期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2021年 第23卷 第6期 doi: 10.15302/J-SSCAE-2021.06.015

我国聚乳酸产业发展现状与对策研究

天津科技大学化工与材料学院,天津 300457

资助项目 :天津市杰出人才计划项目( JC20200309) 收稿日期: 2021-08-31 修回日期: 2021-11-29 发布日期: 2021-11-05

下一篇 上一篇

摘要

聚乳酸作为典型的碳中和、可再生、生物全降解高分子材料,正逐步发展成为国民经济和社会发展所必需的基础性大宗原材料。聚乳酸材料产业链涵盖乳酸单体的生物制造,乳酸单体的化学聚合,聚乳酸改性、加工、成型与产品制造,聚乳酸材料质量体系与环境释放管理等,是集生物发酵工业、化学化工工业、高分子材料工业、现代管理等技术成就于一体的新型产业。本文立足国情实际和产业需求,在比较分析国内外聚乳酸材料技术研究与产业现状的基础上,着重对我国聚乳酸材料产业发展中原料供给多样性与安全平衡、生产工艺技术与装备、产业链产品多样性与重点发展方向、质量控制体系与环境释放管理评价体系、政策引导与扶持等方面存在的问题与对策进行分析研究。相关内容可为聚乳酸的技术攻关、应用拓展、产业发展提供基础性和启发性参考。

图片

图 1

图 2

图 3

图 4

参考文献

[ 1 ] Geyer R, Jambeck J R, Law K L. Production, use, and fate of all plastics ever made [J]. Science Advances, 2017, 3(7): 1–5.

[ 2 ] Hamas A, Moon H, Zheng J J, et al. Degradation rates of plastics in the environment [J]. ACS Sustainable Chemistry & Engineering, 2020, 8: 3494–3511. 链接1

[ 3 ] Stubbins A, Law K L, Muñoz S E, et al. Plastics in the earth system [J]. Science, 2021, 373(6550): 51–55. 链接1

[ 4 ] 《中国塑料》编辑部. 李景虹院士访谈 [J]. 中国塑料, 2021, 35(8): 1–4. Editorial Office of China Plastics. Interview of Academician Li Jinghong [J]. China Plastics, 2021, 35(8): 1–4.
Editorial Office of China Plastics. Interview of Academician Li Jinghong [J]. China Plastics, 2021, 35(8): 1–4. Chinese. 链接1

[ 5 ] 马占峰, 姜宛君. 中国塑料加工工业(2020)[J]. 中国塑料, 2021, 35(5): 119–125. Ma Z F, Jiang W J. China plastics industry(2020) [J]. China Plastics, 2021, 35(5): 119–125.
Ma Z F, Jiang W J. China plastics industry(2020) [J]. China Plastics, 2021, 35(5): 119–125. Chinese. 链接1

[ 6 ] Zhou L, Niu D D, Tian K M, et al. Genetically switched D-lactate production in Escherichia coli [J]. Metabolic Engineering, 2012, 14(5): 560–568. 链接1

[ 7 ] Zhu Y, Eiteman M A, DeWitt K, et al. Homolactate fermentation by metabolically engineered Escherichia coli strains [J]. Applied and Environmental Microbiology, 2007, 73(2): 456–464. 链接1

[ 8 ] Tian K M, Niu D D, Liu X G, et al. Limitation of thiamine pyrophosphate supply to growing Escherichia coli switches metabolism to efficient D-lactate formation [J]. Biotechnology and Bioengineering, 2016, 113(1): 182–188. 链接1

[ 9 ] Niu D D, Tian K M, Prior B A, et al. Highly efficient L-lactate production using engineered Escherichia coli with dissimilar temperature optima for L-lactate formation and cell growth [J]. Microbial Cell Factories, 2014, 13: 78. 链接1

[10] Baek S H, Kwon E Y, Bae S J, et al. Improvement of D-lactic acid production in Saccharomyces cerevisiae under acidic conditions by evolutionary and rational metabolic engineering [J]. Biotechnology Journal, 2017, 12(10): 1–12. 链接1

[11] Song J Y, Park J S, Kang C D, et al. Introduction of a bacterial acetyl-CoA synthesis pathway improves lactic acid production in Saccharomyces cerevisiae [J]. Metabolic Engineering, 2016, 35: 38–45. 链接1

[12] Park H J, Bae J H, Ko H J, et al. Low-pH production of D-lactic acid using newly isolated acid tolerant yeast Pichia kudriavzevii NG7 [J]. Biotechnology and Bioengineering, 2018, 115(9): 2232– 2242. 链接1

[13] 张勤, 张梁, 丁重阳, 等. 代谢工程改造野生耐酸酵母生产L–乳 酸 [J]. 生物工程学报, 2011, 27(7): 1024–1031. Zhang Q, Zhang L, Ding C Y, et al. Metabolic engineering of wild acid-resistant yeast for L-lactic acid production [J]. Chinese Journal of Biotechnology, 2011, 27(7): 1024–1031.
Zhang Q, Zhang L, Ding C Y, et al. Metabolic engineering of wild acid-resistant yeast for L-lactic acid production [J]. Chinese Journal of Biotechnology, 2011, 27(7): 1024–1031. Chinese. 链接1

[14] Zhou X D, Ye L D, Wu J C. Efficient production of L-lactic acid by newly isolated thermophilic Bacillus coagulans WCP10- 4 with high glucose tolerance [J]. Applied Microbiology and Biotechnology, 2013, 97(10): 4309–4314. 链接1

[15] Wehrs M, Tanjore D, Eng T, et al. Engineering robust production microbes for large-scale cultivation [J]. Trends in Microbiology, 2019, 27(6): 524–537. 链接1

[16] Pérez A D, Van der Bruggen B, Fontalvo J. Modeling of a liquid membrane in Taylor flow integrated with lactic acid fermentation [J]. Chemical Engineering and Processing - Process Intensification, 2019, 144: 1–12. 链接1

[17] Balla E, Daniilidis V, Karlioti G, et al. Poly(lactic acid): A versatile biobased polymer for the future with multifunctional propertiesfrom monomer synthesis, polymerization techniques and molecular weight increase to PLA applications [J]. Polymers(Basel), 2021, 13(11): 1–12. 链接1

[18] Van Wouwe P, Dusselier M, Vanleeuw E, et al. Lactide synthesis and chirality control for polylactic acid production [J]. ChemSusChem, 2016, 9(9): 907–921. 链接1

[19] Moon S II, Lee C W, Miyamoto M, et al. Melt polycondensation of L-lactic acid with Sn(II) catalysts activated by various proton acids: A direct manufacturing route to high molecular weight poly(L-lactic acid) [J]. Journal of Polymer Science Part A Polymer Chemistry, 2000, 38(9): 1673–1679. 链接1

[20] Park S J, Lee S Y, Kim T W, et al. Biosynthesis of lactatecontaining polyesters by metabolically engineered bacteria [J]. Biotechnology Journal, 2012, 7(2): 199–212. 链接1

[21] 王子羽, 何文文, 徐云龙, 等. 有机胍催化法可控合成聚乳酸系 环境友好材料 [J]. 高分子学报, 2018 (7): 28–38. Wang Z Y, He W W, Xu Y L, et al. Controlled synthesis of PLAseries environment-friendly polymers with guanidine catalysts [J]. ACTA Polymerica Sinica, 2018 (7): 28–38.
Wang Z Y, He W W, Xu Y L, et al. Controlled synthesis of PLA series environment-friendly polymers with guanidine catalysts [J]. ACTA Polymerica Sinica, 2018 (7): 28–38. Chinese. 链接1

[22] 张浩琴, 杨文超, 陈月铃, 等. 透明耐热聚乳酸材料改性研究进 展 [J]. 工程塑料应用, 2021, 49(8): 164–170. Zhang H Q, Yang W C, Chen Y L, et al. Research progress on modification of transparent and heat-resistant polylactic acid materials [J]. Engineering Plastics Application, 2021, 49(8): 164– 170.
Zhang H Q, Yang W C, Chen Y L, et al. Research progress on modification of transparent and heat-resistant polylactic acid materials [J]. Engineering Plastics Application, 2021, 49(8): 164– 170. Chinese. 链接1

[23] 李伦, 郑红娟. 医用聚乳酸材料改性方法及研究进展 [J]. 工程 塑料应用, 2021, 49(8): 171–175. Li L, Zheng H J. Modification methods and research progress of medical polylactic acid [J]. Engineering Plastics Application, 2021, 49(8): 171–175.
Li L, Zheng H J. Modification methods and research progress of medical polylactic acid [J]. Engineering Plastics Application, 2021, 49(8): 171–175. Chinese. 链接1

[24] 黄晓兰, 李彩玲, 刘幸琪, 等. 绿色可降解生物高分子聚乳酸改 性及应用研究进展 [J]. 工程塑料应用, 2021, 49(7): 162–166. Huang X L, Li C L, Liu X Q, et al. Research progress on modification and application of green degradable biopolymer PLA [J]. Engineering Plastics Application, 2021, 49(7): 162–166.
Huang X L, Li C L, Liu X Q, et al. Research progress on modification and application of green degradable biopolymer PLA [J]. Engineering Plastics Application, 2021, 49(7): 162–166. Chinese. 链接1

[25] 俞森龙, 胡香凝, 唐飞宇, 等. 聚乳酸阻燃改性研究进展 [J]. 化 工进展, 2020, 39(9): 3421–3432. Yu S L, Hu X N, Tang F Y, et al. Flame-retardant poly(lactic acid): An overview and outlook [J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3421–3432.
Yu S L, Hu X N, Tang F Y, et al. Flame-retardant poly(lactic acid): An overview and outlook [J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3421–3432. Chinese. 链接1

[26] Chen X Z, Zhou L, Tian K M, et al. Metabolic engineering of Escherichia coli: A sustainable industrial platform for bio-based chemical production [J]. Biotechnology Advances, 2013, 31(8): 1200–1223. 链接1

[27] 任倩, 黄朋科, 赵永青, 等. 超临界流体制备聚乳酸发泡材料的 研究进展 [J]. 高分子通报, 2021, (5): 52–64. Ren Q, Huang P K, Zhao Y Q, et al. Research progress of the preparation of polylactic acid foam by supercritical fluid [J]. Polymer Bulletin, 2021 (5): 52–64.
Ren Q, Huang P K, Zhao Y Q, et al. Research progress of the preparation of polylactic acid foam by supercritical fluid [J]. Polymer Bulletin, 2021 (5): 52–64. Chinese. 链接1

[28] 曲希明, 王颖, 邱志成, 等. 我国先进纤维材料产业发展战略研 究 [J]. 中国工程科学, 2020, 22(5): 104–111. Qu X M, Wang Y, Qiu Z C, et al. Development strategies for China’s advanced fiber materials industry [J]. Strategic Study of CAE, 2020, 22(5): 104–111.
Qu X M, Wang Y, Qiu Z C, et al. Development strategies for China’s advanced fiber materials industry [J]. Strategic Study of CAE, 2020, 22(5): 104–111. Chinese. 链接1

[29] Nanaki S, Barmpalexis P, Iatrou A, et al. Risperidone controlled release microspheres based on poly(lactic acid)-poly(propylene adipate) novel polymer blends appropriate for long acting injectable formulations [J]. Pharmaceutics, 2018, 10(3): 1–12. 链接1

[30] Albertsson A C, Srivastava R K. Recent developments in enzymecatalyzed ring-opening polymerization [J]. Advanced Drug Delivery Reviews, 2008, 60(9): 1077–1093. 链接1

[31] Douka A, Vouyiouka S, Papaspyridi L M, et al. A review on enzymatic polymerization to produce polycondensation polymers: The case of aliphatic polyesters, polyamides and polyesteramides [J]. Progress in Polymer Science, 2018, 79: 1–25. 链接1

[32] Yeo J C C, Muiruri J K, Koh J J, et al. Bend, twist, and turn: First bendable and malleable toughened PLA green composites [J]. Advanced Functional Materials, 2020, 30(30): 1–12. 链接1

相关研究