期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2022年 第24卷 第5期 doi: 10.15302/J-SSCAE-2022.05.012

华北地区生态保护与恢复的水资源效应研究

1. 中国科学院生态环境研究中心,北京100085;

2. 城市与区域生态国家重点实验室,北京100085;

3. 中国科学院大学资源与环境学院,北京100049;

4. 南京水利科学研究院,南京210029;

5. 水文水资源与水利工程科学国家重点实验室,南京210029

资助项目 :中国工程院咨询项目“水平衡与国土空间协调发展战略研究(一期)”(2020-ZD-20) 收稿日期: 2022-07-28 修回日期: 2022-09-05 发布日期: 2022-09-30

下一篇 上一篇

摘要

近年来,华北地区实施了一系列生态保护与恢复工程,植被生态状况发生了显著变化;探究区域植被恢复对水循环过程及水资源供需平衡的影响,对于完善生态恢复策略、实现区域水资源可持续利用十分重要。本文采用皮尔逊相关系数和莫兰指数,结合多源水参量数据进行综合性分析,阐释了植被和不同水参量的时空变化情况,甄别了植被保育与恢复下的水资源变化响应,进而探讨了华北地区水资源与植被恢复的权衡关系。研究结果表明,华北地区的生态保护与恢复工程成效显著,植被净初级生产力的增速约为恢复工程区外的2.3 倍;植被的扩张与蒸散量表现出空间与时间上的强相关性;植被恢复引起的蒸散量提高是引起水储量赤字或显著降低的主要原因。为此建议,华北地区可完善生态恢复策略,在植被保育与恢复过程中考虑水资源的限制作用;以自然恢复方式为主,促进生态恢复的可持续性、水资源的可利用性。

图片

图1

图2

图3

图4

图5

图6

图7

图8

参考文献

[ 1 ] Wang F , Pan X B , Gerlein-Safdi C , al e t ‍. Vegetation restoration in Northern China: A contrasted picture [J]‍. Land Degradation Development , 2020 , 31 6 : 669 ‒ 676 ‍.
Wang F, Pan X B, Gerlein-Safdi C, et al. Vegetation restoration in Northern China: A contrasted picture [J]. Land Degradation & Development, 2020, 31(6): 669–676.

[ 2 ] 任海 , 陆宏芳 , 李意德 , 等‍ ‍. 植被生态系统恢复及其在华南的研究进展 [J ]‍. 热带亚热带植物学报, 2019 , 27 5:469‒480‍.
Ren H, Lu H F, Li Y D, et al. Vegetation restoration and its research advancement in Southern China [J]. Journal of Tropical and Subtropical Botany, 2019, 27(5): 469–480. Chinese.

[ 3 ] Liu J G , Li S X , Ouyang Z Y , al e t ‍. Ecological and socioeconomic effects of China´s policies for ecosystem services [J]‍. Proceedings of the National Academy of Sciences of the United States of America , 2008 , 105 28 : 9477 ‒ 9482 ‍.
Liu J G, Li S X, Ouyang Z Y, et al. Ecological and socioeconomic effects of China’s policies for ecosystem services [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(28): 9477–9482.

[ 4 ] Zhao Q , Yang L , Wang X , al e t ‍. Effects of two typical revegetation methods on soil moisture in the semi-arid Loess Plateau, China [J]‍. Hydrology Research , 2019 , 50 5 : 1453 ‒ 1462 ‍.
Zhao Q, Yang L, Wang X, et al. Effects of two typical revegetation methods on soil moisture in the semi-arid Loess Plateau, China [J]. Hydrology Research, 2019, 50(5): 1453–1462.

[ 5 ] 胡婵娟 , 郭雷‍ . 植被恢复的生态效应研究进展 [J]‍. 生态环境学报 , 2012 , 21 9 : 1640 ‒ 1646 ‍.
Hu C J, Guo L. Advances in the research of ecological effests of vegetation restoration [J]. Ecology and Environmental Sciences, 2012, 21(9): 1640–1646. Chinese.

[ 6 ] Feng S Y , Liu X , Zhao W W , al e t ‍. Key areas of ecological restoration in Inner Mongolia based on ecosystem vulnerability and ecosystem service [J]‍. Remote Sensing , 2022 , 14 12 : 1 ‒ 15 ‍.
Feng S Y, Liu X, Zhao W W, et al. Key areas of ecological restoration in Inner Mongolia based on ecosystem vulnerability and ecosystem service [J]. Remote Sensing, 2022, 14(12): 1–15.

[ 7 ] Wang H , Zhao W W , Li C J , al e t ‍. Vegetation greening partly offsets the water erosion risk in China from 1999 to 2018 [J]‍. Geoderma , 2021 , 401 : 1 ‒ 10 ‍.
Wang H, Zhao W W, Li C J, et al. Vegetation greening partly offsets the water erosion risk in China from 1999 to 2018 [J]. Geoderma, 2021, 401: 1–10.

[ 8 ] Wen X , Deng X Z , Zhang F‍ . Scale effects of vegetation restoration on soil and water conservation in a semi-arid region in China: Resources conservation and sustainable for management [J]‍. Resources Conservation and Recycling , 2019 , 151 : 1 ‒ 15 ‍.

[ 9 ] Li W F , Hai X , Han L J , al e t ‍. Does urbanization intensify regional water scarcity? Evidence and implications from a megaregion of China [J]‍. Journal of Cleaner Production , 2020 , 244 : 1 ‒ 10 ‍.
Li W F, Hai X, Han L J, et al. Does urbanization intensify regional water scarcity? Evidence and implications from a megaregion of China [J]. Journal of Cleaner Production, 2020, 244: 1–10.

[10] 陈飞 , 丁跃元 , 李原园 , 等‍ . 华北地区地下水超采治理实践与思考 [J]‍. 南水北调与水利科技 , 2020 , 18 2 : 191 ‒ 198 ‍.
Chen F, Ding Y Y, Li Y Y, et al. Practice and consideration of groundwater overexploitation in North China Plain [J]. South-to-North Water Transfers and Water Science & Technology, 2020, 18(2): 191–198. Chinese.

[11] 朱泰峰‍ . 华北山区土地利用覆被变化及其水资源效应——以北京市门头沟区为例 [D]‍. 北京 : 中国农业大学博士学位论文 , 2014 ‍.
Zhu T F. Land use/cover change and their impact on water resource in North China Mountain Region: A case in Mengtougou District, Beijig [D]. Beijing: China Agricultural University(Doctoral dissertation), 2014. Chinese.

[12] 王林娜 , 韩淑敏 , 李会龙 , 等‍ . 华北平原蒸散发变化及对植被生产力的响应 [J]‍. 中国生态农业学报 , 2022 , 30 5 : 735 ‒ 746 ‍.
Wang L N, Han S M, Li H L, et al. Variation of evapotranspiration and its response to vegetation productivity in the North China Plain [J]. Chinese Journal of Eco-Agriculture, 2022, 30(5): 735–746. Chinese.

[13] Skerlep M , Steiner E , Axelsson A L , al e t ‍. Afforestation driving long-term surface water browning [J]‍. Global Change Biology , 2020 , 26 3 : 1390 ‒ 1399 ‍.
Skerlep M, Steiner E, Axelsson A L, et al. Afforestation driving long-term surface water browning [J]. Global Change Biology, 2020, 26(3): 1390–1399.

[14] Li Y , Piao S L , Li L Z X , al e t ‍. Divergent hydrological response to large-scale afforestation and vegetation greening in China [J]‍. Science Advances , 2018 , 4 5 : 1 ‒ 15 ‍.
Li Y, Piao S L, Li L Z X, et al. Divergent hydrological response to large-scale afforestation and vegetation greening in China [J]. Science Advances, 2018, 4(5): 1–15.

[15] Bonnesoeur V , Locatelli B , Guariguata M R , al e t ‍. Impacts of forests and forestation on hydrological services in the Andes: A systematic review [J]‍. Forest Ecology and Management , 2019 , 433 : 569 ‒ 584 ‍.
Bonnesoeur V, Locatelli B, Guariguata M R, et al. Impacts of forests and forestation on hydrological services in the Andes: A systematic review [J]. Forest Ecology and Management, 2019, 433: 569–584.

[16] Menz M H M , Dixon K W , J‍ Hobbs R . Hurdles and opportunities for landscape-scale restoration [J]‍. Science , 2013 , 339 6119 : 526 ‒ 527 ‍.
Menz M H M, Dixon K W, Hobbs R J. Hurdles and opportunities for landscape-scale restoration [J]. Science, 2013, 339(6119): 526–527.

[17] Zastrow M‍ . China´s tree-planting could falter in a warming world [J]‍. Nature , 2019 , 573 7775 : 474 ‒ 475 ‍.

[18] Xiao Y , Xiao Q‍ . The ecological consequences of the large quantities of trees planted in Northwest China by the Government of China [J]‍. Environmental Science and Pollution Research , 2019 , 26 32 : 33043 ‒ 33053 ‍.

[19] Feng X M , Fu B J , Piao S L , al e t ‍. Revegetation in China´s Loess Plateau is approaching sustainable water resource limits [J]‍. Nature Climate Change , 2016 , 6 11 : 1019 ‒ 1022 ‍.
Feng X M, Fu B J, Piao S L, et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits [J]. Nature Climate Change, 2016, 6(11): 1019–1022.

[20] 赵舒怡 , 宫兆宁 , 刘旭颖‍ . 2001—2013年华北地区植被覆盖度与干旱条件的相关分析 [J]‍. 地理学报 , 2015 , 70 5 : 717 ‒ 729 ‍.
Zhao S Y, Gong Z N, Liu X Y. Correlation analysis between vegetation coverage and climate drought conditions in North China during 2001—2013 [J]. Acta Geographica Sinica, 2015: 2015, 70(5): 717–729. Chinese.

[21] 严伟卿 , 刘冀 , 赵心睿 , 等‍ . 基于Budyko假设的金溪流域径流变化归因分析 [EBOL]‍. 2022-08-17 [ 2022-09-02 ]‍. https:kns‍.cnki‍.netkcmsdetaildetail‍.aspx?dbcode=CAPJdbname=CAPJLASTfilename=STBY20220815000v=MzE0NTZUM2ZscVdNMENMTDdSN3Fk‍WmV‍abUZDamxWN3ZQS‍lZZPU5qbk‍pkN0c0SE5QTXA0NUFaT3NQWXc5TXptUm42ajU3‍ .
Yan W Q, Liu J, Zhao X R, et al. Attribution of runoff variation in Jinxi Basin based on Budyko hypothesis[J]. [EB/OL]. (2022-08-17)[2022-09-02]. Chinese.

[22] 茹少峰 , 马茹慧‍ . 黄河流域生态环境脆弱性评价、空间分析及预测 [J]‍. 自然资源学报 , 2022 , 37 7 : 1722 ‒ 1734 ‍.
Ru S F, Ma R H. Evaluation, spatial analysis and prediction of ecological environment vulnerability of Yellow River Basin [J]. Journal of Natural Resources, 2022, 37(7): 1722–1734. Chinese.

[23] Stahl K , Tallaksen L M , Hannaford J , al e t ‍. Filling the white space on maps of European runoff trends: Estimates from a multi-model ensemble [J]‍. Hydrology and Earth System Sciences , 2012 , 16 7 : 2035 ‒ 2047 ‍.
Stahl K, Tallaksen L M, Hannaford J, et al. Filling the white space on maps of European runoff trends: Estimates from a multi-model ensemble [J]. Hydrology and Earth System Sciences, 2012, 16(7): 2035–2047.

[24] Beck H E , Van Dijk A I J M , Levizzani V , al e t ‍. MSWEP: 3-hourly 0‍.25 degrees global gridded precipitation 1979—2015 by merging gauge, satellite, and reanalysis data [J]‍. Hydrology and Earth System Sciences , 2017 , 21 1 : 589 ‒ 615 ‍.
Beck H E, Van Dijk A I J M, Levizzani V, et al. MSWEP: 3-hourly 0.25 degrees global gridded precipitation (1979—2015) by merging gauge, satellite, and reanalysis data [J]. Hydrology and Earth System Sciences, 2017, 21(1): 589–615.

[25] He J , Yang K , Tang W J , al e t ‍. The first high-resolution meteorological forcing dataset for land process studies over China [J]‍. Scientific Data , 2020 , 7 : 1 ‒ 10 ‍.
He J, Yang K, Tang W J, et al. The first high-resolution meteorological forcing dataset for land process studies over China [J]. Scientific Data, 2020, 7: 1–10.

[26] Huffman G , Bolvin D T , Nelkin E J , al e t ‍. Integrated multi-satellitE retrievals for GPM IMERG technical documentation [EBOL]‍. 2020-10-06 [ 2022-05-15 ]‍. https:docserver‍.gesdisc‍.eosdis‍.nasa‍.govpublicprojectGPMIMERG_doc‍.06‍.pdf‍ .
Huffman G, Bolvin D T, Nelkin E J, et al. Integrated multi-satellitE retrievals for GPM (IMERG) technical documentation [EB/OL]. (2020-10-06)[2022-05-15]. 链接1

[27] Hijmans R J , Cameron S E , Parra J L , al e t ‍. Very high resolution interpolated climate surfaces for global land areas [J]‍. International Journal of Climatology , 2005 , 25 15 : 1965 ‒ 1978 ‍.
Hijmans R J, Cameron S E, Parra J L, et al. Very high resolution interpolated climate surfaces for global land areas [J]. International Journal of Climatology, 2005, 25(15): 1965–1978.

[28] Abatzoglou J T , Dobrowski S Z , Parks S A , al e t ‍. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958—2015 [J]‍. Scientific Data , 2018 , 5 : 1 ‒ 10 ‍.
Abatzoglou J T, Dobrowski S Z, Parks S A, et al. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958—2015 [J]. Scientific Data, 2018, 5: 1–10.

[29] Rodell M , Houser P R , Jambor U , al e t ‍. The global land data assimilation system [J]‍. Bulletin of the American Meteorological Society , 2004 , 85 3 : 381 ‒ 394 ‍.
Rodell M, Houser P R, Jambor U, et al. The global land data assimilation system [J]. Bulletin of the American Meteorological Society, 2004, 85(3): 381–394.

[30] Mcnally A , Arsenault K , Kumar S , al e t ‍. A land data assimilation system for sub-Saharan Africa food and water security applications [J]‍. Scientific Data , 2017 , 4 : 1 ‒ 10 ‍.
Mcnally A, Arsenault K, Kumar S, et al. A land data assimilation system for sub-Saharan Africa food and water security applications [J]. Scientific Data, 2017, 4: 1–10.

[31] Yin L C , Tao F L , Chen Y‍ , al e t ‍. Improving terrestrial evapotranspiration estimation across China during 2000—2018 with machine learning methods [J]‍. Journal of Hydrology , 2021 , 600 : 1 ‒ 12 ‍.
Yin L C, Tao F L, Chen Y., et al. Improving terrestrial evapotranspiration estimation across China during 2000—2018 with machine learning methods [J]. Journal of Hydrology, 2021, 600: 1–12.

[32] Running S , Mu Q , Zhao M , al e t ‍. MOD 16 A 3 GF MODISTerra net evapotranspiration gap-filled yearly L4 global 500 m SIN grid v006 [EBOL] 2010-02-18 [ 2022-05-15 ]‍. https:search‍.earthdata‍.nasa‍.govsearch?q=C1631982992-LPDAAC_ECS‍ .
Running S, Mu Q, Zhao M, et al. MOD16A3GF MODIS/Terra Net Evapotranspiration Gap-Filled Yearly L4 Global 500 m SIN Grid V006[EB/OL]. [J]. NASA EOSDIS Land Processes DAAC., 2019. 链接1

[33] G‍ Miralles D , Holmes T R H , De Jeu R A M , al e t ‍. Global land-surface evaporation estimated from satellite-based observations [J]‍. Hydrology and Earth System Sciences , 2011 , 15 2 : 453 ‒ 469 ‍.
Miralles, D.G., Holmes T R H, De Jeu R A M, et al. Global land-surface evaporation estimated from satellite-based observations [J]. Hydrology and Earth System Sciences, 2011, 15(2): 453–469.

[34] Chen Y Z , Feng X M , Tian H Q , al e t ‍. Accelerated increase in vegetation carbon sequestration in China after 2010: A turning point resulting from climate and human interaction [J]‍. Global Change Biology , 2021 , 27 22 : 5848 ‒ 5864 ‍.
Chen Y Z, Feng X M, Tian H Q, et al. Accelerated increase in vegetation carbon sequestration in China after 2010: A turning point resulting from climate and human interaction [J]. Global Change Biology, 2021, 27(22): 5848–5864.

[35] Yu L , Wu Z T , Du Z Q , al e t ‍. Insights on the roles of climate and human activities to vegetation degradation and restoration in Beijing-Tianjin sandstorm source region [J]‍. Ecological Engineering , 2021 , 159 : 1 ‒ 12 ‍.
Yu L, Wu Z T, Du Z Q, et al. Insights on the roles of climate and human activities to vegetation degradation and restoration in Beijing–Tianjin sandstorm source region [J]. Ecological Engineering, 2021, 159: 1–12.

[36] Jackson R B , Jobbagy E G , Avissar R , al e t ‍. Trading water for carbon with biological sequestration [J]‍. Science , 2005 , 310 5756 : 1944 ‒ 1947 ‍.
Jackson R B, Jobbagy E G, Avissar R, et al. Trading water for carbon with biological sequestration [J]. Science, 2005, 310(5756): 1944–1947.

[37] Bosch J M , D‍ Hewlett J . A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration [J]‍. Journal of Hydrology , 1982 , 55 1 ‒ 4 : 3 ‒ 23 ‍.
Bosch J M, Hewlett J D. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration [J]. Journal of Hydrology, 1982, 55(1–4): 3–23.

[38] Fang J Y , Guo Z D , Piao S L , al e t ‍. Terrestrial vegetation carbon sinks in China, 1981—2000 [J]‍. Science in China Series D: Earth Sciences , 2007 , 50 9 : 1341 ‒ 1350 ‍.
Fang J Y, Guo Z D, Piao S L, et al. Terrestrial vegetation carbon sinks in China, 1981—2000 [J]. Science in China Series D: Earth Sciences, 2007, 50(9): 1341–1350.

[39] Wang S , Fu B J , Piao S L , al e t ‍. Reduced sediment transport in the Yellow River due to anthropogenic changes [J]‍. Nature Geoscience , 2016 , 9 1 : 38 ‒ 41 ‍.
Wang S, Fu B J, Piao S L, et al. Reduced sediment transport in the Yellow River due to anthropogenic changes [J]. Nature Geoscience, 2016, 9(1): 38–41.

[40] Farley K A , Jobbagy E G , B‍ Jackson R . Effects of afforestation on water yield: A global synthesis with implications for policy [J]‍. Global Change Biology , 2005 , 11 10 : 1565 ‒ 1576 ‍.
Farley K A, Jobbagy E G, Jackson R B. Effects of afforestation on water yield: a global synthesis with implications for policy [J]. Global Change Biology, 2005, 11(10): 1565–1576.

[41] 周可新‍ . 生态文明视域下自然生态系统的科学保护 [J]‍. 中国生态文明 , 2019 2 : 31 ‒ 33 ‍.
Zhou K X. Scientific conservation of natural ecosystems in the perspective of ecological civilization [J]. China Ecological Civilization, 2019 (2): 31–33. Chinese.

[42] Zhang D J , Ge W Y , Zhang Y‍ . Evaluating the vegetation restoration sustainability of ecological projects: A case study of Wuqi County in China [J]‍. Journal of Cleaner Production , 2020 , 264 : 1 ‒ 12 ‍.

[43] Wang J , Zhao W W , Zhang X , al e t ‍. Effects of reforestation on plant species diversity on the Loess Plateau of China: A case study in Danangou catchment [J]‍. Science of the Total Environment , 2019 , 651 : 979 ‒ 989 ‍.
Wang J, Zhao W W, Zhang X, et al. Effects of reforestation on plant species diversity on the Loess Plateau of China: A case study in Danangou catchment [J]. Science of the Total Environment, 2019, 651: 979–989.

[44] Crouzeilles R , Ferreira M S , Chazdon R L , al e t ‍. Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests [J]‍. Science Advances , 2017 , 3 11 : 1 ‒ 12 ‍.
Crouzeilles R, Ferreira M S, Chazdon R L, et al. Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests [J]. Science Advances, 2017, 3(11): 1–12.

[45] Shao R , Zhang B Q , Su T X , al e t ‍. Estimating the increase in regional evaporative water consumption as a result of vegetation restoration over the Loess Plateau, China [J]‍. Journal of Geophysical Research: Atmospheres , 2019 , 124 22 : 11783 ‒ 11802 ‍.
Shao R, Zhang B Q, Su T X, et al. Estimating the increase in regional evaporative water consumption as a result of vegetation restoration over the Loess Plateau, China [J]. Journal of Geophysical Research: Atmospheres, 2019, 124(22): 11783–11802.

[46] Mcvicar T R , Van Niel T G , Li L T , al e t ‍. Parsimoniously modelling perennial vegetation suitability and identifying priority areas to support China´s re-vegetation program in the Loess Plateau: Matching model complexity to data availability [J]‍. Forest Ecology and Management , 2010 , 259 7 : 1277 ‒ 1290 ‍.
Mcvicar T R, Van Niel T G, Li L T, et al. Parsimoniously modelling perennial vegetation suitability and identifying priority areas to support China’s re-vegetation program in the Loess Plateau: Matching model complexity to data availability [J]. Forest Ecology and Management, 2010, 259 (7): 1277–1290.

[47] 徐雪‍ . 基于LAINPP的全球保护区植被保护效度分析 [D]‍. 贵阳 : 贵州师范大学硕士学位论文 , 2022 ‍.
Xu X. Evaluation of the effectiveness of global protected area vegetation conservation based on LAI/NPP [D]. Guiyang: Guizhou Normal University( Master’s thesis), 2022. Chinese.

[48] 周国逸 , 夏军 , 周平 , 等‍ . 不恰当的植被恢复导致水资源减少 [J]‍. 中国科学: 地球科学 , 2021 , 51 2 : 175 ‒ 182 ‍.
Zhou G Y, Xia J, Zhou P, et al. Not vegetation itself but mis-revegetation reduces water resources [J]. Scientia Sinica Terrae, 2021, 51 (2): 175–182. Chinese.

相关研究