期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2015年 第1卷 第3期 doi: 10.15302/J-ENG-2015072

智能手机成像的晶片上基于逆转录环介导等温扩增(RT-LAMP)技术的全血中HIV-1检测

1 Department of Bioengineering, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
2 Micro and Nanotechnology Laboratory, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
3 Department of Electrical and Computer Engineering, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

收稿日期: 2015-07-27 修回日期: 2015-08-26 录用日期: 2015-09-08 发布日期: 2015-09-30

下一篇 上一篇

摘要

病毒载量测量对于人类免疫缺陷病毒 (HIV) 阳性患者长期临床护理来说是一个必不可少的工具。然而,考虑到病毒载量测量所需的仪器体积、成本和操作的复杂性,在医疗基础设施较差的偏远地区 (尤其是在被HIV感染人群比例较高的地区) 普及标准的病毒载量测量仪器是较为困难的。为提高该检测方法的普及性,人们已经开始开发可以进行即时检测的病毒载量检测平台,然而尚没有解决办法能够同时满足低成本、便携、易于操作等多种实际要求。本文通过运用微流体和微型硅晶片平台,对经过最低程度处理的含有HIV的全血样本进行了逆转录环介导等温扩增 (RT-LAMP),并利用智能手机进行了荧光检测。集成实验检测结果表明,一滴约60 nL的反应液滴中仅有的3个病毒依然可以通过RT-LAMP技术被检测到,这相当于每微升全血样品中只有670个病毒。该技术在数字化RT-LAMP方法上具有重要意义,扩展该技术能够实现对HIV阳性患者在临床护理中采集指血进行病毒载量检测。研究结果显示,病毒载量检测过程所需的各个步骤,从血滴的准备到RT-LAMP反应的成像,都可以集成为晶片实验并且可以和移动设备兼容。

补充材料

图片

图1

图2

图3

图4

图5

图6

参考文献

[ 1 ] World Health Organization. HIV/AIDS fact sheet. 2014[2015-08-01]. http://www.who.int/mediacentre/factsheets/fs360/en/#

[ 2 ] World Health Organization, UNICEF, UNAIDS. Global Update on HIV Treatment 2013: Results, Impact and Opportunities. Geneva: WHO Press, 2013

[ 3 ] J. A. Aberg, J. E. Gallant, K. G. Ghanem, P. Emmanuel, B. S. Zingman, M. A. Horberg; Infectious Diseases Society of America. Primary care guidelines for the management of persons infected with HIV: 2013 update by the HIV medicine association of the Infectious Diseases Society of America. Clin. Infect. Dis., 2014, 58(1): e1–e34 链接1

[ 4 ] Alere. Alere PimaTM CD4. 2012[2015-05-05]. http://alerehiv.com/hiv-monitoring/alere-pima-cd4/

[ 5 ] Daktari Diagnostics. Products. 2013[2015-05-05]. http://www.daktaridx.com/products/

[ 6 ] G. L. Damhorst, N. N. Watkins, R. Bashir. Micro- and nanotechnology for HIV/AIDS diagnostics in resource-limited settings. IEEE Trans. Biomed. Eng., 2013, 60(3): 715–726 链接1

[ 7 ] C. F. Rowley. Developments in CD4 and viral load monitoring in resource-limited settings. Clin. Infect. Dis., 2014, 58(3): 407–412 链接1

[ 8 ] US Food and Drug Administration. Complete list of donor screening assays for infectious agents and HIV diagnostic assays. 2013

[ 9 ] US Food and Drug Administration. Vaccines, blood & biologics: HIV-1. 2010[2014-03-17]. http://www.fda.gov/BiologicsBloodVaccines/BloodBloodProducts/ApprovedProducts/LicensedProductsBLAs/BloodDonorScreening/InfectiousDisease/ucm126582.htm

[10] T. Peterson, M. Stuart. HIV Testing Overview. 2011[2014-03-17]. http://emedicine.medscape.com/article/1983649-overview

[11] X. Zhang, S. B. Lowe, J. J. Gooding. Brief review of monitoring methods for loop-mediated isothermal amplification (LAMP). Biosens. Bioelectron., 2014, 61: 491–499 链接1

[12] T. Notomi, Loop-mediated isothermal amplification of DNA. Nucleic Acids Res., 2000, 28(12): e63 链接1

[13] M. P. de Baar, E. C. Timmermans, M. Bakker, E. de Rooij, B. van Gemen, J. Goudsmit. One-tube real-time isothermal amplification assay to identify and distinguish human immunodeficiency virus type 1 subtypes A, B, and C and circulating recombinant forms AE and AG. J. Clin. Microbiol., 2001, 39(5): 1895–1902 链接1

[14] M. P. de Baar, Single rapid real-time monitored isothermal RNA amplification assay for quantification of human immunodeficiency virus type 1 isolates from groups M, N, and O. J. Clin. Microbiol., 2001, 39(4): 1378–1384 链接1

[15] K. A. Curtis, D. L. Rudolph, S. M. Owen. Rapid detection of HIV-1 by reverse-transcription, loop-mediated isothermal amplification (RT-LAMP). J. Virol. Methods, 2008, 151(2): 264–270 链接1

[16] C. Liu, An isothermal amplification reactor with an integrated isolation membrane for point-of-care detection of infectious diseases. Analyst (Lond.), 2011, 136(10): 2069–2076 链接1

[17] K. A. Curtis, Isothermal amplification using a chemical heating device for point-of-care detection of HIV-1. PLoS ONE, 2012, 7(2): e31432 链接1

[18] K. A. Curtis, P. L. Niedzwiedz, A. S. Youngpairoj, D. L. Rudolph, S. M. Owen. Real-time detection of HIV-2 by reverse transcription-loop-mediated isothermal amplification. J. Clin. Microbiol., 2014, 52(7): 2674–2676 链接1

[19] C. Liu, Membrane-based, sedimentation-assisted plasma separator for point-of-care applications. Anal. Chem., 2013, 85(21): 10463–10470 链接1

[20] F. B. Myers, R. H. Henrikson, J. M. Bone, L. P. Lee. A handheld point-of-care genomic diagnostic system. PLoS ONE, 2013, 8(8): e70266 链接1

[21] B. Sun, F. Shen, S. E. McCalla, J. E. Kreutz, M. A. Karymov, R. F. Ismagilov. Mechanistic evaluation of the pros and cons of digital RT-LAMP for HIV-1 viral load quantification on a microfluidic device and improved efficiency via a two-step digital protocol. Anal. Chem., 2013, 85(3): 1540–1546 链接1

[22] N. N. Watkins, Microfluidic CD4+ and CD8+ T lymphocyte counters for point-of-care HIV diagnostics using whole blood. Sci. Transl. Med., 2013, 5(214): 214ra170 链接1

[23] C. Duarte, E. Salm, B. Dorvel, B. Reddy Jr., R. Bashir. On-chip parallel detection of foodborne pathogens using loop-mediated isothermal amplification. Biomed. Microdevices, 2013, 15(5): 821–830 链接1

[24] P. Khlebovich. IP Webcam. 2015

[25] G. L. Damhorst, M. Murtagh, W. R. Rodriguez, R. Bashir. Microfluidics and nanotechnology for detection of global infectious diseases. P. IEEE, 2015, 103(2): 150–160 链接1

[26] G. Jenkins, C. D. Mansfield. Microfluidic Diagnostics: Methods and Protocols. New York: Humana Press, 2013

[27] C. D. Chin, V. Linder, S. K. Sia. Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip, 2012, 12(12): 2118–2134 链接1

[28] S. Y. Teh, R. Lin, L. H. Hung, A. P. Lee. Droplet microfluidics. Lab Chip, 2008, 8(2): 198–220 链接1

[29] The World Bank. Mobile phone access reaches three quarters of planet’s population. 2012[2015-05-22]. http://www.worldbank.org/en/news/press-release/2012/07/17/mobile-phone-access-reaches-three-quarters-planets-population

[30] A. S. F. Lok, B. J. McMahon. Chronic hepatitis B: Update 2009. Hepatology, 2009, 50(3): 661–662 链接1

[31] M. Baker. Digital PCR hits its stride. Nat. Methods, 2012, 9(6): 541–544 链接1

[32] Y. Chander, A novel thermostable polymerase for RNA and DNA loop-mediated isothermal amplification (LAMP). Front. Microbiol., 2014, 5: 395

[33] C. C. Boehme, Operational feasibility of using loop-mediated isothermal amplification for diagnosis of pulmonary tuberculosis in microscopy centers of developing countries. J. Clin. Microbiol., 2007, 45(6): 1936–1940 链接1

[34] A. C. Hatch, 1-Million droplet array with wide-field fluorescence imaging for digital PCR. Lab Chip, 2011, 11(22): 3838–3845 链接1

[35] R. H. Sedlak, K. R. Jerome. Viral diagnostics in the era of digital polymerase chain reaction. Diagn. Microbiol. Infect. Dis., 2013, 75(1): 1–4 链接1

[36] K. A. Heyries, Megapixel digital PCR. Nat. Methods, 2011, 8(8): 649–651 链接1

[37] C. M. Hindson, Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat. Methods, 2013, 10(10): 1003–1005 链接1

[38] R. A. White III, S. R. Quake, K. Curr. Digital PCR provides absolute quantitation of viral load for an occult RNA virus. J. Virol. Methods, 2012, 179(1): 45–50 链接1

[39] F. Shen, W. Du, J. E. Kreutz, A. Fok, R. F. Ismagilov. Digital PCR on a SlipChip. Lab Chip, 2010, 10(20): 2666–2672 链接1

[40] M. Pai, M. Ghiasi, N. P. Pai. Point-of-care diagnostic testing in global health: What is the point? Microbe, 2015, 10(3): 103–107

相关研究