期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2015年 第1卷 第4期 doi: 10.15302/J-ENG-2015103

全氟化碳乳剂19F磁共振成像的最新进展

1 Division of Cardiology, Washington University School of Medical, St. Louis, MO 63110, USA
2 Toshiba Medical Research Institute USA, Inc., Cleveland, OH 44143, USA
3 Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA
4 Philips Research Hamburg, Hamburg 22335, Germany

收稿日期 :2015-10-13 修回日期 :2015-12-07 录用日期 : 2015-12-12 发布日期 :2015-12-30

下一篇 上一篇

摘要

19F磁共振成像(MRI) 的研究可追溯到30多年前。在这30多年间,氢原子核(1H)成像技术迅速发展,并在全球得到广泛应用,使得磁共振成像成为生物医学诊断成像技术中不可缺少的支柱。多年来,由于各种原因,对19F成像技术的研究进展缓慢。但是在过去的十年间,尤其是最近几年,19F成像的研究和临床相关性呈爆发式发展。部分原因归结为MRI仪器、19F/1H线圈设计以及临床前和临床核磁共振仪的超高速脉冲序列的发展。这些成就再加上对解剖生理学分子成像技术的兴趣以及一批创新造影剂的出现使19F的概念进入了早期的临床评估中。本篇综述重点探讨以液态全氟化碳化合物为基础的造影剂,并试图呈现这段丰富的研究和发展历史。

图片

图1

图2

图3

图4

图5

图6

图7

图8

参考文献

[1]  G. N. Holland, P. A. Bottomley, W. S. Hinshaw. 19F magnetic resonance imaging. J. Magn. Reson., 1977, 28(1): 133–136

[2]  M. Shimizu, Tumor imaging with anti-CEA antibody labeled 19F emulsion. Magn. Reson. Med., 1987, 5(3): 290–295 链接1

[3]  L. J. Busse, R. G. Pratt, S. R. Thomas. Deconvolution of chemical shift spectra in two- or three-dimensional [19F] MR imaging. J. Comput. Assist. Tomogr., 1988, 12(5): 824–835 链接1

[4]  P. A. Bottomley. Human in vivo NMR spectroscopy in diagnostic medicine: Clinical tool or research probe? Radiology, 1989, 170(1): 1–15 链接1

[5]  R. P. Mason, P. P. Antich, E. E. Babcock, J. L. Gerberich, R. L. Nunnally. Perfluorocarbon imaging in vivo: A 19F MRI study in tumor-bearing mice. Magn. Reson. Imaging, 1989, 7(5): 475–485 链接1

[6]  H. K. Lee, O. Nalcioglu, R. B. Buxton. Correction of chemical-shift artifacts in 19F imaging of PFOB: A robust signed magnitude method. Magn. Reson. Med., 1992, 23(2): 254–263 链接1

[7]  K. L. Meyer, M. J. Carvlin, B. Mukherji, H. A. Sloviter, P. M. Joseph. Fluorinated blood substitute retention in the rat measured by fluorine-19 magnetic resonance imaging. Invest. Radiol., 1992, 27(8): 620–627 链接1

[8]  P. Bachert. Pharmacokinetics using fluorine NMR in vivo. Prog. Nucl. Mag. Res. Sp., 1998, 33(1): 1–56

[9]  D. G. Reid, P. S. Murphy. Fluorine magnetic resonance in vivo: A powerful tool in the study of drug distribution and metabolism. Drug Discov. Today, 2008, 13(11−12): 473–480 链接1

[10]  W. Wolf, C. A. Presant, V. Waluch. 19F-MRS studies of fluorinated drugs in humans. Adv. Drug Deliv. Rev., 2000, 41(1): 55–74 链接1

[11]  M. M. Kaneda, S. Caruthers, G. M. Lanza, S. A. Wickline. Perfluorocarbon nanoemulsions for quantitative molecular imaging and targeted therapeutics. Ann. Biomed. Eng., 2009, 37(10): 1922–1933 链接1

[12]  R. J. Kaufman. Clinical development of perfluorocarbon-based emulsions as red cell substitutes. In: J. Sjöblom, ed. Emulsions and Emulsion Stability. New York: Marcel Dekker, Inc., 1996: 343–368

[13]  M. P. Krafft. Fluorocarbons and fluorinated amphiphiles in drug delivery and biomedical research. Adv. Drug Deliv. Rev., 2001, 47(2−3): 209–228 链接1

[14]  D. M. Eckmann, M. A. Swartz, M. R. Glucksberg, N. Gavriely, J. B. Grotberg. Perfluorocarbon induced alterations in pulmonary mechanics. Artif. Cells Blood Substit. Immobil. Biotechnol., 1998, 26(3): 259–271

[15]  D. M. Eckmann, M. A. Swartz, N. Gavriely, M. R. Glucksberg, J. B. Grotberg. Influence of intravenous perfluorocarbon administration on the dynamic behavior of lung surfactant. Artif. Cells Blood Substit. Immobil. Biotechnol., 1998, 26(4): 359–366

[16]  H. F. Zhou, H. W. Chan, S. A. Wickline, G. M. Lanza, C. T. Pham. ανβ3-targeted nanotherapy suppresses inflammatory arthritis in mice. FASEB J., 2009, 23(9): 2978–2985 链接1

[17]  J. C. Hampton. An electron microscope study of the hepatic uptake and excretion of submicroscopic particles injected into the blood stream and into the bile duct. Acta Anat. (Basel), 1958, 32(3): 262–291 链接1

[18]  J. W. M. Bulte, A. H. Schmieder, J. Keupp, S. D. Caruthers, S. A. Wickline, G. M. Lanza. MR cholangiography demonstrates unsuspected rapid biliary clearance of nanoparticles in rodents: Implications for clinical translation. Nanomedicine (Lond.), 2014, 10(7): 1385–1388

[19]  L. Juhlin. Excretion of intravenously injected solid particles in bile. Acta Physiol. Scand., 1960, 49(2−3): 224–230 链接1

[20]  J. H. Modell, E. J. Newby, B. C. Ruiz. Long-term survival of dogs after breathing oxygenated fluorocarbon liquid. Fed. Proc., 1970, 29(5): 1731–1736

[21]  S. E. Curtis, J. T. Peek, D. R. Kelly. Partial liquid breathing with perflubron improves arterial oxygenation in acute canine lung injury. J. Appl. Physiol., 1993, 75(6): 2696–2702

[22]  S. E. Curtis, S. J. Tilden, W. E. Bradley, S. M. Cain. Effect of continuous rotation on the efficacy of partial liquid (perflubron) breathing in canine acute lung injury. Adv. Exp. Med. Biol., 1994, 361: 449–456 链接1

[23]  E. M. Bendel-Stenzel, J. D. Mrozek, D. R. Bing, P. A. Meyers, J. E. Connett, M. C. Mammel. Dynamics of spontaneous breathing during patient-triggered partial liquid ventilation. Pediatr. Pulmonol., 1998, 26(5): 319–325 链接1

[24]  A. R. Franz, C. Mack, J. Reichart, F. Pohlandt, H. D. Hummler. Preserved spontaneous breathing improves cardiac output during partial liquid ventilation. Am. J. Respir. Crit. Care Med., 2001, 164(1): 36–42 链接1

[25]  U. H. Thome, A. Schulze, R. Schnabel, A. R. Franz, F. Pohlandt, H. D. Hummler. Partial liquid ventilation in severely surfactant-depleted, spontaneously breathing rabbits supported by proportional assist ventilation. Crit. Care Med., 2001, 29(6): 1175–1180 链接1

[26]  R. P. Geyer. “Bloodless” rats through the use of artificial blood substitutes. Fed. Proc., 1975, 34(6): 1499–1505

[27]  J. G. Riess, M. Le Blanc. Perfluoro compounds as blood substitutes. Angew. Chem. Int. Ed. Engl., 1978, 17(9): 621–634 链接1

[28]  T. Mitsuno, H. Ohyanagi, R. Naito. Clinical studies of a perfluorochemical whole blood substitute (Fluosol-DA): Summary of 186 cases. Ann. Surg., 1982, 195(1): 60–69 链接1

[29]  T. M. Chang, M. Farmer, R. P. Geyer, G. Moss. Blood substitutes based on modified hemoglobin and fluorochemicals. ASAIO Trans., 1987, 33(4): 819–823

[30]  F. Hong, K. A. Shastri, G. L. Logue, M. B. Spaulding. Complement activation by artificial blood substitute Fluosol: In vitro and in vivo studies. Transfusion, 1991, 31(7): 642–647 链接1

[31]  S. F. Flaim. Pharmacokinetics and side effects of perfluorocarbon-based blood substitutes. Artif. Cells Blood Substit. Immobil. Biotechnol., 1994, 22(4): 1043–1054

[32]  K. C. Lowe. Perfluorinated blood substitutes and artificial oxygen carriers. Blood Rev., 1999, 13(3): 171–184 链接1

[33]  C. Jacoby, Probing different perfluorocarbons for in vivo inflammation imaging by 19F MRI: Image reconstruction, biological half-lives and sensitivity. NMR Biomed., 2014, 27(3): 261–271 链接1

[34]  C. Jacoby, Visualization of immune cell infiltration in experimental viral myocarditis by 19F MRI in vivo. MAGMA, 2014, 27(1): 101–106 链接1

[35]  R. F. Mattrey, F. W. Scheible, B. B. Gosink, G. R. Leopold, D. M. Long, C. B. Higgins. Perfluoroctylbromide: A liver/spleen-specific and tumor-imaging ultrasound contrast material. Radiology, 1982, 145(3): 759–762 链接1

[36]  R. F. Mattrey, D. M. Long, F. Multer, R. Mitten, C. B. Higgins. Perfluoroctylbromide: A reticuloendothelial-specific and tumor-imaging agent for computed tomography. Radiology, 1982, 145(3): 755–758 链接1

[37]  R. F. Mattrey, M. P. Andre. Ultrasonic enhancement of myocardial infarction with perfluorocarbon compounds in dogs. Am. J. Cardiol., 1984, 54(1): 206–210 链接1

[38]  W. W. Peck, R. F. Mattrey, R. A. Slutsky, C. B. Higgins. Perfluoroctylbromide: Acute hemodynamic effects, in pigs, of intravenous administration compared with the standard ionic contrast media. Invest. Radiol., 1984, 19(2): 129–132 链接1

[39]  R. F. Mattrey, Perfluorochemicals as gastrointestinal contrast agents for MR imaging: Preliminary studies in rats and humans. AJR Am. J. Roentgenol., 1987, 148(6): 1259–1263 链接1

[40]  D. C. Long, D. M. Long, J. Riess, R. Follana, A. Burgan, R. F. Mattrey. Preparation and application of highly concentrated perfluoroctylbromide fluorocarbon emulsions. Biomater. Artif. Cells Artif. Organs, 1988, 16(1−3): 441–442

[41]  R. F. Mattrey. Perfluorooctylbromide: A new contrast agent for CT, sonography, and MR imaging. AJR Am. J. Roentgenol., 1989, 152(2): 247–252 链接1

[42]  R. F. Mattrey, A. A. Nemcek Jr., R. Shelton, M. P. André, R. M. Mitten, T. Peterson. In vivo estimation of perfluorooctylbromide concentration in tissues. Invest. Radiol., 1990, 25(8): 915–921 链接1

[43]  R. F. Mattrey, M. A. Trambert, J. J. Brown, J. N. Bruneton, S. W. Young, G. L. Schooley. Results of the phase III trials with Imagent GI as an oral magnetic resonance contrast agent. Invest. Radiol., 1991, 26(Suppl 1): S65–S66, discussion S71 链接1

[44]  R. F. Mattrey, D. J. Schumacher, H. T. Tran, Q. Guo, R. B. Buxton. The use of Imagent® BP in diagnostic imaging research and 19F magnetic resonance for PO2 measurements. Biomater. Artif. Cells Immobilization Biotechnol., 1992, 20(2−4): 917–920

[45]  G. M. Lanza, A novel site-targeted ultrasonic contrast agent with broad biomedical application. Circulation, 1996, 94(12): 3334–3340 链接1

[46]  G. M. Lanza, High-frequency ultrasonic detection of thrombi with a targeted contrast system. Ultrasound Med. Biol., 1997, 23(6): 863–870 链接1

[47]  G. M. Lanza, In vitro characterization of a novel, tissue-targeted ultrasonic contrast system with acoustic microscopy. J. Acoust. Soc. Am., 1998, 104(6): 3665–3672

[48]  G. M. Lanza, Enhanced detection of thrombi with a novel fibrin-targeted magnetic resonance imaging agent. Acad. Radiol., 1998, 5(Suppl 1): S173–S176, discussion S183−S184 链接1

[49]  S. A. Anderson, Magnetic resonance contrast enhancement of neovasculature with ανβ3-targeted nanoparticles. Magn. Reson. Med., 2000, 44(3): 433–439 链接1

[50]  S. Flacke, Novel MRI contrast agent for molecular imaging of fibrin: Implications for detecting vulnerable plaques. Circulation, 2001, 104(11): 1280–1285 链接1

[51]  G. M. Lanza, Targeted antiproliferative drug delivery to vascular smooth muscle cells with a magnetic resonance imaging nanoparticle contrast agent: Implications for rational therapy of restenosis. Circulation, 2002, 106(22): 2842–2847 链接1

[52]  P. M. Winter, Molecular imaging of angiogenesis in nascent Vx-2 rabbit tumors using a novel ανβ3-targeted nanoparticle and 1.5 tesla magnetic resonance imaging. Cancer Res., 2003, 63(18): 5838–5843

[53]  P. M. Winter, Molecular imaging of angiogenesis in early-stage atherosclerosis with ανβ3-integrin-targeted nanoparticles. Circulation, 2003, 108(18): 2270–2274 链接1

[54]  A. M. Morawski, Targeted nanoparticles for quantitative imaging of sparse molecular epitopes with MRI. Magn. Reson. Med., 2004, 51(3): 480–486 链接1

[55]  A. M. Morawski, Quantitative “magnetic resonance immunohistochemistry” with ligand-targeted 19F nanoparticles. Magn. Reson. Med., 2004, 52(6): 1255–1262 链接1

[56]  A. H. Schmieder, Molecular MR imaging of melanoma angiogenesis with ανβ3-targeted paramagnetic nanoparticles. Magn. Reson. Med., 2005, 53(3): 621–627 链接1

[57]  P. M. Winter, Molecular imaging of human thrombus with computed tomography. Acad. Radiol., 2005, 12(5 Suppl 1): S9–S13 链接1

[58]  T. Cyrus, MR three-dimensional molecular imaging of intramural biomarkers with targeted nanoparticles. J. Cardiovasc. Magn. Reson., 2006, 8(3): 535–541 链接1

[59]  P. M. Winter, Endothelial ανβ3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2006, 26(9): 2103–2109 链接1

[60]  G. Hu, Imaging of Vx-2 rabbit tumors with ανβ3-integrin-targeted 111In nanoparticles. Int. J. Cancer, 2007, 120(9): 1951–1957 链接1

[61]  J. N. Marsh, Fibrin-targeted perfluorocarbon nanoparticles for targeted thrombolysis. Nanomedicine (Lond.), 2007, 2(4): 533–543 链接1

[62]  A. M. Neubauer, Fluorine cardiovascular magnetic resonance angiography in vivo at 1.5 T with perfluorocarbon nanoparticle contrast agents. J. Cardiovasc. Magn. Reson., 2007, 9(3): 565–573 链接1

[63]  K. C. Partlow, 19F magnetic resonance imaging for stem/progenitor cell tracking with multiple unique perfluorocarbon nanobeacons. FASEB J., 2007, 21(8): 1647–1654 链接1

[64]  T. Cyrus, Intramural delivery of rapamycin with ανβ3-targeted paramagnetic nanoparticles inhibits stenosis after balloon injury. Arterioscler. Thromb. Vasc. Biol., 2008, 28(5): 820–826 链接1

[65]  M. Lijowski, High sensitivity: High-resolution SPECT-CT/MR molecular imaging of angiogenesis in the Vx2 model. Invest. Radiol., 2009, 44(1): 15–22 链接1

[66]  K. C. Partlow, G. M. Lanza, S. A. Wickline. Exploiting lipid raft transport with membrane targeted nanoparticles: A strategy for cytosolic drug delivery. Biomaterials, 2008, 29(23): 3367–3375 链接1

[67]  J. Ruiz-Cabello, In vivo “hot spot” MR imaging of neural stem cells using fluorinated nanoparticles. Magn. Reson. Med., 2008, 60(6): 1506–1511 链接1

[68]  A. H. Schmieder, Three-dimensional MR mapping of angiogenesis with α5β1(ανβ3)-targeted theranostic nanoparticles in the MDA-MB-435 xenograft mouse model. FASEB J., 2008, 22(12): 4179–4189 链接1

[69]  N. R. Soman, G. M. Lanza, J. M. Heuser, P. H. Schlesinger, S. A. Wickline. Synthesis and characterization of stable fluorocarbon nanostructures as drug delivery vehicles for cytolytic peptides. Nano Lett., 2008, 8(4): 1131–1136 链接1

[70]  E. A. Waters, J. Chen, J. S. Allen, H. Zhang, G. M. Lanza, S. A. Wickline. Detection and quantification of angiogenesis in experimental valve disease with integrin-targeted nanoparticles and 19-fluorine MRI/MRS. J. Cardiovasc. Magn. Reson., 2008, 10: 43 链接1

[71]  P. M. Winter, S. D. Caruthers, H. Zhang, T. A. Williams, S. A. Wickline, G. M. Lanza. Antiangiogenic synergism of integrin-targeted fumagillin nanoparticles and atorvastatin in atherosclerosis. JACC Cardiovasc. Imaging, 2008, 1(5): 624–634 链接1

[72]  P. M. Winter, Minute dosages of ανβ3-targeted fumagillin nanoparticles impair Vx-2 tumor angiogenesis and development in rabbits. FASEB J., 2008, 22(8): 2758–2767 链接1

[73]  J. Keupp, S. D. Caruthers, J. Rahmer, T. A. Williams, S. A. Wickline, G. M. Lanza. Fluorine-19 MR molecular imaging of angiogenesis on Vx-2 tumors in rabbits using ανβ3--targeted nanoparticles. In: Proceedings of International Society for Magnetic Resonance in Medicine (ISMRM) 17th Annual Scientific Meeting and Exhibition. Honolulu, HI, USA, 2009: 223

[74]  N. R. Soman, Molecularly targeted nanocarriers deliver the cytolytic peptide melittin specifically to tumor cells in mice, reducing tumor growth. J. Clin. Invest., 2009, 119(9): 2830–2842 链接1

[75]  R. Southworth, Renal vascular inflammation induced by Western diet in ApoE-null mice quantified by 19F NMR of VCAM-1 targeted nanobeacons. Nanomedicine (Lond.), 2009, 5(3): 359–367

[76]  K. Cai, MR molecular imaging of aortic angiogenesis. JACC Cardiovasc. Imaging, 2010, 3(8): 824–832 链接1

[77]  A. Kassner, Assessment of tumor angiogenesis: Dynamic contrast-enhanced MRI with paramagnetic nanoparticles compared with Gd-DTPA in a rabbit Vx-2 tumor model. Contrast Media Mol. Imaging, 2010, 5(3): 155–161 链接1

[78]  G. M. Lanza, Theragnostics for tumor and plaque angiogenesis with perfluorocarbon nanoemulsions. Angiogenesis, 2010, 13(2): 189–202 链接1

[79]  J. N. Marsh, A fibrin-specific thrombolytic nanomedicine approach to acute ischemic stroke. Nanomedicine (Lond.), 2011, 6(4): 605–615 链接1

[80]  D. G. Thomas, Physicochemical signatures of nanoparticle-dependent complement activation. Comput. Sci. Discov., 2014, 7(1): 015003 链接1

[81]  C. T. Pham, Variable antibody-dependent activation of complement by functionalized phospholipid nanoparticle surfaces. J. Biol. Chem., 2011, 286(1): 123–130

[82]  K. Wang, Synergy between surface and core entrapped metals in a mixed manganese-gadolinium nanocolloid affords safer MR imaging of sparse biomarkers. Nanomedicine (Lond.), 2015, 11(3): 601–609

[83]  D. A. Kedziorek, Gene expression profiling reveals early cellular responses to intracellular magnetic labeling with superparamagnetic iron oxide nanoparticles. Magn. Reson. Med., 2010, 63(4): 1031–1043 链接1

[84]  R. D. Engberink, Magnetic resonance imaging of monocytes labeled with ultrasmall superparamagnetic particles of iron oxide using magnetoelectroporation in an animal model of multiple sclerosis. Mol. Imaging, 2010, 9(5): 268–277

[85]  M. Stuber, Positive contrast visualization of iron oxide-labeled stem cells using inversion-recovery with ON-resonant water suppression (IRON). Magn. Reson. Med., 2007, 58(5): 1072–1077 链接1

[86]  J. W. Bulte, D. L. Kraitchman. Monitoring cell therapy using iron oxide MR contrast agents. Curr. Pharm. Biotechnol., 2004, 5(6): 567–584 链接1

[87]  J. A. Frank, Magnetic intracellular labeling of mammalian cells by combining (FDA-approved) superparamagnetic iron oxide MR contrast agents and commonly used transfection agents. Acad. Radiol., 2002, 9(Suppl 2): S484–S487 链接1

[88]  J. W. Bulte, J. A. Frank. Imaging macrophage activity in the brain by using ultrasmall particles of iron oxide. AJNR Am. J. Neuroradiol., 2000, 21(9): 1767–1768

[89]  J. W. Bulte, R. A. Brooks, B. M. Moskowitz, L. H. Bryant Jr., J. A. Frank. T1 and T2 relaxometry of monocrystalline iron oxide nanoparticles (MION-46L): Theory and experiment. Acad. Radiol., 1998, 5(Suppl 1): S137–S140, discussion S145−S146 链接1

[90]  J. W. Bulte, P. G. Laughlin, E. K. Jordan, V. A. Tran, J. Vymazal, J. A. Frank. Tagging of T cells with superparamagnetic iron oxide: Uptake kinetics and relaxometry. Acad. Radiol., 1996, 3(Suppl 2): S301–S303 链接1

[91]  E. T. Ahrens, R. Flores, H. Xu, P. A. Morel. In vivo imaging platform for tracking immunotherapeutic cells. Nat. Biotechnol., 2005, 23(8): 983–987 链接1

[92]  M. Srinivas, P. A. Morel, L. A. Ernst, D. H. Laidlaw, E. T. Ahrens. Fluorine-19 MRI for visualization and quantification of cell migration in a diabetes model. Magn. Reson. Med., 2007, 58(4): 725–734 链接1

[93]  J. M. Janjic, E. T. Ahrens. Fluorine-containing nanoemulsions for MRI cell tracking. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2009, 1(5): 492–501 链接1

[94]  B. M. Helfer, Functional assessment of human dendritic cells labeled for in vivo 19F magnetic resonance imaging cell tracking. Cytotherapy, 2010, 12(2): 238–250 链接1

[95]  F. Bonetto, A novel 19F agent for detection and quantification of human dendritic cells using magnetic resonance imaging. Int. J. Cancer, 2011, 129(2): 365–373 链接1

[96]  T. K. Hitchens, Q. Ye, D. F. Eytan, J. M. Janjic, E. T. Ahrens, C. Ho. 19F MRI detection of acute allograft rejection with in vivo perfluorocarbon labeling of immune cells. Magn. Reson. Med., 2011, 65(4): 1144–1153 链接1

[97]  A. Balducci, B. M. Helfer, E. T. Ahrens, C. F. O’Hanlon 3rd, A. K. Wesa. Visualizing arthritic inflammation and therapeutic response by fluorine-19 magnetic resonance imaging (19F MRI). J. Inflamm. (Lond.), 2012, 9(1): 24 链接1

[98]  E. T. Ahrens, B. M. Helfer, C. F. O’Hanlon, C. Schirda. Clinical cell therapy imaging using a perfluorocarbon tracer and fluorine-19 MRI. Magn. Reson. Med., 2014, 72(6): 1696–1701 链接1

[99]  E. T. Ahrens, J. W. Bulte. Tracking immune cells in vivo using magnetic resonance imaging. Nat. Rev. Immunol., 2013, 13(10): 755–763 链接1

[100]  J. Zhong, P. H. Mills, T. K. Hitchens, E. T. Ahrens. Accelerated fluorine-19 MRI cell tracking using compressed sensing. Magn. Reson. Med., 2013, 69(6): 1683–1690 链接1

[101]  T. K. Hitchens, L. Liu, L. M. Foley, V. Simplaceanu, E. T. Ahrens, C. Ho. Combining perfluorocarbon and superparamagnetic iron-oxide cell labeling for improved and expanded applications of cellular MRI. Magn. Reson. Med., 2015, 73(1): 367–375 链接1

[102]  J. M. Janjic, M. Srinivas, D. K. K. Kadayakkara, E. T. Ahrens. Self-delivering nanoemulsions for dual fluorine-19 MRI and fluorescence detection. J. Am. Chem. Soc., 2008, 130(9): 2832–2841

[103]  H. P. Schlemmer, Alterations of intratumoral pharmacokinetics of 5-fluorouracil in head and neck carcinoma during simultaneous radiochemotherapy. Cancer Res., 1999, 59(10): 2363–2369

[104]  R. Martino, V. Gilard, F. Desmoulin, M. Malet-Martino. Fluorine-19 or phosphorus-31 NMR spectroscopy: A suitable analytical technique for quantitative in vitro metabolic studies of fluorinated or phosphorylated drugs. J. Pharm. Biomed. Anal., 2005, 38(5): 871–891 链接1

[105]  A. M. Neubauer, Gadolinium-modulated 19F signals from perfluorocarbon nanoparticles as a new strategy for molecular imaging. Magn. Reson. Med., 2008, 60(5): 1066–1072 链接1

[106]  P. Harvey, I. Kuprov, D. Parker. Lanthanide complexes as paramagnetic probes for 19F magnetic resonance. Eur. J. Inorg. Chem., 2012, 2012(12): 2015–2022

[107]  A. de Vries, Relaxometric studies of gadolinium-functionalized perfluorocarbon nanoparticles for MR imaging. Contrast Media Mol. Imaging, 2014, 9(1): 83–91 链接1

[108]  M. Meissner, M. Reisert, T. Hugger, J. Hennig, D. von Elverfeldt, J. Leupold. Revealing signal from noisy 19F MR images by chemical shift artifact correction. Magn. Reson. Med., 2015, 73(6): 2225–2233 链接1

[109]  F. Schmid, C. Höltke, D. Parker, C. Faber. Boosting 19F MRI-SNR efficient detection of paramagnetic contrast agents using ultrafast sequences. Magn. Reson. Med., 2013, 69(4): 1056–1062 链接1

[110]  M. J. Goette, G. M. Lanza, S. D. Caruthers, S. A. Wickline. Improved quantitative 19F MR molecular imaging with flip angle calibration and B1-mapping compensation. J. Magn. Reson. Imaging, 2015, 42(2): 488–494 链接1

[111]  M. J. Goette, J. Keupp, J. Rahmer, G. M. Lanza, S. A. Wickline, S. D. Caruthers. Balanced UTE-SSFP for 19F MR imaging of complex spectra. Magn. Reson. Med., 2015, 74(2): 537–543 链接1

[112]  J. Rahmer, 19F/1H simultaneous 3D radial imaging of atherosclerotic rabbits using self-navigated respiratory motion compensation. In: Proceedings of International Society for Magnetic Resonance in Medicine (ISMRM) 17th Annual Scientific Meeting and Exhibition. Honolulu, HI, USA, 2009: 4611

[113]  J. Rahmer, Dual resolution simultaneous 19F/1H in vivo imaging of targeted nanoparticles. In: Proceedings of International Society for Magnetic Resonance in Medicine (ISMRM) 17th Annual Scientific Meeting and Exhibition. Honolulu, HI, USA, 2009: 612

[114]  J. Keupp, Simultaneous dual-nuclei imaging for motion corrected detection and quantification of 19F imaging agents. Magn. Reson. Med., 2011, 66(4): 1116–1122 链接1

[115]  Y. Otake, Y. Soutome, K. Hirata, H. Ochi, Y. Bito. Double-tuned radiofrequency coil for 19F and 1H imaging. Magn. Reson. Med. Sci., 2014, 13(3): 199–205 链接1

[116]  Y. Ji, Eight-channel transceiver RF coil array tailored for 1H/19F MR of the human knee and fluorinated drugs at 7.0 T. NMR Biomed., 2015, 28(6): 726–737 链接1

[117]  L. Hu, A generalized strategy for designing 19F/1H dual-frequency MRI coil for small animal imaging at 4.7 tesla. J. Magn. Reson. Imaging, 2011, 34(1): 245–252 链接1

[118]  F. D. Hockett, Simultaneous dual frequency 1H and 19F open coil imaging of arthritic rabbit knee at 3 T. IEEE Trans. Med. Imaging, 2011, 30(1): 22–27 链接1

[119]  L. T. Muftuler, G. Gulsen, K. D. Sezen, O. Nalcioglu. Automatic tuned MRI RF coil for multinuclear imaging of small animals at 3 T. J. Magn. Reson., 2002, 155(1): 39–44 链接1

[120]  P. Mazurkewitz, C. Leussler, J. Keupp, T. Schaeffter. A double-resonant 19F/1H transmit/receive solenoid coil for MRI. In: Proceedings of International Society for Magnetic Resonance in Medicine (ISMRM) 14th Scientific Meeting and Exhibition. Seattle, WA, USA, 2006: 2596

[121]  D. Ballon, M. C. Graham, S. Miodownik, J. A. Koutcher. A 64 MHz half-birdcage resonator for clinical imaging. J. Magn. Reson., 1990, 90(1): 131–140

[122]  J. Jin, R. L. Magin, G. Shen, T. Perkins. A simple method to incorporate the effects of an RF shield into RF resonator analysis for MRI applications. IEEE Trans. Biomed. Eng., 1995, 42(8): 840–843 链接1

[123]  M. J. Goette, G. M. Lanza, S. A. Wickline, S. D. Caruthers. Quantitative molecular imaging of fluorinated agents: 19F flip angle calibration using 1H power settings. In: Proceedings of International Society for Magnetic Resonance in Medicine (ISMRM) 20th Annual Scientific Meeting and Exhibition. Melbourne, Victoria, Australia, 2012: 1655

[124]  A. Mastropietro, Optimization of rapid acquisition with relaxation enhancement (RARE) pulse sequence parameters for 19F-MRI studies. J. Magn. Reson. Imaging, 2014, 40(1): 162–170 链接1

[125]  S. B. Reeder, D. A. Herzka, E. R. McVeigh. Signal-to-noise ratio behavior of steady-state free precession. Magn. Reson. Med., 2004, 52(1): 123–130 链接1

[126]  J. Yu, Optimization of scan parameters in pulmonary partial pressure oxygen measurement by hyperpolarized 3He MRI. Magn. Reson. Med., 2008, 59(1): 124–131 链接1

[127]  J. Keupp, P. C. Mazurkewitz, I. Gräßlin, T. Schaeffter. Simultaneous 19F and 1H imaging on a clinical 3 T MR scanner. In: Proceedings of International Society for Magnetic Resonance in Medicine (ISMRM) 14th Scientific Meeting and Exhibition. Seattle, WA, USA, 2006: 102

[128]  J. Keupp, S. A. Wickline, G. M. Lanza, S. D. Caruthers. Hadamard-type pulse-phase encoding for imaging of multi-resonant fluorine-19 nanoparticles in targeted molecular MRI. In: Proceedings of International Society for Magnetic Resonance in Medicine (ISMRM) 18th Annual Scientific Meeting and Exhibition. Stockholm, Sweden, 2010: 982

[129]  R. Lamerichs, In vivo 3D 19F fast spectroscopic imaging (F-uTSI) of angiogenesis on Vx-2 tumors in rabbits using targeted perfluorocarbon emulsions. In: Proceedings of International Society for Magnetic Resonance in Medicine (ISMRM) 18th Annual Scientific Meeting and Exhibition. Stockholm, Sweden, 2010: 457

[130]  J. Rahmer, P. Börnert, J. Groen, C. Bos. Three-dimensional radial ultrashort echo-time imaging with T2 adapted sampling. Magn. Reson. Med., 2006, 55(5): 1075–1082 链接1

[131]  K. Scheffler, S. Lehnhardt. Principles and applications of balanced SSFP techniques. Eur. Radiol., 2003, 13(11): 2409–2418 链接1

[132]  E. J. Ribot, J. M. Gaudet, Y. Chen, K. M. Gilbert, P. J. Foster. In vivo MR detection of fluorine-labeled human MSC using the bSSFP sequence. Int. J. Nanomedicine, 2014, 9(1): 1731–1739

[133]  H. E. Longmaid 3rd, In vivo 19F NMR imaging of liver, tumor, and abscess in rats: Preliminary results. Invest. Radiol., 1985, 20(2): 141–145 链接1

[134]  R. F. Mattrey, Specific enhancement of intra-abdominal abscesses with perfluoroctylbromide for CT imaging. Invest. Radiol., 1984, 19(5): 438–446 链接1

[135]  D. J. Sartoris, Perfluoroctylbromide as a contrast agent for computed tomographic imaging of septic and aseptic arthritis. Invest. Radiol., 1986, 21(1): 49–55 链接1

[136]  A. V. Ratner, Detection of tumors with 19F magnetic resonance imaging. Invest. Radiol., 1988, 23(5): 361–364 链接1

[137]  A. V. Ratner, H. H. Muller, B. Bradley-Simpson, D. Hirst, W. Pitts, S. W. Young. Detection of acute radiation damage to the spleen in mice by using fluorine-19 MR imaging. AJR Am. J. Roentgenol., 1988, 151(3): 477–480 链接1

[138]  B. P. Barnett, Use of perfluorocarbon nanoparticles for non-invasive multimodal cell tracking of human pancreatic islets. Contrast Media Mol. Imaging, 2011, 6(4): 251–259 链接1

[139]  U. Flögel, In vivo monitoring of inflammation after cardiac and cerebral ischemia by fluorine magnetic resonance imaging. Circulation, 2008, 118(2): 140–148 链接1

[140]  B. Ebner, Early assessment of pulmonary inflammation by 19F MRI in vivo. Circ. Cardiovasc. Imaging, 2010, 3(2): 202–210 链接1

[141]  K. Vasudeva, Imaging neuroinflammation in vivo in a neuropathic pain rat model with near-infrared fluorescence and 19F magnetic resonance. PLoS ONE, 2014, 9(2): e90589 链接1

[142]  X. Yu, High-resolution MRI characterization of human thrombus using a novel fibrin-targeted paramagnetic nanoparticle contrast agent. Magn. Reson. Med., 2000, 44(6): 867–872 链接1

[143]  J. Myerson, L. He, G. Lanza, D. Tollefsen, S. Wickline. Thrombin-inhibiting perfluorocarbon nanoparticles provide a novel strategy for the treatment and magnetic resonance imaging of acute thrombosis. J. Thromb. Haemost., 2011, 9(7): 1292–1300 链接1

[144]  A. A. Gilad, Artificial reporter gene providing MRI contrast based on proton exchange. Nat. Biotechnol., 2007, 25(2): 217–219 链接1

[145]  P. M. Winter, Molecular imaging of angiogenic therapy in peripheral vascular disease with ανβ3-integrin-targeted nanoparticles. Magn. Reson. Med., 2010, 64(2): 369–376

[146]  E. Vinogradov, A. D. Sherry, R. E. Lenkinski. CEST: From basic principles to applications, challenges and opportunities. J. Magn. Reson., 2013, 229: 155–172 链接1

[147]  E. Vinogradov, T. C. Soesbe, J. A. Balschi, A. D. Sherry, R. E. Lenkinski. pCEST: Positive contrast using Chemical Exchange Saturation Transfer. J. Magn. Reson., 2012, 215: 64–73 链接1

[148]  S. J. Ratnakar, S. Viswanathan, Z. Kovacs, A. K. Jindal, K. N. Green, A. D. Sherry. Europium(III) DOTA-tetraamide complexes as redox-active MRI sensors. J. Am. Chem. Soc., 2012, 134(13): 5798–5800

[149]  C. Khemtong, Off-resonance saturation MRI of superparamagnetic nanoprobes: Theoretical models and experimental validations. J. Magn. Reson., 2011, 209(1): 53–60 链接1

[150]  D. Coman, G. E. Kiefer, D. L. Rothman, A. D. Sherry, F. Hyder. A lanthanide complex with dual biosensing properties: CEST (chemical exchange saturation transfer) and BIRDS (biosensor imaging of redundant deviation in shifts) with europium DOTA-tetraglycinate. NMR Biomed., 2011, 24(10): 1216–1225 链接1

[151]  S. Viswanathan, S. J. Ratnakar, K. N. Green, Z. Kovacs, L. M. De León-Rodríguez, A. D. Sherry. Multi-frequency PARACEST agents based on europium(III)-DOTA-tetraamide ligands. Angew. Chem. Int. Ed. Engl., 2009, 48(49): 9330–9333

[152]  C. Khemtong, In vivo off-resonance saturation magnetic resonance imaging of ανβ3-targeted superparamagnetic nanoparticles. Cancer Res., 2009, 69(4): 1651–1658 链接1

[153]  J. M. Zhao, Size-induced enhancement of chemical exchange saturation transfer (CEST) contrast in liposomes. J. Am. Chem. Soc., 2008, 130(15): 5178–5184

[154]  A. Pasha, G. Tircsó, E. T. Benyó, E. Brücher, A. D. Sherry. Synthesis and characterization of DOTA-(amide)4 derivatives: Equilibrium and kinetic behavior of their lanthanide(III) complexes. Eur. J. Inorg. Chem., 2007, 2007(27): 4340–4349 链接1

[155]  E. Vinogradov, S. Zhang, A. Lubag, J. A. Balschi, A. D. Sherry, R. E. Lenkinski. On-resonance low B1 pulses for imaging of the effects of PARACEST agents. J. Magn. Reson., 2005, 176(1): 54–63 链接1

[156]  L. Di Bari, G. Pescitelli, A. D. Sherry, M. Woods. Structural and chiroptical properties of the two coordination isomers of YbDOTA-type complexes. Inorg. Chem., 2005, 44(23): 8391–8398 链接1

[157]  M. Woods, Synthesis, relaxometric and photophysical properties of a new pH-responsive MRI contrast agent: The effect of other ligating groups on dissociation of a p-nitrophenolic pendant arm. J. Am. Chem. Soc., 2004, 126(30): 9248–9256 链接1

[158]  S. Zhang, M. Merritt, D. E. Woessner, R. E. Lenkinski, A. D. Sherry. PARACEST agents: Modulating MRI contrast via water proton exchange. Acc. Chem. Res., 2003, 36(10): 783–790 链接1

[159]  S. Zhang, K. Wu, A. D. Sherry. Gd3+ complexes with slowly exchanging bound-water molecules may offer advantages in the design of responsive MR agents. Invest. Radiol., 2001, 36(2): 82–86 链接1

[160]  M. Vandsburger, Cardio-chemical exchange saturation transfer magnetic resonance imaging reveals molecular signatures of endogenous fibrosis and exogenous contrast media. Circ. Cardiovasc. Imaging, 2015, 8(1): e002180

[161]  G. Rancan, D. Delli Castelli, S. Aime. MRI CEST at 1 T with large μeff Ln3+ complexes Tm3+-HPDO3A: An efficient MRI pH reporter. Magn. Reson. Med., 2015 (in press)

[162]  D. L. Longo, P. Z. Sun, L. Consolino, F. C. Michelotti, F. Uggeri, S. Aime. A general MRI-CEST ratiometric approach for pH imaging: Demonstration of in vivo pH mapping with iobitridol. J. Am. Chem. Soc., 2014, 136(41): 14333–14336

[163]  E. Terreno, Gadolinium-doped LipoCEST agents: A potential novel class of dual 1H-MRI probes. Chem. Commun. (Camb.), 2011, 47(16): 4667–4669 链接1

[164]  E. Terreno, Methods for an improved detection of the MRI-CEST effect. Contrast Media Mol. Imaging, 2009, 4(5): 237–247 链接1

[165]  E. Terreno, D. Delli Castelli, E. Violante, H. M. Sanders, N. A. Sommerdijk, S. Aime. Osmotically shrunken LIPOCEST agents: An innovative class of magnetic resonance imaging contrast media based on chemical exchange saturation transfer. Chemistry, 2009, 15(6): 1440–1448 链接1

[166]  E. Terreno, First ex-vivo MRI co-localization of two LIPOCEST agents. Contrast Media Mol. Imaging, 2008, 3(1): 38–43 链接1

[167]  E. Terreno, Highly shifted LIPOCEST agents based on the encapsulation of neutral polynuclear paramagnetic shift reagents. Chem. Commun. (Camb.), 2008(5): 600–602

[168]  S. Aime, D. Delli Castelli, E. Terreno. Highly sensitive MRI chemical exchange saturation transfer agents using liposomes. Angew. Chem. Int. Ed. Engl., 2005, 44(34): 5513–5515

[169]  S. Aime, C. Carrera, D. Delli Castelli, S. Geninatti Crich, E. Terreno. Tunable imaging of cells labeled with MRI-PARACEST agents. Angew. Chem. Int. Ed. Engl., 2005, 44(12): 1813–1815

[170]  S. Aime, D. Delli Castelli, F. Fedeli, E. Terreno. A paramagnetic MRI-CEST agent responsive to lactate concentration. J. Am. Chem. Soc., 2002, 124(32): 9364–9365

[171]  X. Song, Multi-echo length and offset VARied saturation (MeLOVARS) method for improved CEST imaging. Magn. Reson. Med., 2015, 73(2): 488–496 链接1

[172]  A. Bar-Shir, N. N. Yadav, A. A. Gilad, P. C. van Zijl, M. T. McMahon, J. W. Bulte. Single 19F probe for simultaneous detection of multiple metal ions using miCEST MRI. J. Am. Chem. Soc., 2015, 137(1): 78–81 链接1

[173]  K. W. Chan, G. Liu, P. C. van Zijl, J. W. Bulte, M. T. McMahon. Magnetization transfer contrast MRI for non-invasive assessment of innate and adaptive immune responses against alginate-encapsulated cells. Biomaterials, 2014, 35(27): 7811–7818 链接1

[174]  X. Song, CEST phase mapping using a length and offset varied saturation (LOVARS) scheme. Magn. Reson. Med., 2012, 68(4): 1074–1086 链接1

[175]  G. Liu, Monitoring enzyme activity using a diamagnetic chemical exchange saturation transfer magnetic resonance imaging contrast agent. J. Am. Chem. Soc., 2011, 133(41): 16326–16329 链接1

[176]  M. T. McMahon, A. A. Gilad, M. A. DeLiso, S. M. Cromer Berman, J. W. Bulte, P. C. van Zijl. New “multicolor” polypeptide diamagnetic chemical exchange saturation transfer (DIACEST) contrast agents for MRI. Magn. Reson. Med., 2008, 60(4): 803–812 链接1

[177]  M. T. McMahon, A. A. Gilad, J. Zhou, P. Z. Sun, J. W. Bulte, P. C. van Zijl. Quantifying exchange rates in chemical exchange saturation transfer agents using the saturation time and saturation power dependencies of the magnetization transfer effect on the magnetic resonance imaging signal (QUEST and QUESP): Ph calibration for poly-L-lysine and a starburst dendrimer. Magn. Reson. Med., 2006, 55(4): 836–847 链接1

[178]  K. Snoussi, J. W. Bulte, M. Guéron, P. C. van Zijl. Sensitive CEST agents based on nucleic acid imino proton exchange: Detection of poly(rU) and of a dendrimer-poly(rU) model for nucleic acid delivery and pharmacology. Magn. Reson. Med., 2003, 49(6): 998–1005 链接1

[179]  C. Giraudeau, A new paradigm for high-sensitivity 19F magnetic resonance imaging of perfluorooctylbromide. Magn. Reson. Med., 2010, 63(4): 1119–1124 链接1

[180]  O. Diou, RGD decoration of PEGylated polyester nanocapsules of perfluorooctyl bromide for tumor imaging: Influence of pre or post-functionalization on capsule morphology. Eur. J. Pharm. Biopharm., 2014, 87(1): 170–177 链接1

[181]  O. Diou, Long-circulating perfluorooctyl bromide nanocapsules for tumor imaging by 19FMRI. Biomaterials, 2012, 33(22): 5593–5602 链接1

[182]  W. Mitzner, W. Lee, D. Georgakopoulos, E. Wagner. Angiogenesis in the mouse lung. Am. J. Pathol., 2000, 157(1): 93–101

[183]  A. H. Schmieder, Characterization of early neovascular response to acute lung ischemia using simultaneous 19F/1H MR molecular imaging. Angiogenesis, 2014, 17(1): 51–60 链接1

[184]  E. M. Wagner, Angiogenesis and airway reactivity in asthmatic Brown Norway rats. Angiogenesis, 2015, 18(1): 1–11 链接1

[185]  U. Nöth, P. Gröhn, A. Jork, U. Zimmermann, A. Haase, J. Lutz. 19F-MRI in vivo determination of the partial oxygen pressure in perfluorocarbon-loaded alginate capsules implanted into the peritoneal cavity and different tissues. Magn. Reson. Med., 1999, 42(6): 1039–1047 链接1

[186]  R. P. Mason, F. M. Jeffrey, C. R. Malloy, E. E. Babcock, P. P. Antich. A noninvasive assessment of myocardial oxygen tension: 19F NMR spectroscopy of sequestered perfluorocarbon emulsion. Magn. Reson. Med., 1992, 27(2): 310–317 链接1

[187]  F. Goh, R. Long Jr., N. Simpson, A. Sambanis. Dual perfluorocarbon method to noninvasively monitor dissolved oxygen concentration in tissue engineered constructs in vitro and in vivo. Biotechnol. Prog., 2011, 27(4): 1115–1125 链接1

[188]  F. Goh, A. Sambanis. In vivo noninvasive monitoring of dissolved oxygen concentration within an implanted tissue-engineered pancreatic construct. Tissue Eng. Part C Methods, 2011, 17(9): 887–894

[189]  L. Hu, J. Chen, X. Yang, S. D. Caruthers, G. M. Lanza, S. A. Wickline. Rapid quantification of oxygen tension in blood flow with a fluorine nanoparticle reporter and a novel blood flow-enhanced-saturation-recovery sequence. Magn. Reson. Med., 2013, 70(1): 176–183 链接1

[190]  L. Lemaire, Perfluorocarbon-loaded lipid nanocapsules as oxygen sensors for tumor tissue pO2 assessment. Eur. J. Pharm. Biopharm., 2013, 84(3): 479–486 链接1

相关研究