期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2022年 第24卷 第2期 doi: 10.15302/J-SSCAE-2022.02.026

智能制造评价理论研究现状及未来展望

1. 北京科技大学经济管理学院,北京 100083;

2. 国家信息中心信息化和产业发展部,北京 100045

收稿日期 :2021-08-26 修回日期 :2021-12-03 发布日期 :2022-02-17

下一篇 上一篇

摘要

智能制造是实现制造强国的重要途径,随着我国智能制造进入全面推广阶段,针对智能制造发展水平开展科学评价成为现实需求。本文系统梳理了近年来有关智能制造评价理论的研究成果,从智能制造的关键技术、系统全局、行业领域 3 个视角归纳总结了智能制造评价体系的研究情况,对比分析了智能制造评价研究中常用的评价方法;剖析智能制造评价研究方面存在的主要问题,针对性探讨领域的未来研究方向。研究认为,现行智能制造评价的标准、流程、指标体系、应用等方面存在欠缺,需要从评价范式、评价体系、新技术融合等方面加以改进完善,以推进智能制造评价理论研究并指导智能制造发展。具体而言,健全标准设计,建立智能制造评价范式;优化指标体系,丰富关键核心评价内容;强化新技术融合,推进理论实践协同并进。

图片

图 1

参考文献

[1]  周济. 智能制造——“中国制造2025”的主攻方向 [J]. 中国机械 工程, 2015, 26(17): 2273–2284. Zhou J. Intelligent manufacturing: Main direction of “Made in China 2025” [J]. China Mechanical Engineering, 2015, 26(17): 2273–2284. 链接1

[2]  钟志华, 臧冀原, 延建林, 等. 智能制造推动我国制造业全面创 新升级 [J]. 中国工程科学, 2020, 22(6): 136–142. Zhong Z H, Zang J Y, Yan J L, et al. Intelligent manufacturing promotes the comprehensive upgrading and innovative growth of China’s manufacturing industry [J]. Strategic Study of CAE, 2020, 22(6): 136–142. 链接1

[3]  Rauch E, Dallasega P, Unterhofer M. Requirements and barriers for introducing smart manufacturing in small and medium-sized enterprises [J]. IEEE Engineering Managemant Review, 2019, 47(3): 87–94. 链接1

[4]  刘强. 智能制造理论体系架构研究 [J]. 中国机械工程, 2020, 31(1): 24–36. Liu Q. Study on architecture of intelligent manufacturing theory [J]. China Mechanical Engineering, 2020, 31(1): 24–36. 链接1

[5]  Wang B C, Tao F, Fang X D, et al. Smart manufacturing and intelligent manufacturing: A comparative review [J]. Engineering, 2021, 7(6): 738–757. 链接1

[6]  Zheng T, Ardolino M, Bacchetti A, et al. The applications of Industry 4.0 technologies in manufacturing context: A systematic literature review [J]. International Journal of Production Research, 2021, 59(6): 1922–1954. 链接1

[7]  Alcácer V, Cruz-Machadoab V. Scanning the Industry 4.0: A literature review on technologies for manufacturing systems [J]. Engineering Science and Technology, an International Journal, 2019, 22(3): 899–919. 链接1

[8]  Zhou J, Li P G, Zhou Y H, et al. Toward new-generation intelligent manufacturing [J]. Engineering, 2018, 4(1): 11–20. 链接1

[9]  Chen D F, Heyer S, Ibbotson S, et al. Direct digital manufacturing: definition, evolution, and sustainability implications [J]. Journal of Cleaner Production, 2015, 107: 615–625. 链接1

[10]  Gokalp E, Martinez V. Digital transformation capability maturity model enabling the assessment of industrial manufacturers [J]. Computers in Industry, 2021, 132: 1–12. 链接1

[11]  Li J, Qiu J J, Zhou Y, et al. Study on the reference architecture and assessment framework of industrial Internet platform [J]. IEEE Access, 2020, 8: 164950–164971. 链接1

[12]  李伯虎, 张霖, 王时龙, 等. 云制造——面向服务的网络化制造 新模式 [J]. 计算机集成制造系统, 2010, 16(1): 1–7. Li B H, Zhang L, Wang S L, et al. Cloud manufacturing: A new service-oriented networked manufacturing model [J]. Computer Integrated Manufacturing Systems, 2010, 16(1): 1–7. 链接1

[13]  贺可太, 朱道云. 云制造服务质量评价 [J]. 计算机集成制造系 统, 2018, 24(1): 53–62. He K T, Zhu D Y. Quality evaluation of cloud manufacturing service [J]. Computer Integrated Manufacturing Systems, 2018, 24(1): 53–62. 链接1

[14]  Yang X X, Wang S L, Yang B, et al. A service satisfaction-based trust evaluation model for cloud manufacturing [J]. International Journal of Computer Integrated Manufacturing, 2019, 32(6): 533–545. 链接1

[15]  Hu Y J, Wu L Z, Pan X Q, et al. Comprehensive evaluation of cloud manufacturing service based on fuzzy theory [J]. International Journal of Fuzzy Systems, 2021, 23: 1755–1764. 链接1

[16]  Li B H, Hou B C, Wen T Y, et al. Applications of artificial intelligence in intelligent manufacturing: a review [J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 86–96. 链接1

[17]  Castelo-Branco I, Cruz-Jesus F, Oliveira T. Assessing Industry 4.0 readiness in manufacturing: Evidence for the European Union [J]. Computers in Industry, 2019, 107: 22–32. 链接1

[18]  韩雅婷, 吴洁倩, 马敬玲, 等. 基于区间数Promethee的智能制造 能力评价研究 [J]. 现代制造工程, 2021 (3): 1–9. Han Y T, Wu J Q, Ma J L, et al. Evaluation on intelligent manufacturing capability based on interval number Promethee method [J]. Modern Manufacturing Engineering, 2021 (3): 1–9. 链接1

[19]  李清, 唐骞璘, 陈耀棠, 等. 智能制造体系架构、参考模型与标准 化框架研究 [J]. 计算机集成制造系统, 2018, 24(3): 539–549. Li Q, Tang Q L, Chen Y T, et al. Smart manufacturing standardization: Reference model and standards framework [J]. Computer Integrated Manufacturing Systems, 2018, 24(3): 539–549. 链接1

[20]  Lee J, Jun S, Chang T W, et al. A smartness assessment framework for smart factories using analytic network process [J]. Sustainability, 2017, 9(5): 1–15. 链接1

[21]  杨慧, 宋华明, 俞安平. 服务型制造模式的竞争优势分析与实 证研究——基于江苏200家制造企业数据 [J]. 管理评论, 2014, 26(3): 89–99. Yang H, Song H M, Yu A P. Theoretical analysis and empirical study on competitive advantages of service-oriented manufacturing: Based on the data of 200 manufacturers in Jiangsu Province [J]. Management Review, 2014, 26(3): 89–99. 链接1

[22]  Li L, Mao C, Sun H, et al. Digital twin driven green performance evaluation methodology of intelligent manufacturing: Hybrid model based on fuzzy rough-sets AHP, multistage weight synthesis, and Promethee II [J]. Complexity, 2020 (6): 1–24. 链接1

[23]  Li L H, Qu T, Liu Y, et al. Sustainability assessment of intelligent manufacturing supported by digital twin [J]. IEEE Access, 2020, 8: 174988–175008. 链接1

[24]  袁晴棠, 殷瑞钰, 曹湘洪, 等. 面向2035的流程制造业智能化 目标、特征和路径战略研究 [J]. 中国工程科学, 2020, 22(3): 148–156. Yuan Q T, Yin R Y, Cao X H, et al. Strategic research on the goals, characteristics, and paths of intelligentization of process manufacturing industry for 2035 [J]. Strategic Study of CAE, 2020, 22(03): 148–156. 链接1

[25]  Schumacher A, Erol S, Sihn W. A maturity model for assessing Industry 4.0 readiness and maturity of manufacturing enterprises [J]. Procedia CIRP, 2016, 52: 161–166. 链接1

[26]  张金隆, 吴珊, 龚业明. 中国智能机械制造评价及发展研究 [J]. 中国机械工程, 2020, 31(4): 451–458. Zhang J L, Wu S, Gong Y M. Research on evaluation and development of intelligent machinery manufacturing in China [J]. China Mechanical Engineering, 2020, 31(4): 451–458. 链接1

[27]  Qian F, Zhong W M, Du W L. Fundamental theories and key technologies for smart and optimal manufacturing in the process industry [J]. Engineering, 2017, 3(2): 154-160. 链接1

[28]  郭芷洛. 流程型企业智能制造能力分析及评价研究 [D]. 北京: 北京邮电大学(硕士学位论文), 2020. Guo Z L. Research on intelligent manufacturing capability analysis and evaluation of process enterprises [D]. Beijing: Beijing University of Posts and Telecommunications(Master’s thesis), 2020. 链接1

[29]  Yin S, Liu L, Hou J. A multivariate statistical combination forecasting method for product quality evaluation [J]. Information Sciences, 2016, 355–356: 229–236. 链接1

[30]  Zhu L, Johnsson C , Varisco M, et al. Key performance indicators for manufacturing operations management: Gap analysis between process industrial needs and ISO 22400 standard [J]. Procedia Manufacturing, 2018, 25: 82–88. 链接1

[31]  单志广. 国家制造业智能化战略问题研究 [R]. 北京: 国家信息 中心, 2018. Shan Z G. Research on intelligent strategy of national manufacturing industry [R]. Beijing: State Information Center, 2018.

[32]  Leng J W, Zhang H, Yan D X, et al. Digital twin-driven manufacturing cyber-physical system for parallel controlling of smart workshop [J]. Journal of Ambient Intelligence and Humanized Computing, 2019, 10: 1155–1166. 链接1

相关研究