期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2018年 第20卷 第6期 doi: 10.15302/J-SSCAE-2018.06.013

基因编辑技术在农业种质资源上的应用

1. 中国农业大学,北京 100193;

2. 华中农业大学,武汉 430070;

3. 中国农业科学院北京畜牧兽医研究所,北京 100193

资助项目 :中国工程院咨询项目“工程科技颠覆性技术战略研究”(2017-ZD-10) 收稿日期: 2018-10-25 修回日期: 2018-10-31 发布日期: 2018-12-31

下一篇 上一篇

摘要

基因编辑是对生物基因组的特定位点进行精准操作,以实现DNA片段定点删除、插入或者单碱基突变的技术。该技术突破了传统农业育种性状改良的瓶颈,能够创制出多种动植物全新种质。尤其是其中的CRISPR/Cas9技术,以其操作简便、高效率、多靶标、通用性等优势成为当前主流的应用技术,将给农业种业带来革命。为抢占未来种业种质创新和育种制高点,我国应采取积极应对措施,努力提高此技术的效率与精准性,积极制定相应的法律、法规。

参考文献

[ 1 ] Capecchi M R. Altering the genome by homologous recombination [J]. Science, 1989, 244: 1288–1292. 链接1

[ 2 ] Geurts A M, Cost G J, Freyvert Y, et al. Knockout rats via embryo microinjection of zinc-finger nucleases [J]. Science, 2009, 325(5939): 433–443. 链接1

[ 3 ] Christian M, Cermak T, Doyle E L, et al. Targeting DNA double-strand breaks with TAL effector nucleases [J]. Genetics, 2010, 186(2): 757–761. 链接1

[ 4 ] Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity [J]. Science, 2012, 33(9096): 816–821. 链接1

[ 5 ] Cong L, Ran F A, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems [J]. Science, 2013, 339(6121): 819–823. 链接1

[ 6 ] Mali P, Yang L H, Esvelt K M, et al. RNA-guided human genome engineering via Cas9 [J]. Science, 2013, 339(6121): 823–826. 链接1

[ 7 ] Komor A C, Kim Y B, Packer M S, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage [J]. Nature, 2016, 533(7603): 420–424. 链接1

[ 8 ] Gaudelli N M, Komor A C, Rees H A, et al. Programmable base editing of A• T to G• C in genomic DNA without DNA cleavage [J]. Nature, 2017, 551(7681): 464–471. 链接1

[ 9 ] Bi Y Z, Hua Z , Liu X M, et al. Isozygous and selectable marker-free MSTN knockout cloned pigs generated by the combined use of CRISPR/Cas9 and Cre/LoxP [J]. Scientific Reports, 2016, 6: 31729. 链接1

[10] Wang X L, Yue H H, Lei A M. Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system [J]. Scientific Reports, 2015, 5: 13878. 链接1

[11] Han H B, Ma Y H, Wang T, et al. One-step generation of myostatin gene knockout sheep via the CRISPR/Cas9 system [J]. Frontiers of Agricultural Science and Engineering, 2014, 1(1): 2–5. 链接1

[12] Tan W, Carlson D F, Lancto C A, et al. Efficient nonmeiotic allele introgression in livestock using custom endonucleases [J]. Proceeding of the National Academy of Sciences, 2013, 110: 16526– 16531. 链接1

[13] 李永涛, 张兰威, 孔保华. 消除乳清蛋白中β-乳球蛋白致敏性的 研究进展 [J]. 东北农业大学学报, 2009, 40(7): 136–139. Li Y T, Zhang L W, Kong B H. Research progress on eliminating sensitization of β-lactoglobulin in whey [J]. Journal of Northeast Agricultural University, 2009, 40(7): 136–139.
Li Y T, Zhang L W, Kong B H. Research progress on eliminating sensitization of β-lactoglobulin in whey [J]. Journal of Northeast Agricultural University, 2009, 40(7): 136–139. Chinese. 链接1

[14] kuroiwa Y, kasinathan P, matsushita H, et al. Sequential targeting of the genes encoding immunoglobulin-mu and prion protein in cattle [J]. Nature Genetics, 2004, 36(7): 775–780. 链接1

[15] Denning C, Burl S, Ainslie A, et al. Deletion of the alpha(1,3) galactosyl transferase (GGTA1) gene and the prion protein (PrP) gene in sheep [J]. Nature Biotechnology, 2001, 19(6): 559–562. 链接1

[16] Yu G, Chen J, Yu H, et al. Functional disruption of the prion protein gene in cloned goats [J]. Journal of General Virology, 2006, 87(4): 1019–1027. 链接1

[17] Wu H B, Wang Y S, Zhang Y, et al. TALE nickase-mediated SP110 knockin endows cattle with increased resistance to tuberculosis [J]. Proceeding of the National Academy of Sciences, 2015, 112(13): 1530–1539. 链接1

[18] Prather R S, Whitworth K M, Schommer S K, et al. Genetic engineering alveolar macrophages for host resistance to PRRSV [J]. Veterinary Microbiology, 2017, 209: 124–129. 链接1

[19] Whitworth K M, Rowland R R R, Ewen C L, et al. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus [J]. Nature Biotechnology, 2016, 34(1): 20–22. 链接1

[20] Li M, Li X, Zhou Z, et al. Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system [J]. Frontiers in Plant Science, 2016, 7: 377–385. 链接1

[21] Wang Y, Geng L, Yuan M, et al. Deletion of a target gene in Indica rice via CRISPR/Cas9 [J]. Plant Cell Reports, 2017, 36(8): 1333– 1343. 链接1

[22] Shen L, Wang C, Fu Y, et al. QTL editing confers opposing yield performance in different rice varieties [J]. Journal of Integrative Plant Biology, 2018, 60(2): 89–93. 链接1

[23] Ma X, Zhang Q, Zhu Q, et al. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants [J]. Molecular Plant, 2015, 8(8): 1274–1284. 链接1

[24] 张东民, 张晓星, 朱慧, 等. 基因编辑技术的研究及在玉米中的 应用 [J]. 玉米科学, 2018, 26(1): 45–49. Zhang D M, Zhang X X, Zhu H, et al. Research and application of gene editing technology in maize [J]. Journal of Maize Sciences, 2018, 26(1): 45–49.
Zhang D M, Zhang X X, Zhu H, et al. Research and application of gene editing technology in maize [J]. Journal of Maize Sciences, 2018, 26(1): 45–49. Chinese. 链接1

[25] Wang F, Wang C, Liu P, et al. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922 [J]. PLoS One, 2016, 11(4): e0154027. 链接1

[26] Li T, Liu B, Spalding M H, et al. High-efficiency TALEN-based gene editing produces disease-resistant rice [J]. Nature Biotechnology, 2012, 30(5): 390–392. 链接1

[27] Shi J, Gao H, Wang H, et al. ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions [J]. Plant Biotechnology Journal, 2017, 15(2): 207–216. 链接1

[28] 刘志国, 王冰源, 牟玉莲, 等. 分子编写育种——动物育种的发 展方向 [J]. 中国农业科学, 2018, 51(12): 2398–2409. Liu Z G, Wang B Y, Mou Y L, et al. Breeding by molecular writing (BMW): The future development of animal breeding [J]. Scientia Agricultura Sinica, 2018, 51(12): 2398–2409.
Zhou P, She Y, Dong N, et al. Alpha-kinase 1 is a cytosolic innate immune receptor for bacterial ADP-heptose [J]. Nature, 2018, 561(7721):122−126. 链接1

相关研究