J. Wang. 520 mJ langasite electro-optically Q-switched Cr, Tm, Ho:YAG laser. Opt. Lett., 2012, 37(11): 1986−1988 链接1

[95] L. Wang, 2.79 m high peak power LGS electro-optically Q-switched Cr, Er:YSGG laser. Opt. Lett., 2013, 38(12): 2150−2152 链接1

[96] M. Kiefer, F. Pröbst, G. Angloher, I. Bavykina, D. Hauff, W. Seidel. Glued CaWO4 detectors for the CRESST-II experiment. Opt. Mater., 2009, 31(10): 1410−1414 链接1

[97] H. Kraus, ZnWO4 scintillators for cryogenic dark matter experiments. Nucl. Instrum. Meth. A, 2009, 600(3): 594−598 链接1

[98] J. Chen, G. Zhao, D. Cao, S. Zhou. Color center of YAlO3 with cation vacancies. Curr. Appl. Phys., 2010, 10(2): 468−470 链接1

[99] Q. Gui, C. Zhang, M. Zhang, L. Hang, Z. Fang, Y. Ge. Study on crystal growth and scintillation properties of large-size CeCl3 doped LaBr3 crystal. Nuclear Electronics & Detection Technology, 2011, 31(11): 1195−1197, 1249 (in Chinese)

[100] Y. Zhang, M. Luo. Study on temperature characteristics of LaBr3 detector. Nuclear Electronics & Detection Technology, 2013, 33(2): 188−190 (in Chinese)

[101] Z. Ye. Relaxor ferroelectric Pb(Mg1/3Nb2/3)O3: Properties and present understanding. Ferroelectrics, 1996, 184(1): 193−208 链接1

[102] D. Viehland. Symmetry-adaptive ferroelectric mesostates in oriented Pb(BI1/3BII2/3)O3-PbTiO3 crystals. J. Appl. Phys., 2000, 88(8): 4794−4806 链接1

[103] G. A. Smolensky. Physical phenomena in ferroelectrics with diffused phase transition. J. Phys. Soc. Jpn, 1970, 28(Suppl.): 26−37

[104] S. E. Park, T. R. Shrout. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys., 1997, 82(4): 1804−1811 链接1

[105] K. Saitoh, Y. Ishimaru, H. Fuke, Y. Enomoto. A model analysis for current-voltage characteristics of superconducting weak links. Jpn. J. Appl. Phys., 1997, 36(Part 2, No. 3A): L272−L275 链接1

[106] L. Liu, Dielectric, ferroelectric, and pyroelectric characterization of Mn-doped 0.74Pb(Mg1/3Nb2/3)O3–0.26PbTiO3 crystals for infrared detection applications. Appl. Phys. Lett., 2009, 95(19): 192903 链接1

[107] A. Borisevich, Lead tungstate scintillation crystal with increased light yield for the PANDA electromagnetic calorimeter. Nucl. Instrum. Meth. A, 2005, 537(1−2): 101−104 链接1

[108] S. Saitoh, M. Izumi, Y. Yamashita, S. Shimanuki, M. Kawachi, T. Kobayashi. Piezoelectric single crystal, ultrasonic probe, and array-type ultrasonic probe: US, 5402791A, 1995-04-04

[109] B. Ren, S. W. Or, X. Zhao, H. Luo. Energy harvesting using a modified rectangular cymbal transducer based on 0.71Pb(Mg1/3Nb2/3)O3–0.29PbTiO3 single crystal. J. Appl. Phys., 2010, 107(3): 034501 链接1

[110] N. Neumann, M. Es-Souni, H. Luo. Application of pmN-PT in pyroelectric detectors. In: Proceedings of the 18th IEEE International Symposium on the Applications of Ferroelectrics. Xi’an, China, 2009: 1−3

[111] Y. Wang, S. W. Or, H. L. W. Chan, X. Zhao, H. Luo. Magnetoelectric effect from mechanically mediated torsional magnetic force effect in NdFeB magnets and shear piezoelectric effect in 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 single crystal. Appl. Phys. Lett., 2008, 92(12): 123510 链接1

[112] H. Luo, G. Xu, H. Xu, P. Wang, Z. Yin. Compositional homogeneity and electrical properties of lead magnesium niobate titanate single crystals grown by a modified bridgman technique. Jpn. J. Appl. Phys., 2000, 39(Part 1, No. 9B): 5581−5585 链接1

[113] P. Yu, Growth and pyroelectric properties of high Curie temperature relaxor-based ferroelectric Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 ternary single crystal. Appl. Phys. Lett., 2008, 92(25): 252907 链接1

[114] B. Gao, G. L. Yu, J. B. Li. Numerical simulation and experimental study on two-dimensional solid/fluid phononic crystals. J. Synth. Cryst., 2010, 39(3): 680−686

[115] Y. Gao, Evolution and structure of low-angle grain boundaries in 6H-SiC single crystals grown by sublimation method. J. Cryst. Growth, 2010, 312(20): 2909−2913 链接1

相关研究