《中国工程科学》 >> 2020年 第22卷 第3期 doi: 10.15302/J-SSCAE-2020.03.016
光纤通信技术发展现状与展望
香港理工大学电子及资讯工程学系,香港999077
收稿日期 :2020-03-15 修回日期 :2020-05-12 发布日期 :2020-05-28下一篇 上一篇
摘要
作为激光技术的重要应用,光纤通信技术是搭建现代通信网络的重要桥梁。随着物联网、大数据、云计算、虚拟现实和人工智能等新兴技术的涌现,信息传递需求与日俱增,这对光纤通信技术的发展提出了更高要求。本文在系统梳理光纤通信技术国内外发展现状的基础上,分析了在具体场景应用中面临的问题与挑战,研判了未来光纤通信技术发展的方向。经研究分析,激光通信技术在超大容量光纤通信系统中面临的挑战可从发射功率增加、光放大器带宽增加、低传输损耗光纤以及空分复用相关技术研究等方面入手探讨解决思路;同时结合现实应用情况,本文对面向其他场景的光纤通信系统成本困境的解决进行了思考。总体而言,光纤通信技术将朝着超大容量、智能化、集成化的方向不断演进,未来期望可以实现智能化网络参数监测和超长距离、超大容量信息传输,并且随着集成技术和光通信器件的不断进步,必将推动整个光纤通信行业的高性能、低成本发展。
图片
图 1
图 2
图 3
图 4
图 5
图 6
参考文献
[1] Cisco. Cisco visual networking index: Forecast and trends, 2017— 2022 [R/OL]. (2019-02-27) [2019-06-12]. https://cyrekdigital. com/pl/blog/content-marketing-trendy-na-rok-2019/white-paperc11-741490.pdf.
[2] Winzer P J, Neilson D T. From scaling disparities to integrated parallelism: A decathlon for a decade [J]. Journal of Lightwave Technology, 2017, 35(5): 1099–1115. 链接1
[3] Kao K C,Hockham G A. Dielectric-fibre surface waveguides for optical frequencies [J]. Proceedings of the Institution of Electrical Engineers, 1966, 113(7): 1151–1158. 链接1
[4] Kikuchi K. Fundamentals of coherent optical fiber communications [J]. Journal of Lightwave Technology, 2015, 34(1): 157–179. 链接1
[5] Mears R J, Reekie L, Jauncey I M, et al. Low-noise erbium-doped fibre amplifier operating at 1.54 μm [J]. Electronics Letters, 1987, 23(19): 1026–1028. 链接1
[6] Desurvire E, Simpson J R, Becker P C. High-gain erbium-doped traveling-wave fiber amplifier [J]. Optics Letters, 1987, 12(11): 888–890. 链接1
[7] Hill K O, Fujii Y, Johnson D C, et al. Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication [J]. Applied Physics Letters, 1978, 32(10): 647–649. 链接1
[8] Meltz G, Morey W W, Glenn W H. Formation of Bragg gratings in optical fibers by a transverse holographic method [J]. Optics Letters, 1989, 14(15): 823–825. 链接1
[9] Savory S J. Digital coherent optical receivers: Algorithms and subsystems [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(5): 1164–1179. 链接1
[10] Lau A P T, Gao Y, Sui Q, et al. Advanced DSP techniques enabling high spectral efficiency and flexible transmissions: Toward elastic optical networks [J]. IEEE Signal Processing Magazine, 2014, 31(2): 82–92. 链接1
[11] Renaudier J, Arnould A, Le Gac D, et al. 107 Tb/s transmission of 103-nm bandwidth over 3×100 km SSMF using ultra-wideband hybrid Raman/SOA repeaters [C]. San Diego: Optical Fiber Communication Conference 2019, 2019. 链接1
[12] Sui Q, Zhang H Y, Downie J D, et al. 256 Gb/s PM-16-QAM quasi-single-mode transmission over 2600 km using few-mode fiber with multi-path interference compensation [C]. San Diego: Optical Fiber Communication Conference 2014, 2014. 链接1
[13] Jasion G T, Bradley T D, Harrington K, et al. Hollow core NANF with 0.28 dB/km attenuation in the C and L bands [C]. San Diego: Optical Fiber Communication Conference 2020, 2020. 链接1
[14] Gao S, Wang Y, Ding W, et al. Hollow-core conjoined-tube negative-curvature fibre with ultralow loss [J]. Nature Communications, 2018, 9(1): 1–6. 链接1
[15] Sakr H, Bradley T D, Hong Y, et al. Ultrawide bandwidth hollow core fiber for interband short reach data transmission [C]. San Diego: Optical Fiber Communication Conference 2019, 2019. 链接1
[16] Winzer P J, Neilson D T, Chraplyvy A R. Fiber-optic transmission and networking: The previous 20 and the next 20 years [J]. Optics Express, 2018, 26(18): 24190–24239. 链接1
[17] Zhu Y, Zou K, Zhang F. C-band 112 Gb/s Nyquist single sideband direct detection transmission over 960 km SSMF [J]. IEEE Photonics Technology Letters, 2017, 29(8): 651–654. 链接1
[18] Che D, Yuan F, Hu Q, et al. Frequency chirp supported complex modulation of directly modulated lasers [J]. Journal of Lightwave Technology, 2016, 34(8): 1831–1836. 链接1
[19] Che D, Li A, Chen X, et al. Stokes vector direct detection for short-reach optical communication [J]. Optics Letters, 2014, 39(11): 3110–3113. 链接1
[20] Mecozzi A, Antonelli C, Shtaif M. Kramers–Kronig coherent receiver [J]. Optica, 2016, 3(11): 1220–1227. 链接1
[21] Shieh W, Sun C, Ji H. Carrier-assisted differential detection [J]. Light: Science & Applications, 2020, 9(1): 1–9. 链接1
[22] Tan Z, Yang C, Zhu Y, et al. High speed band-limited 850-nm VCSEL link based on time-domain interference elimination [J]. IEEE Photonics Technology Letters, 2017, 29(9): 751–754. 链接1
[23] Zhong K, Zhou X, Huo J, et al. Digital signal processing for shortreach optical communications: A review of current technologies and future trends [J]. Journal of Lightwave Technology, 2018, 36(2): 377–400. 链接1
[24] Wang C, Zhang M, Chen X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages [J]. Nature, 2018, 562(7725): 101–104. 链接1