《工程(英文)》 >> 2015年 第1卷 第4期 doi: 10.15302/J-ENG-2015098
智能电网广域输电系统可视化
1 University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
2 PowerWorld Corporation, Champaign, IL 61820, USA
下一篇 上一篇
摘要
安装大量新型传感器和通信设备,并修建用于储存和管理这些设备收集的数据的计算基础设施,是建立输电系统“智能电网”的第一步。对设备进行大量投资之后,当前的关注点是开发大规模数据集的分析和可视化方法。大量新数据的最直接的应用是数据可视化。本文介绍了过去数年内电力行业针对数据可视化所开展的一些可视化技术的调研。这些技术包括饼图技术、动画技术、等高线技术、时变图技术、基于地理的显示技术、图像融合技术和数据聚合技术。本文还着重介绍了“迷你图”新概念,用这种相当于文字大小的图形显示大量时变数 据是一种极为有效的方法。
图片
图1
图2
图3
图4
图5
图6
图7
图8
图9
图10
图11
图12
图13
图14
图15
参考文献
[1] National Academy of Engineering. Greatest Engineering Achievements of the 20th Century. 2015. http://www.greatachievements.org/
[2] Electric Power Research Institute. Technology assessment of power system visualization, 1017795. Palo Alto: EPRI, 2009
[3] M. Kezunovic, J. D. McCalley, T. J. Overbye. Smart grids and beyond: Achieving the full potential of electricity systems. Proc. IEEE, 2012, 100 (Special centennial issue): 1329–1341
[4] P. W. Sauer, M. A. Pai. Power System Dynamics and Stability. Champaign: Stripes Publishing, 2007
[5] T. J. Overbye, J. D. Weber. Visualization of power system data. In: Proceedings of the 33rd Annual Hawaii International Conference on System Sciences. Maui, HI, USA, 2000
[6] U.S.-Canada Power System Outage Task Force. Final report on the August 14, 2003 blackout in the United States and Canada: Causes and recommendations. Washington, D.C.: US Department of Energy, 2004
[7] F. C. Schweppe, J. Wildes. Power system static-state estimation, Part I: Exact model. IEEE Trans. Power App. Syst., 1970, PAS-89(1): 120–125
[8] PJM Operation Support Division. PJM manual 3A: Energy management system (EMS) model updates and quality assurance (QA), revision 09. Audubon: PJM, 2015
[9] A. G. Phadke, J. S. Thorp, M. G. Adamiak. A new measurement technique for tracking voltage phasors, local system frequency, and rate of change of frequency. IEEE Trans. Power App. Syst., 1983, PAS-102(5): 1025–1038
[10] Pacific Northwest National Laboratory, Electric Power Research Institute. North American SynchroPhasor Initiative homepage. 2015. https://www.naspi.org/
[11] The University of Tennessee, Oak Ridge National Laboratory. FNET/GridEye. http://powerit.utk.edu/fnet.html
[12] L. H. Fink, K. Carlsen. Power/energy: Operating under stress and strain: This, part two of the “blackout” series, defines control objectives for various levels and types of emergencies. IEEE Spectr., 1978, 15(3): 48–53
[13] J. F. Hauer, J. E. Dagle. Consortium for electric reliability technology solutions: Grid of the future white paper on review of recent reliability issues and system events, PNNL-13150. Richland: Pacific Northwest National Laboratory, 1999
[14] T. J. Overbye, D. A. Wiegmann. Reducing the risk of major blackouts through improved power system visualization. In: Proceedings of the 15th Power System Computation Conference. Liege, Belgium, 2005
[15] N. Abi-Samra, J. McConnach, S. Mukhopadhyay, B. Wojszczyk. When the bough breaks: Managing extreme weather events affecting electrical power grids. IEEE Power Energy Mag., 2014, 12(5): 61–65 链接1
[16] UCTE. Final report of the investigation committee on the 28 September 2003 blackout in Italy. 2004
[17] Anon. Report on the grid disturbance on 30th July 2012 and the grid disturbance on 31st July 2012. 2012. http://www.cercind.gov.in/2012/orders/Final_Report_Grid_Disturbance.pdf
[18] Federal Energy Regulatory Commission, North American Electric Reliability Corporation. Arizona-Southern California outages on September 8, 2011: Causes and recommendations. 2012. http://www.ferc.gov/legal/staff-reports/04-27-2012-ferc-nerc-report.pdf
[19] North American Electric Reliability Corporation. High-impact, low-frequency event risk to the North American bulk power system. 2010. http://www.nerc.com/pa/CI/Resources/Documents/HILF%20Report.pdf
[20] North American Electric Reliability Corporation. 2012 special reliability assessment interim report: Effects of geomagnetic disturbances on the bulk power system. 2012. http://www.nerc.com/files/2012GMD.pdf
[21] C. D. Wickens, J. G. Hollands, S. Banbury, R. Parasuraman. Engineering Psychology and Human Performance. 4th ed. New York: Psychology Press, 2013
[22] C. Ware. Information Visualization: Perception for Design. 3rd ed. Waltham: Morgan Kaufmann, 2013
[23] J. D. Weber, T. J. Overbye. Voltage contours for power system visualization. IEEE Trans. Power Syst., 2000, 15(1): 404–409
[24] R. Klump, W. Wu, G. Dooley. Displaying aggregate data, interrelated quantities, and data trends in electric power systems. In: Proceedings of the 36th Annual Hawaii International Conference on System Sciences. Waikaloa, HI, USA, 2003: 50
[25] R. Klump, R. E. Wilson, K. E. Martin. Visualizing real-time security threats using hybrid SCADA/PMU measurement displays. In: Proceedings of the 38th Annual Hawaii International Conference on System Sciences. Poipu, HI, USA, 2005: 55c
[26] E. Tufte. Beautiful Evidence. Cheshire: Graphics Press, 2006
[27] T. J. Overbye, E. M. Rantanen, S. Judd. Electric power control center visualizations using geographic data views. In: Proceedings of 2007 iREP Symposium: Bulk Power System Dynamics and Control—VII. Revitalizing Operational Reliability. Charleston, SC, USA, 2007: 1–8
[28] S. Dutta, T. J. Overbye. Information processing and visualization of power system wide area time varying data. In: Proceedings of 2013 IEEE Symposium on Computational Intelligence Applications in Smart Grid. Singapore, 2013: 6–12
[29] S. Dutta, T. J. Overbye. Feature extraction and visualization of power system transient stability results. IEEE Trans. Power Syst., 2014, 29(2): 966–973