期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2015年 第1卷 第4期 doi: 10.15302/J-ENG-2015111

具有智能外围的智能电网——能源互联网架构

1 Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA
2 Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China

收稿日期: 2015-11-02 修回日期: 2015-11-23 录用日期: 2015-11-26 发布日期: 2015-12-30

下一篇 上一篇

摘要

未来的智能电网应能够实现能源互联网的愿景:数百万用户利用可再生能源,在家庭、办公室和工厂生产所需的能源,并实现共享;广泛使用电动车辆和本地储能系统;利用互联网技术将当前电网升级为实现能源共享的互联网络。为实现这个愿景,本文提出了具有智能外围的智能电网的架构和概念,或称为智能GRIP。GRIP架构的构建模块被称为集群,配置能量管理系统(EMS) 的输电网是一个在电网核心的集群,外围的配电网,微电网和智能楼宇及住宅均为(外围的) 集群。这些集群全部采用分层结构。GRIP的分层架构可让电网实现从当前电网功能到未来即插即用型电网的无缝过渡。所有的集群都包括三个基本功能,即调度、消除波动和故障缓解。为实现上述功能,本文提出了风险约束的调度方法;开发了一种名为“电力弹簧”的新型装置,用于消除外围集群的电力波动;另外还讨论了故障的缓解措施。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

参考文献

[ 1 ] F. F. Wu, K. Moslehi, A. Bose. Power system control centers: Past, present, and future. Proc. IEEE, 2005, 93(11): 1890–1908

[ 2 ] International Energy Agency. Energy technology perspectives 2015. [2015-11-24]. http://www.iea.org/etp/

[ 3 ] International Energy Agency. Technology roadmaps. [2015-11-24]. https://www.iea.org/roadmaps/

[ 4 ] International Energy Agency. World energy outlook 2014. [2015-11-24]. http://www.iea.org/Textbase/npsum/WEO2014SUM.pdf

[ 5 ] J. Rifkin. The Third Industrial Revolution: How Lateral Power Is Transforming Energy, the Economy, and the World. New York: Palgrave Macmillan, 2011

[ 6 ] J. Taft, P. De Martini. Ultra large-scale power system control architecture: A strategic framework for integrating advanced grid functionality. San Jose: Cisco Connected Energy Business Unit. 2012

[ 7 ] D. Bakken, GRIP—Grids with Intelligent periphery: Control architectures for Grid2050π. In: 2011 IEEE International Conference on Smart Grid Communications (SmartGridComm). Brussels, Belgium, 2011: 7–12

[ 8 ] J. Walrand, P. Varaiya. High-Performance Communication Networks. San Francisco: Morgan Kaufmann Publishers Inc., 1996

[ 9 ] N. Cohn. Control of Generation and Power Flow on Interconnected Systems. New York: John Wiley & Sons, Ltd., 1966

[10] P. P. Varaiya, F. F. Wu, J. W. Bialek. Smart operation of smart grid: Risk-limiting dispatch. Proc. IEEE, 2011, 99(1): 40–57

[11] R. Rajagopal, E. Bitar, P. Varaiya, F. Wu. Risk-limiting dispatch for integrating renewable power. Int. J. Elec. Power, 2013, 44(1): 615–628

[12] K. Dowd. Measuring Market Risk. New York: John Wiley & Sons, Ltd., 2002

[13] B. Zhang, R. Rajagopal, D. Tse. Network risk limiting dispatch: Optimal control and price uncertainty. IEEE Trans. Automat. Contr., 2014, 59(9): 2442–2456 链接1

[14] C. Peng, Y. Hou. Risk-limiting dispatch with operating constraints. In: IEEE PES General Meeting. Washington D.C., USA, 2014

[15] S. Y. R. Hui, C. K. Lee, F. F. Wu. Power control circuit and method for stabilizing a power supply: PCT, 61/389,489. 2012-04-05

[16] S. Y. R. Hui, C. K. Lee, F. F. Wu. Electric springs—A new smart grid technology. IEEE Trans. Smart Grid, 2012, 3(3): 1552–1561 链接1

[17] S. C. Tan, C. K. Lee, S. Y. R. Hui. General steady-state analysis and control principle of electric springs with active and reactive power compensations. IEEE Trans. Power Electr., 2013, 28(8): 3958–3969 链接1

[18] X. Chen, Y. Hou, S. C. Tan, C. K. Lee, S. Y. R. Hui. Mitigating voltage and frequency fluctuation in microgrids using electric springs. IEEE Trans. Smart Grid, 2015, 6(2): 508–515 链接1

[19] C. K. Lee, S. Y. R. Hui. Input AC voltage control bi-directional power converters: US, 13/907,350. 2013-12-05

[20] K. T. Mok, T. Yang, S. C. Tan, C. K. Lee, S. Y. R. Hui. Distributed grid voltage and utility frequency stabilization via shunt-type electric springs. In: 2015 IEEE Energy Conversion Congress & Exposition. Montreal, Canada, 2015: 3774–3779

[21] C. K. Lee, S. Y. R. Hui. Reduction of energy storage requirements in future smart grid using electric springs. IEEE Trans. Smart Grid, 2013, 4(3): 1282–1288 链接1

[22] S. Yan, S. C. Tan, C. K. Lee, B. Chaudhuri, S. Y. R. Hui. Electric springs for reducing power imbalance in three-phase power systems. IEEE Trans. Power Electr., 2015, 30(7): 3601–3609 链接1

[23] J. Soni, K. R. Krishnanand, S. K. Panda. Load-side demand management in buildings using controlled electric springs. In: Proceedings of IECON 2014—40th Annual Conference of the IEEE Industrial Electronics Society. Dallas, TX, USA, 2014: 5376–5381

[24] North American Electric Reliability Corporation. Severe impact resilience: Considerations and recommendations. 2012[2015-11-24]. http://www.nerc.com/docs/oc/sirtf/SIRTF_ Final_May_9_2012-Board_Accepted.pdf

[25] M. M. Adibi. Power System Restoration: Methodologies & Implementation Strategies. New York: Wiley-IEEE Press, 2000

[26] S. Liu, Y. Hou, C. Liu, R. Podmore. The healing touch: Tools and challenges for smart grid restoration. IEEE Power Energy M., 2014, 12(1): 54–63

[27] T. Krause, G. Andersson, K. Frohlich, A. Vaccaro. Multiple-energy carriers: Modeling of production, delivery, and consumption. Proc. IEEE, 2011, 99(1): 15–27

[28] M. Qadrdan, J. Wu, N. Jenkins, J. Ekanayake. Operating strategies for a GB integrated gas and electricity network considering the uncertainty in wind power forecasts. IEEE Trans. Sustain. Energ., 2014, 5(1): 128–138 链接1

相关研究