期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2015年 第1卷 第4期 doi: 10.15302/J-ENG-2015117

心肌远程调节及其临床相关性:现在一起来!

1 Department of Molecular Pharmacology and Therapeutics, Stritch School of Medicine, Loyola University, Chicago, IL 60153, USA
2 Hand and Microsurgical Center, TheSecond Affi liated Hospital of Harbin Medical University, Harbin 150001, China

收稿日期: 2015-09-08 修回日期: 2015-12-07 录用日期: 2015-12-14 发布日期: 2015-12-30

下一篇 上一篇

摘要

急性心肌梗死(AMI) 是世界上致死和致残的主要病因。及时再灌注法是AMI的标准疗法,能够缩小梗死面积,提高患者存活率和改善预后。然而,25 %的患者在患心肌梗死(Ml) 后会进一步发展成为心力衰竭(HF),且其中50%的患者会在5年内死亡。由于梗死面积是预断病人病情( 包括HF的形成) 的主要指标,因此,改善心肌的治疗方法具有极大的应用前景。 在过去30年中,研究者已发现多种能够刺激内源性心肌保护通道的刺激物,这些刺激物能在缺血预适应(IPC)和缺血后适应以及心肌缺血情况下启动保护机制。当在心肌缺血发生前、发生期间或发生后即刻使用刺激物,在远离心脏的血管床中发生的短暂、可逆性局部缺血就会即刻引发心肌保护机制——这种现象被分别称为远程缺血预适应,远程缺血期适应和远程缺血后适应。尽管目前的研究尚未完全阐明远程缺血预适应(RIPC) 的作用机制,但RIPC与IPC在机制上有很多共同之处。RIPC的发现使研究转向了远程非缺血刺激的应用,包括神经刺激( 脊髓刺激和迷走神经刺激) 以及电针(EA)。笔者与其他研究人员发现并阐述了非缺血现象的机制,并将其定义为远程创伤预适 应(RPCT)。通过刺激皮肤感觉神经来启动RPCT,这与穴位处神经刺激和EA既有相似性又有一定差异性。笔者在此次研究中还发现,可通过采用腹中线电刺激(与EA疗法相似) 来模拟RPCT,而且作为预适应刺激和后适应刺激( 在应用再灌注法时),这种激活心肌保护机制的模式是非常有效的。通过对这些心肌保护现象的研究,学术界对心肌保护机制形成了一种全面且综 合的理解,而且在过去的5~10 年期间, 这种理解变得逐渐清晰,即无论是缺血性刺激诱导还是非缺血性刺激诱导,其机制均相似。通过对文献中多种数据的综合考虑,我们认为所有的这些心肌保护“适应”现象均表示心肌保护机制的启动是从心肌适 应网(含有特定介质和心肌细胞生存感受器) 的不同切入点进行的,该切入点包括NF-κB、Stat3/5、蛋白激酶C、舒缓激肽和mitoKATP 通道。神经系统传导通路可能代表了一种激活心脏和其他器官适应的新机制。研究表明,由于IPC和RIPC存在一定风险并且无法应用于某些患者,所以它们很难被转化为临床应用。因此,近期又新兴了一种神经刺激和痛感刺激的应用,这是一种激活心肌适应的潜在的非缺血性无创方法。作为引起心脏保护作用众多方法之一的后适应重点强调了临床相关性,这种临床相关性有助于在现有成熟的药物与电子疗法中加速新的治疗方向的突破。

图片

图1

图2

参考文献

[ 1 ] C. E. Murry, R. B. Jennings, K. A. Reimer. Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation, 1986, 74(5): 1124–1136 链接1

[ 2 ] J. A. Auchampach, G. J. Gross. Adenosine A1 receptors, KATP channels, and ischemic preconditioning in dogs. Am. J. Physiol., 1993, 264(5 Pt 2): H1327–H1336

[ 3 ] Y. Guo, W. J. Wu, Y. Qiu, X. L. Tang, Z. Yang, R. Bolli. Demonstration of an early and a late phase of ischemic preconditioning in mice. Am. J. Physiol., 1998, 275(4 Pt 2): H1375–H1387

[ 4 ] D. M. Yellon, A. Dana. The preconditioning phenomenon: A tool for the scientist or a clinical reality? Circ. Res., 2000, 87(7): 543–550 链接1

[ 5 ] M. A. Leesar, M. F. Stoddard, S. Manchikalapudi, R. Bolli. Bradykinin-induced preconditioning in patients undergoing coronary angioplasty. J. Am. Coll. Cardiol., 1999, 34(3): 639–650 链接1

[ 6 ] B. Ji, Evaluation by cardiac troponin I: The effect of ischemic preconditioning as an adjunct to intermittent blood cardioplegia on coronary artery bypass grafting. J. Card. Surg., 2007, 22(5): 394–400 链接1

[ 7 ] L. K. Teoh, R. Grant, J. A. Hulf, W. B. Pugsley, D. M. Yellon. A comparison between ischemic preconditioning, intermittent cross-clamp fibrillation and cold crystalloid cardioplegia for myocardial protection during coronary artery bypass graft surgery. Cardiovasc. Surg., 2002, 10(3): 251–255 链接1

[ 8 ] G. Heusch. Cardioprotection: Chances and challenges of its translation to the clinic. Lancet, 2013, 381(9861): 166–175 链接1

[ 9 ] M. S. Marber, D. S. Latchman, J. M. Walker, D. M. Yellon. Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation, 1993, 88(3): 1264–1272 链接1

[10] S. Hoshida, N. Yamashita, K. Otsu, M. Hori. Repeated physiologic stresses provide persistent cardioprotection against ischemia-reperfusion injury in rats. J. Am. Coll. Cardiol., 2002, 40(4): 826–831 链接1

[11] K. Przyklenk, B. Bauer, M. Ovize, R. A. Kloner, P. Whittaker. Regional ischemic ‘preconditioning’ protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation, 1993, 87(3): 893–899 链接1

[12] T. B. McClanahan, B. S. Nao, L. J. Wolke, B. J. Martin, T. E. Metz, K. P. Gallagher. Brief renal occlusion and reperfusion reduces myocardial infarct size in rabbits. FASEB J., 1993, 7: A118 (abstract)

[13] G. Heusch, H. E. Bøtker, K. Przyklenk, A. Redington, D. Yellon. Remote ischemic conditioning. J. Am. Coll. Cardiol., 2015, 65(2): 177–195 链接1

[14] S. M. Davidson, Remote ischaemic preconditioning involves signalling through the SDF-1α/CXCR4 signalling axis. Basic Res. Cardiol., 2013, 108(5): 377 链接1

[15] K. Przyklenk. ‘Going out on a limb’: SDF-1α/CXCR4 signaling as a mechanism of remote ischemic preconditioning? Basic Res. Cardiol., 2013, 108(5): 382 链接1

[16] T. Rassaf, M. Totzeck, U. B. Hendgen-Cotta, S. Shiva, G. Heusch, M. Kelm. Circulating nitrite contributes to cardioprotection by remote ischemic preconditioning. Circ. Res., 2014, 114(10): 1601–1610 链接1

[17] J. Li, MicroRNA-144 is a circulating effector of remote ischemic preconditioning. Basic Res. Cardiol., 2014, 109(5): 423 链接1

[18] K. Przyklenk. microRNA-144: The ‘what’ and ‘how’ of remote ischemic conditioning? Basic Res. Cardiol., 2014, 109(5): 429 链接1

[19] B. C. Gho, R. G. Schoemaker, M. A. van den Doel, D. J. Duncker, P. D. Verdouw. Myocardial protection by brief ischemia in noncardiac tissue. Circulation, 1996, 94(9): 2193–2200 链接1

[20] C. Weinbrenner, M. Nelles, N. Herzog, L. Sárváry, R. H. Strasser. Remote preconditioning by infrarenal occlusion of the aorta protects the heart from infarction: A newly identified non-neuronal but PKC-dependent pathway. Cardiovasc. Res., 2002, 55(3): 590–601 链接1

[21] S. Y. Lim, D. M. Yellon, D. J. Hausenloy. The neural and humoral pathways in remote limb ischemic preconditioning. Basic Res. Cardiol., 2010, 105(5): 651–655 链接1

[22] W. R. Davies, Remote ischemic preconditioning improves outcome at 6 years after elective percutaneous coronary intervention: The CRISP stent trial long-term follow-up. Circ. Cardiovasc. Interv., 2013, 6(3): 246–251 链接1

[23] L. Candilio, Effect of remote ischaemic preconditioning on clinical outcomes in patients undergoing cardiac bypass surgery: A randomised controlled clinical trial. Heart, 2015, 101(3): 185–192 链接1

[24] L. Li, Remote perconditioning reduces myocardial injury in adult valve replacement: A randomized controlled trial. J. Surg. Res., 2010, 164(1): e21–e26

[25] Z. Q. Zhao, Inhibition of myocardial injury by ischemic postconditioning during reperfusion: Comparison with ischemic preconditioning. Am. J. Physiol. Heart Circ. Physiol., 2003, 285(2): H579–H588 链接1

[26] G. Heusch. Treatment of myocardial ischemia/reperfusion injury by ischemic and pharmacological postconditioning. Compr. Physiol., 2015, 5(3): 1123–1145

[27] C. M. Li, X. H. Zhang, X. J. Ma, M. Luo. Limb ischemic postconditioning protects myocardium from ischemia-reperfusion injury. Scand. Cardiovasc. J., 2006, 40(5): 312–317 链接1

[28] F. Kerendi, Remote postconditioning: Brief renal ischemia and reperfusion applied before coronary artery reperfusion reduces myocardial infarct size via endogenous activation of adenosine receptors. Basic Res. Cardiol., 2005, 100(5): 404–412 链接1

[29] L. Breivik, E. Helgeland, E. K. Aarnes, J. Mrdalj, A. K. Jonassen. Remote postconditioning by humoral factors in effluent from ischemic preconditioned rat hearts is mediated via PI3K/Akt-dependent cell-survival signaling at reperfusion. Basic Res. Cardiol., 2011, 106(1): 135–145 链接1

[30] S. Tamareille, RISK and SAFE signaling pathway interactions in remote limb ischemic preconditioning in combination with local ischemic postconditioning. Basic Res. Cardiol., 2011, 106(6): 1329–1339 链接1

[31] M. R. Schmidt, Intermittent peripheral tissue ischemia during coronary ischemia reduces myocardial infarction through a KATP-dependent mechanism: First demonstration of remote ischemic perconditioning. Am. J. Physiol. Heart Circ. Physiol., 2007, 292(4): H1883–H1890

[32] H. E. Bøtker, Remote ischaemic conditioning before hospital admission, as a complement to angioplasty, and effect on myocardial salvage in patients with acute myocardial infarction: A randomised trial. Lancet, 2010, 375(9716): 727–734 链接1

[33] P. Meybohm, ; RIPHeart Study Collaborators. A multicenter trial of remote ischemic preconditioning for heart surgery. N. Engl. J. Med., 2015, 373(15): 1397–1407

[34] S. Pasupathy, S. Homer-Vanniasinkam. Surgical implications of ischemic preconditioning. Arch. Surg., 2005, 140(4): 405–409, discussion 410 链接1

[35] A. J. Ludman, D. M. Yellon, D. J. Hausenloy. Cardiac preconditioning for ischaemia: Lost in translation. Dis. Model. Mech., 2010, 3(1−2): 35–38 链接1

[36] M. Thielmann, Cardioprotective and prognostic effects of remote ischaemic preconditioning in patients undergoing coronary artery bypass surgery: A single-centre randomised, double-blind, controlled trial. Lancet, 2013, 382(9892): 597–604 链接1

[37] J. De Vries, M. J. De Jongste, G. Spincemaille, M. J. Staal. Spinal cord stimulation for ischemic heart disease and peripheral vascular disease. Adv. Tech. Stand. Neurosurg., 2007, 32: 63–89 链接1

[38] S. S. Kong, J. J. Liu, X. J. Yu, Y. Lu, W. J. Zang. Protection against ischemia-induced oxidative stress conferred by vagal stimulation in the rat heart: Involvement of the AMPK-PKC pathway. Int. J. Mol. Sci., 2012, 13(11): 14311–14325

[39] J. H. Dong, Y. X. Liu, J. Zhao, H. J. Ma, S. M. Guo, R. R. He. High-frequency electrical stimulation of femoral nerve reduces infarct size following myocardial ischemia-reperfusion in rats. Acta Physiol. Sin., 2004, 56(5): 620–624

[40] J. Gao, W. Fu, Z. Jin, X. Yu. A preliminary study on the cardioprotection of acupuncture pretreatment in rats with ischemia and reperfusion: Involvement of cardiac β-adrenoceptors. J. Physiol. Sci., 2006, 56(4): 275–279

[41] W. Zhou, Cardioprotection of electroacupuncture against myocardial ischemia-reperfusion injury by modulation of cardiac norepinephrine release. Am. J. Physiol. Heart Circ. Physiol., 2012, 302(9): H1818–H1825 链接1

[42] W. K. Jones, Peripheral nociception associated with surgical incision elicits remote nonischemic cardioprotection via neurogenic activation of protein kinase C signaling. Circulation, 2009, 120(11 Suppl 1): S1–S9 链接1

[43] A. C. Merlocco, Transcutaneous electrical nerve stimulation as a novel method of remote preconditioning: In vitro validation in an animal model and first human observations. Basic Res. Cardiol., 2014, 109(3): 406 链接1

[44] H. Jneid, M. Leessar, R. Bolli. Cardiac preconditioning during percutaneous coronary interventions. Cardiovasc. Drugs. Ther., 2005, 19(3): 211–217 链接1

[45] S. R. Walsh, T. Tang, U. Sadat, D. P. Dutka, M. E. Gaunt. Cardioprotection by remote ischaemic preconditioning. Br. J. Anaesth., 2007, 99(5): 611–616 链接1

[46] G. Heusch. Molecular basis of cardioprotection: Signal transduction in ischemic pre-, post-, and remote conditioning. Circ. Res., 2015, 116(4): 674–699 链接1

[47] P. Xin, Combined local ischemic postconditioning and remote perconditioning recapitulate cardioprotective effects of local ischemic preconditioning. Am. J. Physiol. Heart Circ. Physiol., 2010, 298(6): H1819–H1831

[48] F. Prunier, The RIPOST-MI study, assessing remote ischemic perconditioning alone or in combination with local ischemic postconditioning in ST-segment elevation myocardial infarction. Basic Res. Cardiol., 2014, 109(2): 400 链接1

[49] M. Wei, Repeated remote ischemic postconditioning protects against adverse left ventricular remodeling and improves survival in a rat model of myocardial infarction. Circ. Res., 2011, 108(10): 1220–1225 链接1

[50] R. Hattori, Role of STAT3 in ischemic preconditioning. J. Mol. Cell. Cardiol., 2001, 33(11): 1929–1936 链接1

[51] N. Suleman, S. Somers, R. Smith, L. H. Opie, S. C. Lecour. Dual activation of STAT-3 and Akt is required during the trigger phase of ischaemic preconditioning. Cardiovasc. Res., 2008, 79(1): 127–133 链接1

[52] J. Sachdeva, W. Dai, P. Z. Gerczuk, R. A. Kloner. Combined remote perconditioning and postconditioning failed to attenuate infarct size and contractile dysfunction in a rat model of coronary artery occlusion. J. Cardiovasc. Pharmacol. Ther., 2014, 19(6): 567–573 链接1

[53] F. Z. Meerson, Adaptive stabilization of myocardium under the influence of electroacupuncture and cardiac protection. Kardiologiia, 1991, 31(10): 72–77 (in Russian)

[54] E. Vanoli, G. M. De Ferrari, M. Stramba-Badiale, S. S. Hull Jr., R. D. Foreman, P. J. Schwartz. Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction. Circ. Res., 1991, 68(5): 1471–1481 链接1

[55] G. Zuanetti, G. M. De Ferrari, S. G. Priori, P. J. Schwartz. Protective effect of vagal stimulation on reperfusion arrhythmias in cats. Circ. Res., 1987, 61(3): 429–435 链接1

[56] M. Goto, Y. Liu, X. M. Yang, J. L. Ardell, M. V. Cohen, J. M. Downey. Role of bradykinin in protection of ischemic preconditioning in rabbit hearts. Circ. Res., 1995, 77(3): 611–621 链接1

[57] R. Schulz, H. Post, C. Vahlhaus, G. Heusch. Ischemic preconditioning in pigs: A graded phenomenon: Its relation to adenosine and bradykinin. Circulation, 1998, 98(10): 1022–1029 链接1

[58] C. Erşahin, D. E. Euler, W. H. Simmons. Cardioprotective effects of the aminopeptidase P inhibitor apstatin: Studies on ischemia/reperfusion injury in the isolated rat heart. J. Cardiovasc. Pharmacol., 1999, 34(4): 604–611 链接1

[59] R. G. Schoemaker, C. L. van Heijningen. Bradykinin mediates cardiac preconditioning at a distance. Am. J. Physiol. Heart Circ. Physiol., 2000, 278(5): H1571–H1576

[60] R. K. Kudej, Obligatory role of cardiac nerves and α1-adrenergic receptors for the second window of ischemic preconditioning in conscious pigs. Circ. Res., 2006, 99(11): 1270–1276 链接1

[61] K. L. Redington, Remote cardioprotection by direct peripheral nerve stimulation and topical capsaicin is mediated by circulating humoral factors. Basic Res. Cardiol., 2012, 107(2): 241 链接1

[62] X. Ren, Y. Wang, W. K. Jones. TNF-α is required for late ischemic preconditioning but not for remote preconditioning of trauma. J. Surg. Res., 2004, 121(1): 120–129

[63] S. Eddicks, K. Maier-Hauff, M. Schenk, A. Müller, G. Baumann, H. Theres. Thoracic spinal cord stimulation improves functional status and relieves symptoms in patients with refractory angina pectoris: The first placebo-controlled randomised study. Heart, 2007, 93(5): 585–590 链接1

[64] G. A. Sgueglia, A. Sestito. Spinal cord stimulation: A new form of pain modulatory treatment in cardiac syndrome X. Am. J. Med., 2007, 120(9): e17 链接1

[65] E. M. Southerland, Preemptive, but not reactive, spinal cord stimulation mitigates transient ischemia-induced myocardial infarction via cardiac adrenergic neurons. Am. J. Physiol. Heart Circ. Physiol., 2007, 292(1): H311–H317

[66] K. Sroka. On the genesis of myocardial ischemia. Z. Kardiol., 2004, 93(10): 768–783 链接1

[67] D. L. Jardine, Increased cardiac sympathetic nerve activity following acute myocardial infarction in a sheep model. J. Physiol., 2005, 565(1): 325–333 链接1

[68] E. A. Jankowska, P. Ponikowski, M. F. Piepoli, W. Banasiak, S. D. Anker, P. A. Poole-Wilson. Autonomic imbalance and immune activation in chronic heart failure—Pathophysiological links. Cardiovasc. Res., 2006, 70(3): 434–445 链接1

[69] M. T. Tsou, C. H. Huang, J. H. Chiu. Electroacupuncture on PC6 (Neiguan) attenuates ischemia/reperfusion injury in rat hearts. Am. J. Chin. Med., 2004, 32(6): 951–965

[70] X. R. Wang, J. Xiao, D. J. Sun. Myocardial protective effects of electroacupuncture and hypothermia on porcine heart after ischemia/reperfusion. Acupunct. Electrother. Res., 2003, 28(3−4): 193–200

[71] K. L. Redington, Electroacupuncture reduces myocardial infarct size and improves post-ischemic recovery by invoking release of humoral, dialyzable, cardioprotective factors. J. Physiol. Sci., 2013, 63(3): 219–223

[72] C. R. Hampton, HSP70.1 and-70.3 are required for late-phase protection induced by ischemic preconditioning of mouse hearts. Am. J. Physiol. Heart Circ. Physiol., 2003, 285(2): H866–H874 链接1

[73] M. Tranter, NF-κB driven cardioprotective gene programs; Hsp70.3 and cardioprotection after late ischemic preconditioning. J. Mol. Cell. Cardiol., 2010, 49(4): 664–672 链接1

[74] P. Y. Liu, Y. Tian, S. Y. Xu. Mediated protective effect of electroacupuncture pretreatment by miR-214 on myocardial ischemia/reperfusion injury. J. Geriatr. Cardiol., 2014, 11(4): 303–310

[75] D. Y. Wan, Z. Zhang, H. H. Yang. Cardioprotective effect of miR-214 in myocardial ischemic postconditioning by down-regulation of hypoxia inducible factor 1, α subunit inhibitor. Cell. Mol. Biol. (Noisy-le-grand), 2015, 61(2): 1–6

[76] W. K. Jones, Ischemic preconditioning increases iNOS transcript levels in conscious rabbits via a nitric oxide-dependent mechanism. J. Mol. Cell. Cardiol., 1999, 31(8): 1469–1481 链接1

[77] J. Bagust, Y. Chen, G. A. Kerkut. Spread of the dorsal root reflex in an isolated preparation of hamster spinal cord. Exp. Physiol., 1993, 78(6): 799–809 链接1

[78] C. M. Brooks, K. Koizumi. Origin of the dorsal root reflex. J. Neurophysiol., 1956, 19(1): 60–74

[79] K. Koketsu. Intracellular potential changes of primary afferent nerve fibers in spinal cords of cats. J. Neurophysiol., 1956, 19(5): 375–392

[80] J. Bagust, I. D. Forsythe, G. A. Kerkut. An investigation of the dorsal root reflex using an in vitro preparation of the hamster spinal cord. Brain Res., 1985, 331(2): 315–325 链接1

[81] G. P. McCouch, G. M. Austin. Postsynaptic source of dorsal root reflex. J. Neurophysiol., 1958, 21(3): 217–223

[82] J. Bagust, G. A. Kerkut, N. I. Rakkah. Differential sensitivity of dorsal and ventral root activity to magnesium and 2-amino-5-phosphonovalerate (APV) in an isolated mammalian spinal cord preparation. Brain Res., 1989, 479(1): 138–144 链接1

[83] A. Hassouna, B. M. Matata, M. Galiñanes. PKC-ε is upstream and PKC-α is downstream of mitoKATP channels in the signal transduction pathway of ischemic preconditioning of human myocardium. Am. J. Physiol. Cell Physiol., 2004, 287(5): C1418–C1425

[84] S. Y. Lim, D. J. Hausenloy. Remote ischemic conditioning: From bench to bedside. Front. Physiol., 2012, 3: 27

[85] G. J. Gross, J. E. Baker, J. Moore, J. R. Falck, K. Nithipatikom. Abdominal surgical incision induces remote preconditioning of trauma (RPCT) via activation of bradykinin receptors (BK2R) and the cytochrome P450 epoxygenase pathway in canine hearts. Cardiovasc. Drugs Ther., 2011, 25(6): 517–522 链接1

[86] E. R. Gross, A. K. Hsu, T. J. Urban, D. Mochly-Rosen, G. J. Gross. Nociceptive-induced myocardial remote conditioning is mediated by neuronal gamma protein kinase C. Basic Res. Cardiol., 2013, 108(5): 381 链接1

[87] G. J. Gross, K. M. Gauthier, J. Moore, W. B. Campbell, J. R. Falck, K. Nithipatikom. Evidence for role of epoxyeicosatrienoic acids in mediating ischemic preconditioning and postconditioning in dog. Am. J. Physiol. Heart Circ. Physiol., 2009, 297(1): H47–H52 链接1

[88] Q. Chai, J. Liu, Y. Hu. Cardioprotective effect of remote preconditioning of trauma and remote ischemia preconditioning in a rat model of myocardial ischemia/reperfusion injury. Exp. Ther. Med., 2015, 9(5): 1745–1750

[89] N. Seyedi, T. Win, H. M. Lander, R. Levi. Bradykinin B2-receptor activation augments norepinephrine exocytosis from cardiac sympathetic nerve endings. Mediation by autocrine/paracrine mechanisms. Circ. Res., 1997, 81(5): 774–784 链接1

[90] Y. J. Li, J. Peng. The cardioprotection of calcitonin gene-related peptide-mediated preconditioning. Eur. J. Pharmacol., 2002, 442(3): 173–177 链接1

[91] S. Wolfrum, J. Nienstedt, M. Heidbreder, K. Schneider, P. Dominiak, A. Dendorfer. Calcitonin gene related peptide mediates cardioprotection by remote preconditioning. Regul. Pept., 2005, 127(1−3): 217–224 链接1

[92] Q. J. Song, Y. J. Li, H. W. Deng. Early and delayed cardioprotection by heat stress is mediated by calcitonin gene-related peptide. Naunyn Schmiedebergs Arch. Pharmacol., 1999, 359(6): 477–483 链接1

[93] D. Li, Calcitonin gene-related peptide-mediated cardioprotection of postconditioning in isolated rat hearts. Regul. Pept., 2008, 147(1−3): 4–8 链接1

[94] G. W. Dorn II, T. Force. Protein kinase cascades in the regulation of cardiac hypertrophy. J. Clin. Invest., 2005, 115(3): 527–537 链接1

[95] P. Ping, Demonstration of selective protein kinase C-dependent activation of Src and Lck tyrosine kinases during ischemic preconditioning in conscious rabbits. Circ. Res., 1999, 85(6): 542–550 链接1

[96] S. Wolfrum, K. Schneider, M. Heidbreder, J. Nienstedt, P. Dominiak, A. Dendorfer. Remote preconditioning protects the heart by activating myocardial PKCε-isoform. Cardiovasc. Res., 2002, 55(3): 583–589 链接1

[97] E. N. Churchill, D. Mochly-Rosen. The roles of PKCδ and ε isoenzymes in the regulation of myocardial ischaemia/reperfusion injury. Biochem. Soc. Trans., 2007, 35(5): 1040–1042 链接1

[98] K. Inagaki, Inhibition of δ-protein kinase C protects against reperfusion injury of the ischemic heart in vivo. Circulation, 2003, 108(19): 2304–2307 链接1

[99] C. Vahlhaus, R. Schulz, H. Post, R. Onallah, G. Heusch. No prevention of ischemic preconditioning by the protein kinase C inhibitor staurosporine in swine. Circ. Res., 1996, 79(3): 407–414 链接1

[100] R. Brandman, M. H. Disatnik, E. Churchill, D. Mochly-Rosen. Peptides derived from the C2 domain of protein kinase Cε (εPKC) modulate εPKC activity and identify potential protein-protein interaction surfaces. J. Biol. Chem., 2007, 282(6): 4113–4123

[101] G. W. Dorn II, D. Mochly-Rosen. Intracellular transport mechanisms of signal transducers. Annu. Rev. Physiol., 2002, 64: 407–429 链接1

[102] G. J. Gross. The role of mitochondrial KATP channels in cardioprotection. Basic Res. Cardiol., 2000, 95(4): 280–284 链接1

[103] O. Oldenburg, Bradykinin induces mitochondrial ROS generation via NO, cGMP, PKG, and mitoKATP channel opening and leads to cardioprotection. Am. J. Physiol. Heart Circ. Physiol., 2004, 286(1): H468–H476

[104] S. Pasupathy, S. Homer-Vanniasinkam. Ischaemic preconditioning protects against ischaemia/reperfusion injury: Emerging concepts. Eur. J. Vasc. Endovasc. Surg., 2005, 29(2): 106–115 链接1

[105] Z. Lacza, J. A. Snipes, A. W. Miller, C. Szabó, G. Grover, D. W. Busija. Heart mitochondria contain functional ATP-dependent K+ channels. J. Mol. Cell. Cardiol., 2003, 35(11): 1339–1347 链接1

[106] G. R. Gaudette, I. B. Krukenkamp, A. E. Saltman, H. Horimoto, S. Levitsky. Preconditioning with PKC and the ATP-sensitive potassium channels: A codependent relationship. Ann. Thorac. Surg., 2000, 70(2): 602–608 链接1

[107] Y. Nozawa, T. Miura, T. Miki, Y. Ohnuma, T. Yano, K. Shimamoto. Mitochondrial KATP channel-dependent and-independent phases of ischemic preconditioning against myocardial infarction in the rat. Basic Res. Cardiol., 2003, 98(1): 50–58 链接1

[108] R. K. Kharbanda, T. T. Nielsen, A. N. Redington. Translation of remote ischaemic preconditioning into clinical practice. Lancet, 2009, 374(9700): 1557–1565 链接1

[109] S. Reardon. Electroceuticals spark interest. Nature, 2014, 511(7507): 18

[110] M. Tirrell. GlaxoSmithKline’s big bet on electroceuticals. CNBC News, 2015-03-11. http://www.cnbc.com/2015/03/11/glaxosmithklines-big-bet-on-electroceuticals.html

相关研究