期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2022年 第24卷 第5期 doi: 10.15302/J-SSCAE-2022.05.014

中国极端降水和高温历史变化及未来趋势

1. 南京水利科学研究院水文水资源与水利工程科学国家重点实验室,南京210029;

2. 四川大学水力学与山区河流开发保护国家重点实验室,成都610065;

3. 长江保护与绿色发展研究院,南京210098;

4. 水利部应对气候变化研究中心,南京210029;

5. 河海大学水文水资源与水利工程科学国家重点实验室,南京210098

资助项目 :中国工程院咨询项目“水平衡与国土空间协调发展战略研究(一期)”(2020-ZD-20);国家自然科学基金项目 (52121006, 52279018) 收稿日期: 2020-07-28 修回日期: 2020-09-01 发布日期: 2022-09-19

下一篇 上一篇

摘要

在全球变暖背景下,我国极端事件频发,了解和掌握极端事件的时空变化,合理预估极端事件的未来趋势,可为制定区域气候变化适应策略提供理论依据。本文利用CN05.1 全国网格气象数据和第六次国际耦合模式比较计划(CMIP6)的11 种全球气候模式,分析了我国1975—2014 年历史极端降水和高温事件的演变特征,研判了2015—2054 年极端事件的变化情况,提出了应对极端事件的政策建议。结果表明:① 1975—2014 年,全国强降水量呈现由西北向东南依次增加‒ 减少‒增加的空间格局,胡焕庸线以东地区极端降水风险和危险性较大;在选取的两种对比情景下,2015—2054 年,我国极端降水将普遍增多趋强,其中华北和东北地区极端降水事件增幅较大,西北地区强降水量将进一步增加。② 我国1975—2014 年暖夜日数和暖昼日数均呈显著增加趋势,暖夜日数增幅高于暖昼日数增幅;在选取的两种对比情景下,2015—2054 年,我国极端高温事件将显著增加,西北、西南和华南等地区的高温热浪风险增幅最大。为减缓气候变化影响和应对未来极端事件风险,应进一步提升洪涝灾害和高温热浪风险应对和应急管理能力,强化国际合作并因地制宜制定相关适应气候变化战略,以防范和应对全球变暖引起的极端灾害。

图片

图1

图2

图3

图4

图5

参考文献

[ 1 ] Blunden J , Boyer T . State of the climate in 2021 [J]. Bulletin of the American Meteorological Society , 2022 , 103 8 : 1 ‒ 475 .
Blunden J, Boyer T. State of the Climate in 2021[J]. Bulletin of the American Meteorological Society, 2022, 103(8).

[ 2 ] Eckstein D , Künzel V , Schäfer L . Global climate risk index 2021 [EBOL]. 2021-01-25 [ 2022-07-20 ]. https: www.germanwatch.orgen19777 .
Eckstein D, Künzel V, Schäfer L. Global climate risk index 2021 [EB/OL]. (2021-01-25) [2022-07-20]. 链接1

[ 3 ] Blöschl G , Hall J , Viglione A , et al . Changing climate both increases and decreases European river floods [J]. Nature , 2019 , 573 7772 : 108 ‒ 111 .

[ 4 ] Kraaijenbrink P D A , Bierkens M F P , Lutz A F , et al . Impact of a global temperature rise of 1.5 degrees Celsius on Asia´s glaciers [J]. Nature , 2017 , 549 7671 : 257 ‒ 260 .

[ 5 ] 翟盘茂 , 周佰铨 , 陈阳 , 等‍ . 气候变化科学方面的几个最新认知 [J]. 气候变化研究进展 , 2021 , 17 6 : 629 ‒ 635 .
Zhai P M, Zhou B Q, Chen Y, et al. Several new understandings in the climate change science [J]. Climate Change Research, 2021, 17(6): 629–635. Chinese.

[ 6 ] 尹家波 , 郭生练 , 顾磊 , 等‍ . 中国极端降水对气候变化的热力学响应机理及洪水效应 [J]. 科学通报 , 2021 , 66 33 : 4315 ‒ 4325 .
Yin J B, Guo S L, Gu L, et al. Thermodynamic response of precipitation extremes to climate change and its impacts on floods over China [J]. Chinese Science Bulletin, 2021, 66(33): 4315–4325. Chinese.

[ 7 ] Wang Y , Wang A , Zhai J , et al . Tens of thousands additional deaths annually in cities of China between 1.5 ℃ and 2.0 ℃ warming [J]. Nature Communications , 2019 , 10 1 : 1 ‒ 7 .
Wang Y, Wang A, Zhai J, et al. Tens of thousands additional deaths annually in cities of China between 1.5 C and 2.0 C warming [J]. Nature Communications, 2019, 10(1): 1–7.

[ 8 ] The United Nations , The United Nations Framework Convention on Climate ChangeUNFCCC . Adoption of the Paris agreement [EBOL]. 2015-12-12 [ 2022-07-20 ]. https: unfccc.intresourcedocs2015cop21engl09r01.pdf .
The United Nations, The United Nations Framework Convention on Climate Change(UNFCCC). Adoption of the Paris Agreement [EB/OL]. (2015-12-12) [2022-07-20]. 链接1

[ 9 ] Samset B H , Zhou C , Fuglestvedt J S , et al . Earlier emergence of a temperature response to mitigation by filtering annual variability [J]. Nature Communications , 2022 , 13 1 : 1 ‒ 9 .

[10] Dvorak M T , Armour K C , Frierson D M W , et al . Estimating the timing of geophysical commitment to 1.5 and 2.0 ℃ of global warming [J]. Nature Climate Change , 2022 , 12 : 547 ‒ 552 .

[11] 庄园煌 , 张井勇 , 梁健‍ . 1 . 5 ℃与2 ℃温升目标下"一带一路"主要陆域气温和降水变化的CMIP6多模式预估 [J]. 气候与环境研究 , 2021, 26 4 : 374 - 390 .
Zhuang Y H, Zhang J Y, Liang J. Projected temperature and precipitation changes over major land regions of the Belt and Road initiative under the 1.5 ℃ and 2 ℃ climate targets by the CMIP6 multi-model ensemble [J]. Climatic and Environmental Research, 2021, 26 (4): 374−390. Chinese.

[12] Luo N , Guo Y , Gao Z , et al . Assessment of CMIP6 and CMIP5 model performance for extreme temperature in China [J]. Atmospheric and Oceanic Science Letters , 2020 , 13 6 : 589 - 597 .

[13] 王予 , 李惠心 , 王会军 , 等‍ . CMIP6全球气候模式对中国极端降水模拟能力的评估及其与CMIP5的比较 [J]. 气象学报 , 2021 , 79 3 : 369 ‒ 386 .
Wang Y, Li H X, Wang H J, et al. Evaluation of CMIP6 model simulations of extreme precipitation in China and comparison with CMIP5 [J]. Acta Meteorologica Sinica, 2021, 79(3): 369–386. Chinese.

[14] Yin J , Guo S , Gu L , et al . Projected changes of bivariate flood quantiles and estimation uncertainty based on multi-model ensembles over China [J]. Journal of Hydrology , 2020 , 585 3 : 124760 .

[15] 翟盘茂 , 刘静‍ . 气候变暖背景下的极端天气气候事件与防灾减灾 [J]. 中国工程科学 , 2012 , 14 9 : 55 ‒ 63, 84 .
Zhai P M, Liu J. Extreme weather/climate events and disaster prevention and mitigation under global warming background [J]. Strategic Study of CAE, 2012, 14(9): 55–63, 84. Chinese.

[16] Yue S , Wang C Y . The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series [J]. Water Resources Management , 2004 , 18 3 : 201 ‒ 218 .

[17] 任国玉 , 任玉玉 , 战云健 , 等‍ . 中国大陆降水时空变异规律——Ⅱ.现代变化趋势 [J]. 水科学进展 , 2015 , 26 4 : 451 ‒ 465 .
Ren G Y, Ren Y Y, Zhan Y J, et al. Spatial and temporal patterns of precipitation variability over mainland China: II: Recent trend [J]. Advances in Water Sciences, 2015, 26(4): 451–465. Chinese.

[18] 江洁 , 周天军 , 张文霞‍ . 近60年来中国主要流域极端降水演变特征 [J]. 大气科学 , 2022 , 46 3 : 707 ‒ 724 .
Jiang J, Zhou T J, Zhang W X. Temporal and spatial variations of extreme precipitation in the main river basins of China in the past 60 years [J]. Chinese Journal of Atmospheric Sciences, 2022, 46(3): 707–724. Chinese.

[19] 杨阳 , 赵娜 , 岳天祥‍ . 1980—2018年中国极端高温事件时空格局演变特征 [J]. 地理科学 , 2022 , 42 3 : 536 ‒ 547 .
Yang Y, Zhao N, Yue T X. Spatio-temporal variations of extreme high temperature event in China from 1980 to 2018 [J]. Scientia Geographica Sinica, 2022, 42(3): 536–547. Chinese.

[20] 张强 , 朱飙 , 杨金虎 , 等‍ . 西北地区气候湿化趋势的新特征 [J]. 科学通报 , 2021 , 66 Z2 : 3757 ‒ 3771 .
Zhang Q, Zhu B, Yang J H, et al. New characteristics about the climate humidification trend in Northwest China [J]. Chin Sci Bull, 2021, 66(Z2): 3757–3771. Chinese.

[21] 朱欢欢 , 姜胜 , 江志红‍ . 基于可靠性集合平均方法的全球1.52.0 ℃变暖下中国极端气候的未来预估 [J]. 地球科学进展 , 2022 , 37 6 : 612 ‒ 626 .
Zhu H H, Jiang S, Jiang Z H. Projection of climate extremes over China in response to 1.5/2.0 ℃ global warming based on the reliability ensemble averaging [J]. Advances in Earth Science, 2022, 37(6): 612–626. Chinese.

[22] 舒章康 , 张建云 , 金君良 , 等‍ . 1961—2018年中国主要江河枯季径流演变特征与成因 [J]. 气候变化研究进展 , 2021 , 17 3 : 340 ‒ 351 .
Shu Z K, Zhang J Y, Jin J L, et al. Evolution characters and causes of the dry season runoff for the major rivers in China during 1961–2018 [J]. Climate Change Research, 2021, 17 (3): 340–351. Chinese.

[23] Vicedo-Cabrera A M , Scovronick N , Sera F , et al . The burden of heat-related mortality attributable to recent human-induced climate change [J]. Nature Climate Change , 2021 , 11 6 : 492 ‒ 500 .

[24] 孔锋‍ . 透视变化环境下的中国城市暴雨内涝灾害: 形势、原因与政策建议 [J]. 水利水电技术 , 2019 , 50 10 : 42 ‒ 52 .
KONG Feng. Perspective on urban rainstorm waterlogging disaster in China under changing environment: situation,causation and policy suggestion [J]. Water Resources and Hydropower Engineering, 2019, 50(10): 42–52. Chinese.

[25] 张建云 , 刘九夫 , 金君良‍ . 关于智慧水利的认识与思考 [J]. 水利水运工程学报 , 2019 6 : 1 ‒ 7 .
Zhang J Y, Liu J F, Jin J L. Understanding and thinking about smart water conservancy [J]. Hydro-Science and Engineering, 2019 (6): 1–7. Chinese.

[26] 黄群芳‍ . 城市空间形态对城市热岛效应的多尺度影响研究进展 [J]. 地理科学 , 2021 , 41 10 : 1832 ‒ 1842 .
Huang Q F. Effects of urban spatial morphology on urban heat island effect from multi-spatial scales perspectives [J]. Scientia Geographica Sinica,2021, 41(10): 1832–1842. Chinese.

[27] 程顺祺 , 王少谷 , 陈晨 , 等‍ . 整体性政府视角下高温热浪应急管理的协同联动机制研究 [J]. 灾害学 , 2019 , 34 3 : 160 ‒ 166 .
Cheng S Q, Wang S G, Chen C, et al. A study on the collaborative-linkage mechanism for high temperature heat wave—Based on the holistic government theory [J]. Journal of Catastrophology, 2019, 34(3): 160–166. Chinese.

[28] 曹志杰 , 陈绍军‍ . 气候风险视阈下气候贫困的形成机理与演变态势 [J]. 河海大学学报哲学社会科学版 , 2016 , 18 5 : 52 ‒ 59, 91 .
Cao Z J, Chen S J. Formation mechanism and evolution trend of climate poverty from the perspective of climate rish [J]. Journal of Hohani University (Philosophy and Social Sciences), 2016, 18(5): 52–59, 9. Chinese.

相关研究