期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2015年 第1卷 第3期 doi: 10.15302/J-ENG-2015065

用于材料探索与优化的高通量多羽流脉冲激光沉积

Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA 94720, USA

收稿日期: 2015-07-01 修回日期: 2015-07-13 录用日期: 2015-08-03 发布日期: 2015-09-30

下一篇 上一篇

摘要

笔者设计并实现了高通量多羽流脉冲激光沉积 (MPPLD) 系统,而且与传统的高通量薄膜材料合成技术进行了比较。目前大多数组合式脉冲激光沉积 (PLD) 系统为了使沉积的薄膜厚度均匀而采用掩膜法多层薄膜沉积和沉积后退火的工艺,MPPLD则同时利用了多个PLD羽流的方向性和沉积速率的空间变化,在一个衬底上直接沉积不同成分的化合物以形成薄膜材料库。这个新系统更适合以高通量的手段制备多组分化合物薄膜材料。

图片

图1

图2

图3

图4

图5

图6

参考文献

[ 1 ] I. Repins, 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor. Prog. Photovolt. Res. Appl., 2008, 16(3): 235–239 链接1

[ 2 ] M. A. Contreras, Progress toward 20% efficiency in Cu(In,Ga)Se2 polycrystalline thin-film solar cells. Prog. Photovolt. Res. Appl., 1999, 7(4): 311–316 链接1

[ 3 ] A. Ennaoui, S. Siebentritt, M. Ch. Lux-Steiner, W. Riedl, F. Karg. High-efficiency Cd-free CIGSS thin-film solar cells with solution grown zinc compound buffer layers. Sol. Energ. Mat. Sol. C., 2001, 67(1−4): 31–40

[ 4 ] T. M. Chuang, Nematic electronic structure in the “parent” state of the iron-based superconductor Ca(Fe1−xCox)2As2. Science, 2010, 327(5962): 181–184 链接1

[ 5 ] L. Gao, Superconductivity up to 164 K in HgBa2Cam−1CumO2m+ 2+ d(m = 1, 2, and 3) under quasihydrostatic pressures. Phys. Rev. B, 1994, 50(6): 4260–4263

[ 6 ] R. B. Merrifield. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc., 1963, 85(14): 2149–2154

[ 7 ] D. J. Ecker, S. T. Crooke. Combinatorial drug discovery: Which methods will produce the greatest value? Biotechnology (N.Y.), 1995, 13(4): 351–360 链接1

[ 8 ] X. D. Xiang, A combinatorial approach to materials discovery. Science, 1995, 268(5218): 1738–1740 链接1

[ 9 ] J. Wang, Identification of a blue photoluminescent composite material from a combinatorial library. Science, 1998, 279(5357): 1712–1714 链接1

[10] G. Briceño, H. Chang, X. Sun, P. G. Schultz, X. D. Xiang. A class of cobalt oxide magnetoresistance materials discovered with combinatorial synthesis. Science, 1995, 270(5234): 273–275 链接1

[11] D. Dijkkamp, Preparation of Y-Ba-Cu oxide superconductor thin films using pulsed laser evaporation from high Tc bulk material. Appl. Phys. Lett., 1987, 51(8): 619–621 链接1

[12] S. S. Mao. High throughput growth and characterization of thin film materials. J. Cryst. Growth, 2013, 379: 123–130 链接1

[13] S. S. Mao. High throughput combinatorial screening of semiconductor materials. Appl. Phys. A, 2011, 105(2): 283–288 链接1

[14] P. K. Schenck, J. L. Klamo, N. D. Bassim, P. G. Burke, Y. B. Gerbig, M. L. Green. Combinatorial study of the crystallinity boundary in the HfO2-TiO2-Y2O3 system using pulsed laser deposition library thin films. Thin Solid Films, 2008, 517(2): 691–694 链接1

[15] M. Tyunina, J. Wittborn, C. Björmander, K. V. Rao. Thickness distribution in pulsed laser deposited PZT films. J. Vac. Sci. Technol. A, 1998, 16(4): 2381–2384

[16] H. M. Christen, An improved continuous compositional-spread technique based on pulsed-laser deposition and applicable to large substrate areas. Rev. Sci. Instrum., 2003, 74(9): 4058–4062 链接1

[17] I. Ohkubo, Continuous composition-spread thin films of transition metal oxides by pulsed-laser deposition. Appl. Surf. Sci., 2004, 223(1−3): 35–38 链接1

[18] H. M. Christen, S. D. Silliman, K. S. Harshavardhan. A continuous compositional-spread technique based on pulsed-laser deposition and applied to the growth of epitaxial films. Rev. Sci. Instrum., 2001, 72(6): 2673–2678 链接1

[19] L. Fister, D. C. Johnson. Controlling solid-state reaction mechanisms using diffusion length in ultrathin-film superlattice composites. J. Am. Chem. Soc., 1992, 114(12): 4639–4644

[20] K. Kennedy, T. Stefansky, G. Davy, V. F. Zackay, E. R. Parker. Rapid method for determining ternary-alloy phase diagrams. J. Appl. Phys., 1965, 36(12): 3808–3810

[21] J. J. Hanak. The “multiple-sample concept” in materials research: Synthesis, compositional analysis and testing of entire multicomponent systems. J. Mater. Sci., 1970, 5(11): 964–971

[22] J. D. Perkins, Combinatorial studies of Zn-Al-O and Zn-Sn-O transparent conducting oxide thin films. Thin Solid Films, 2002, 411(1): 152–160 链接1

[23] R. B. van Dover, L. F. Schneemeyer, R. M. Fleming. Discovery of a useful thin-film dielectric using a composition-spread approach. Nature, 1998, 392(6672): 162–164 链接1

[24] R. B. van Dover. Amorphous lanthanide-doped TiOx dielectric films. Appl. Phys. Lett., 1999, 74(20): 3041–3043 链接1

[25] L. F. Schneemeyer, R. B. van Dover, R. M. Fleming. High dielectric constant Hf-Sn-Ti-O thin films. Appl. Phys. Lett., 1999, 75(13): 1967–1969 链接1

[26] C. W. Teplin, Combinatorial study of reactively sputtered Cr-Ti-N. Appl. Surf. Sci., 2004, 223(1−3): 253–258 链接1

[27] M. Tyunina, J. Wittborn, C. Björmander, K. V. Rao. Thickness distribution in pulsed laser deposited PZT films. J. Vac. Sci. Technol. A, 1998, 16(4): 2381–2384

[28] S. I. Anisimov, B. S. Luk’yanchuk, A. Luches. An analytical model for three-dimensional laser plume expansion into vacuum in hydrodynamic regime. Appl. Surf. Sci., 1996, 96−98: 24–32

[29] S. I. Anisimov, B. S. Luk’yanchuk, A. Luches. Dynamics of the three-dimensional expansion in a vapor produced by a laser pulse. J. Exp. Theor. Phys., 1995, 81(1): 129–138

相关研究