期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2021年 第23卷 第6期 doi: 10.15302/J-SSCAE-2021.06.004

我国碳捕集利用与封存技术发展研究

1. 中国21 世纪议程管理中心,北京 100038;

2. 中国石油化工股份有限公司,北京 100728;

3. 燃煤污染物减排国家工程实验室,山东济南 250100;

4. 中国地质大学(北京)经济管理学院,北京 100083

收稿日期 :2021-10-21 修回日期 :2021-11-13 发布日期 :2021-12-09

下一篇 上一篇

摘要

碳捕集利用与封存( CCUS)是实现碳中和目标不可或缺的重要技术选择。为了系统梳理技术发展现状、明确未来发展方向,本文对我国 CCUS 技术水平、示范进展、成本效益、潜力需求等进行了全面评估。我国 CCUS 技术发展迅速,与国际整体发展水平相当,目前处于工业化示范阶段,但部分关键技术落后于国际先进水平。在工业示范方面,我国具备了大规模捕集利用与封存的工程能力,但在项目规模、技术集成、海底封存、工业应用等方面与国际先进水平还存在差距。在减排潜力与需求方面,我国理论封存容量和行业减排需求极大,考虑源汇匹配之后不同地区陆上封存潜力差异较大。在成本效益方面,尽管当前 CCUS 技术成本较高,但未来可有效降低实现碳中和目标的整体减排成本。为此建议,加快构建 CCUS 技术体系,推进全链条集成示范,加快管网布局和基础设施建设,完善财税激励政策和法律法规体系。

图片

图 1

图 2

图 3

图 4

图 5

图 6

参考文献

[1]  科学技术部社会发展科技司, 中国21世纪议程管理中心. 中国 碳捕集利用与封存技术发展路线图(2011) [M]. 北京: 科学出版 社, 2011. Department of Science and Technology for Social Development of Ministry of Science and Technology, the Administrative Center for China’s Agenda 21. Roadmap for carbon capture, utilization and storage technology development in China (2011) [M]. Beijing: Science Press, 2011.

[2]  科学技术部社会发展科技司, 中国21世纪议程管理中心. 中国 碳捕集利用与封存技术发展路线图(2019) [M]. 北京: 科学出版 社, 2019. Department of Science and Technology for Social Development of Ministry of Science and Technology, the Administrative Center for China’s Agenda 21. Roadmap for carbon capture, utilization and storage technology development in China (2019) [M]. Beijing: Science Press, 2019.

[3]  蔡博峰, 李琦, 张贤, 等. 中国二氧化碳捕集利用与封存(CCUS) 年度报告(2021)――中国CCUS路径研究 [R]. 北京: 生态环 境部环境规划院, 中国科学院武汉岩土力学研究所, 中国21世 纪议程管理中心, 2021. Cai B F, Li Q, Zhang X, et al. China Carbon Dioxide Capture, Utilization and Storage (CCUS) annual report (2021): China CCUS path study [R]. Beijing: Chinese Academy of Environmental Planning, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, the Administrative Center for China’s Agenda 21, 2021.

[4]  中国21世纪议程管理中心. 中国二氧化碳利用技术评估报告 [M]. 北京: 科学出版社, 2014. The Ministrative Center for China’s Agenda 21. The assessment report for carbon dioxide utilization technology in China [M]. Beijing: Science Press, 2014.

[5]  IEA. Energy technology perspectives 2020: Special report on carbon capture, utilization and storage [R]. Paris: IEA, 2020.

[6]  World Meteorological Organization. Global warming of 1.5℃: An IPCC special report on the impacts of global warming of 1.5℃ above pre-industrial levels and related global green house gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [R]. Geneva: World Meteorological Organization, 2018.

[7]  清华大学. 中国低碳发展战略与转型路径研究 [R]. 北京: 清华 大学, 2020. Tsinghua University. Research on China’s low-carbon development strategy and transformation path [R]. Beijing: Tsinghua University, 2020.

[8]  GCCSI. Global status of CCS 2020 [R]. Melbourne: Global CCS Institute, 2020.

[9]  GCCSI. Global status of CCS 2021 [R]. Melbourne: Global CCS Institute, 2021.

[10]  GCCSI. Global costs of carbon capture and storage 2017 [R]. Melbourne: Global CCS Institute, 2017.

[11]  IPCC. Climate change 2014 [M]. UK: Cambridge University Press, 2014.

[12]  张贤, 郭偲悦, 孔慧, 等. 碳中和愿景的科技需求与技术路径 [J]. 中国环境管理, 2021, 13(1): 65–70. Zhang X, Guo S Y, Kong H, et al. Science and technology demand and technology path of carbon neutral vision [J]. China Environmental Management, 2021, 13(1): 65–70. 链接1

[13]  Li X C, Wei N, Fang Z M, et al. Early opportunities of carbon capture and storage in China [J]. Energy Procedia, 2011, 4: 6029– 6036. 链接1

[14]  Daggash H A, Heuberger C F, Mac Dowell N. The role and value of negative emissions technologies in decarbonising the UK energy system [J]. International Journal of Greenhouse Gas Control, 2019, 81: 181–198. 链接1

[15]  Li J Q, Yu B Y, Tang B J, et al. Investment in carbon dioxide capture and storage combined with enhanced water recovery [J]. International Journal of Greenhouse Gas Control, 2020, 94: 102848. 链接1

[16]  Yang L, Xu M, Yang Y T, et al. Comparison of subsidy schemes for carbon capture utilization and storage (CCUS) investment based on real option approach: Evidence from China [J]. Applied Energy, 2019, 255: 113828. 链接1

[17]  光大证券. 碳中和深度报告(二):碳中和与大重构:供给侧 改革、能源革命与产业升级 [R]. 上海: 光大证券, 2021. Everbright Securities. Carbon neutrality depth report (2): Carbon neutrality and restructuring: supply-side reform, energy revolution and industrial upgrading [R]. Shanghai: Everbright Securities, 2021.

[18]  魏宁, 姜大霖, 刘胜男, 等. 国家能源集团燃煤电厂CCUS改造 的成本竞争力分析 [J]. 中国电机工程学报, 2020, 40(4):1258– 1265. Wei N, Jiang D L, Liu S N, et al. Cost competitiveness analysis of CCUS transformation of coal-fired power plants of National Energy Group [J]. Proceedings of the Chinese Society for Electrical Engineering, 2020, 40(4): 1258–1265. 链接1

[19]  Fan J L, Wei S J, Yang L, et al. Comparison of the LCOE between coal-fifired power plants with CCS and main low-carbon generation technologies: Evidence from China [J]. Energy, 2019, 176: 143–155. 链接1

[20]  Miao Y H, He Z J, Zhu X C, et al. Operating temperatures affect direct air capture of CO2 in polyamine-loaded mesoporous silica [J]. Chemical Engineering Journal, 2021, 426: 131875. 链接1

[21]  Fuss S, Lamb W F, Callaghan M W, et al. Negative emissions-Part 2: Costs, potentials and side effects [J]. Environment Research Letters, 2018, 13: 63002. 链接1

[22]  Minx J C, Lamb W F, Callaghan M W, et al. Negative emissions-Part 1: Research landscape and synthesis [J]. Environment Research Letters, 2018, 13: 63001. 链接1

[23]  Lemoine D M, Fuss S, Szolgayova J, et al. The influence of negative emission technologies and technology policies on the optimal climate mitigation portfolio [J]. Climate Change, 2012, 113: 141–162. 链接1

[24]  张贤, 李凯, 马乔, 等. 碳中和目标下CCUS技术发展定位与展望 [J]. 中国人口·资源与环境, 2021, 31(9): 29–33. Zhang X, Li K, Ma Q, et al. Orientation and prospect of CCUS development under carbon neutrality target [J]. China Population Resources and Environment, 2021, 31(9): 29–33.. 链接1

[25]  Zhang X H, Gan D M, Wang Y L, et al. The impact of price and revenue floors on carbon emission reduction investment by coal-fired power plants [J]. Technological Forecasting & Social Change, 2020, 154: 119961. 链接1

[26]  Jiang Y, Lei Y L, Yan X. Employment impact assessment of carbon capture and storage (CCS) in China’s power sector based on input-output model [J]. Environmental Science and Pollution Research, 2019, 26(15): 15665–15676. 链接1

[27]  National Research Council. Emerging workforce trends in the U.S. energy and mining industries: A call to action [M]. Washington DC: The National Academies Press, 2013.

[28]  张元春, 张媛媛, 陆诗建, 等. 浅谈在西部地区发展二氧化碳 驱替咸水及其资源化利用技术 [J]. 山东化工, 2015, 44(15): 189–190. Zhang Y C, Zhang Y Y, Lu S J, et al. Discussion on the development of carbon dioxide replacement of salt water and its resource utilization technology in the western region [J]. Shandong Chemical Industry, 2015, 44(15): 189–190. 链接1

[29]  OGCI. Oil & gas climate initiative [R]. Houston: OGCI, 2021.

[30]  GCCSI. Storage-global CCS institute [EB/OL]. (2019-10-17) [2021-10-29]. http://CO2RE.co/StorageData. 链接1

[31]  国家可再生能源中心. 中国2050高比例可再生能源发展情景暨 途径研究 [R]. 北京: 国家可再生能源中心, 2015. National Renewable Energy Center. Scenarios and pathways of China’s 2050 high-proportion renewable energy development [R]. Beijing: National Renewable Energy Center, 2015.

[32]  国网能源研究院. 中国能源电力发展展望2019 [R]. 北京: 国网 能源研究院, 2019. State Grid Energy Research Institute. China energy and power development outlook 2019 [R]. Beijing: State Grid Energy Research Institute, 2019.

[33]  Yu S, Horing J, Liu Q, et al. CCUS in China’s mitigation strategy: Insights from integrated assessment modeling [J]. International Journal of Greenhouse Gas Control, 2019, 84: 204–218. 链接1

[34]  Zhou W, Jiang D, Chen D, et al. Capturing CO2 from cement plants: A priority for reducing CO2 emissions in China [J]. Energy, 2016, 106: 464–474. 链接1

[35]  Huang Y, Yi Q, Kang J X, et al. Investigation and optimization analysis on deployment of China coal chemical industry under carbon emission constraints [J]. Applied Energy, 2019, 254: 113684. 链接1

[36]  国家可再生能源中心.可再生能源数据手册 [R]. 北京: 国家可 再生能源中心, 2019. National Renewable Energy Center. Renewable energy data manual [R]. Beijing: National Renewable Energy Center, 2019.

[37]  樊静丽, 李佳, 晏水平, 等. 我国生物质能-碳捕集与封存技术应 用潜力分析 [J]. 热力发电, 2021, 50(1): 7–17. Fan J L, Li J, Yan S P, et al. Analysis on the application potential of biomass energy-carbon capture and storage technology in China [J]. Thermal Power Generation, 2021, 50(1): 7–17. 链接1

[38]  Huang X D, Chang S Y, Zheng D Q, et al. The role of BECCS in deep decarbonization of China’s economy: A computable general equilibrium analysis [J]. Energy Economics, 2020, 92: 104968. 链接1

相关研究