期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2015年 第1卷 第4期 doi: 10.15302/J-ENG-2015095

基于配电网限制条件与市场控制的协调电动汽车充电方案研究

1 KU Leuven-EnergyVille, Leuven 3001, Belgium
2 VITO-EnergyVille, Mol 2400, Belgium

收稿日期: 2015-09-09 修回日期: 2015-11-27 录用日期: 2015-12-01 发布日期: 2015-12-30

下一篇 上一篇

摘要

电动汽车 (EV) 充电会对配电网产生影响,其充电成本取决于充电时的电价。为了最大程度地降低成本,一个负责大EV集群的集中器可采用基于市场的控制算法来协调车辆充电。在这一优化中,不考虑连接EV的配电网的运行参数。这可能会导致不符合电网技术限制条件的情况出现 ( 如电压偏低、相位不平衡) ;例如,当电价较低时大量汽车开始同时充电。同时考虑经济方面和技术方面的多目标优化是比较复杂的,因为该优化必须将市场层面的时间驱动型控制与运行层面的事件驱动型控制结合起来。不同的案例研究调查了在何种情况下协调EV充电的基于市场的控制会与配电网的运行限制条件发生冲突。尤其是在弱电网中,相位的不平衡和电压问题会随着EV的高份额而出现。如果局部电压较低,在EV 的充电位置可以采用低水平电压下垂控制器,通过降低充电功率来满足电网的运行限制条件。虽然这一操作意味着会偏离成本最优运行点,但结果表明该方法对集中器工作状况的影响是非常有限的,即使是在承载大量EV的弱配电网中,也能够满足配电网技术的限制条件。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

参考文献

[ 1 ] K. De Craemer, S. Vandael, B. Claessens, G. Deconinck. Integration of distribution grid constraints in an event-driven control strategy for plug-in electric vehicles in a multi-aggregator setting. In: S. Rajakaruna, F. Shahnia, A. Ghosh, eds. Plug in Electric Vehicles in Smart Grids: Energy Management. Singapore: Springer, 2015: 129–171

[ 2 ] K. De Craemer, S. Vandael, B. Claessens, G. Deconinck. An event-driven dual coordination mechanism for demand side management of PHEVs. IEEE Trans. Smart Grid, 2014, 5(2): 751–760 链接1

[ 3 ] S. Vandael, B. Claessens, M. Hommelberg, T. Holvoet, G. Deconinck. A scalable three-step approach for demand side management of plug-in hybrid vehicles. IEEE Trans. Smart Grid, 2013, 4(2): 720–728 链接1

[ 4 ] Q. Huang, Q. S. Jia, Z. Qiu, X. Guan, G. Deconinck. Matching EV charging load with uncertain wind: A simulation-based policy improvement approach. IEEE Trans. Smart Grid, 2015, 6(3): 1425–1433 链接1

[ 5 ] R. J. Bessa, M. A. Matos. Economic and technical management of an aggregation agent for electric vehicles: A literature survey. Eur. Trans. Electr. Power, 2012, 22(3): 334–350 链接1

[ 6 ] K. Clement-Nyns, E. Haesen, J. Driesen. The impact of charging plug-in hybrid electric vehicles on a residential distribution grid. IEEE Trans. Power Syst., 2010, 25(1): 371–380

[ 7 ] S. Shao, M. Pipattanasomporn, S. Rahman. Grid integration of electric vehicles and demand response with customer choice. IEEE Trans. Smart Grid, 2012, 3(1): 543–550 链接1

[ 8 ] F. Geth, N. Leemput, J. Van Roy, J. Buscher, R. Ponnette, J. Driesen. Voltage droop charging of electric vehicles in a residential distribution feeder. In: Proceedings of 2012 3rd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies (ISGT Europe). Berlin, Germany, 2012: 1–8

[ 9 ] E. Sortomme, M. M. Hindi, S. D. J. MacPherson, S. S. Venkata. Coordinated charging of plug-in hybrid electric vehicles to minimize distribution system losses. IEEE Trans. Smart Grid, 2011, 2(1): 198–205 链接1

[10] A. F. Ali, M. Abdel-Akher, Z. Ziadi, T. Senjyu. Coordinated charging of plug-in hybrid electric vehicle for voltage profile enhancement of distribution systems. In: Proceedings of the IEEE 10th International Conference on Power Electronics and Drive Systems (PEDS). Kitakyushu, Japan, 2013: 399–404

[11] J. Xu, V. W. S. Wong. An approximate dynamic programming approach for coordinated charging control at vehicle-to-grid aggregator. In: Proceedings of 2011 IEEE International Conference on Smart Grid Communications (SmartGridComm). Brussels, Belgium, 2011: 279–284

[12] E. Sortomme, M. A. El-Sharkawi. Optimal scheduling of vehicle-to-grid energy and ancillary services. IEEE Trans. Smart Grid, 2012, 3(1): 351–359 链接1

[13] R. N. Anderson, A. Boulanger, W. B. Powell, W. Scott. Adaptive stochastic control for the smart grid. Proc. IEEE, 2011, 99(6): 1098–1115

[14] N. Gatsis, G. B. Giannakis. Residential load control: Distributed scheduling and convergence with lost AMI messages. IEEE Trans. Smart Grid, 2012, 3(2): 770–786 链接1

[15] N. Gatsis, G. B. Giannakis. Cooperative multi-residence demand response scheduling. In: Proceedings of 2011 45th Annual Conference on Information Sciences and Systems (CISS). Baltimore, MD, USA, 2011: 1–6

[16] Z. Fan. A distributed demand response algorithm and its application to PHEV charging in smart grids. IEEE Trans. Smart Grid, 2012, 3(3): 1280–1290 链接1

[17] S. Weckx, J. Driesen, R. D’hulst. Optimal real-time pricing for unbalanced distribution grids with network constraints. In: Proceedings of 2013 IEEE Power and Energy Society General Meeting. Vancouver, BC, Canada, 2013: 1–5

[18] M. D. Galus, R. La Fauci, G. Andersson. Investigating PHEV wind balancing capabilities using heuristics and model predictive control. In: Proceedings of 2010 IEEE Power and Energy Society General Meeting. Minneapolis, MN, USA, 2010: 1–8

[19] B. Biegel, P. Andersen, T. S. Pedersen, K. M. Nielsen, J. Stoustrup, L. H. Hansen. Smart grid dispatch strategy for ON/OFF demand-side devices. In: Proceedings of 2013 European Control Conference (ECC). Zurich, Switzerland, 2013: 2541–2548

[20] S. Koch, J. L. Mathieu, D. S. Callaway. Modeling and control of aggregated heterogeneous thermostatically controlled loads for ancillary services. In: Proceedings of the 17th Power Systems Computation Conference. Stockholm, Sweden, 2011: 1–8

[21] P. Bach Andersen, J. Hu, K. Heussen. Coordination strategies for distribution grid congestion management in a Multi-Actor, Multi-Objective Setting. In: Proceedings of 2012 3rd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies (ISGT Europe). Berlin, Germany, 2012: 1–8

[22] K. Clement-Nyns, E. Haesen, J. Driesen. The impact of vehicle-to-grid on the distribution grid. Electr. Pow. Syst. Res., 2011, 81(1): 185–192 链接1

[23] T. Loix. Participation of inverter-connected distributed energy resources in grid voltage control (Doctoral dissertation). Leuven, Belgium: KU Leuven, 2011

[24] R. Garcia-Valle, J. A. P. Lopes. Electric Vehicle Integration into Modern Power Networks. New York: Springer Science & Business Media, 2012

[25] K. Kok. The PowerMatcher: Smart coordination for the smart electricity grid (Doctoral dissertation). Amsterdam, the Netherlands: Vrije Universiteit Amsterdam, 2013

[26] J. K. Kok, C. J. Warmer, I. G. Kamphuis. PowerMatcher: Multiagent control in the electricity infrastructure. In: Proceedings of the 4th International Joint Conference on Autonomous Agents and Multiagent Systems. Utrecht, the Netherlands, 2005: 75–82

[27] J. K. Kok, M. J. J. Scheepers, I. G. Kamphuis. Intelligence in electricity networks for embedding renewables and distributed generation. In: R. R. Negenborn, Z. Lukszo, H. Hellendoorn, eds. Intelligent Infrastructures. Dordrecht: Springer, 2010: 179–209

[28] J. Van Roy, N. Leemput, S. De Breucker, F. Geth, P. Tant, J. Driesen. An availability analysis and energy consumption model for a Femish fleet of electric vehicles. In: Proceedings of 2011 European Electric Vehicle Congress. Brussels, Belgium, 2011: 1–12

[29] A. J. Brand. Wind power forecasting method AVDE. In: Proceedings of China/Global Wind Power Conference. Beijing, China, 2008: 1–6

[30] B. Dupont, LINEAR breakthrough project: Large-scale implementation of smart grid technologies in distribution grids. In: Proceedings of 2012 3rd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies (ISGT Europe). Berlin, Germany, 2012: 1–8

[31] M. Baritaud. Securing power during the transition: Generation investment and operation issues in electricity markets with low-carbon policies. Paris: International Energy Agency, 2012

相关研究