期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2023年 第25卷 第2期 doi: 10.15302/J-SSCAE-2023.07.015

离岸碳捕集利用与封存技术体系研究

1. 厦门大学海洋与地球学院,厦门 361005;
2. 中国科学院南海海洋研究所,广州 510301;
3. 中海油研究总院有限责任公司,北京 100012

资助项目 :生态环境部咨询项目“国合会面向碳中和的可持续蓝色经济专题政策研究”(20233160A0073) 收稿日期: 2022-12-21 修回日期: 2023-02-08 发布日期: 2023-03-30

下一篇 上一篇

摘要

离岸碳捕集、利用与封存(CCUS)技术是沿海国家或地区通过工程方式为实现CO2减排而发展起来的解决方案与技术体系;相对于陆上CCUS技术,具有潜在封存空间广阔、封存安全等诸多优势。离岸CCUS技术指从沿海大型或近海碳排放源捕集CO2,加压并运输至离岸封存平台后注入海底地质储层中,实现CO2与大气永久隔离或利用其生产价值产品的过程。本文概要回顾了全球及我国离岸CCUS技术的发展需求与产业现状,分析了发展离岸CCUS的技术性和社会性价值;梳理总结了代表性的离岸CCUS技术发展路线及其态势,如CO2工厂捕集、CO2管道运输、CO2海底咸水层封存与驱油利用、CO2化学利用以及其他技术架构。着眼不同技术创新方向面临的共性问题,提出我国离岸CCUS领域未来发展建议:注重陆海统筹战略规划和布局,培养高水平研究团队,加强各发展阶段的基础研究、核心技术研发、成本控制、规模增扩和政策激励等。

图片

图1

图2

参考文献

[ 1 ] Bruvoll A, M‍‍ Larsen B. Greenhouse gas emissions in Norway: Do carbon taxes work? [J]‍. Energy Policy, 2004, 32(4): 493‒505‍.

[ 2 ] Furre A K, Eiken O, Alnes H, al et‍. 20 years of monitoring CO2-injection at Sleipner [J]‍. Energy Procedia, 2017, 114: 3916‒3926‍.

[ 3 ] Furre A K, Meneguolo R, Ringrose P, al et‍. Building confidence in CCS: From Sleipner to the northern lights project [J]‍. First Break, 2019, 7: 81‒87‍.

[ 4 ] Vandeweijer V, Hofstee C, Graven H‍. CO2 injection at K12-B, the final story [C]‍. Utrecht: Fifth CO2 Geological Storage Workshop, 2018‍.

[ 5 ] Talebian S H, Masoudi R, Tan I M, al et‍. Foam assisted CO2-EOR: A review of concept, challenges, and future prospects [J]‍. Journal of Petroleum Science and Engineering, 2014, 120: 202‒215‍.

[ 6 ] Shi J Q, Imrie C, Sinayuc C, al et‍. Snøhvit CO2 storage project: Assessment of CO2 injection performance through history matching of the injection well pressure over a 32-months period [J]‍. Energy Procedia, 2013, 37: 3267‒3274‍.

[ 7 ] Godoi J M A, P H L d S‍ Matai. Enhanced oil recovery with carbon dioxide geosequestration: First steps at pre-salt in Brazil [J]‍. Journal of Petroleum Exploration and Production, 2021, 11: 1429‒1441‍.

[ 8 ] Ha G T, Tran N D, Vu H H, al et‍. Design & implementation of CO2 Huff-n-Puff operation in a Vietnam offshore field [C]‍. Abu Dhabi: International Petroleum Conference and Exhibition, 2012‍.

[ 9 ] Tanaka Y, Sawada Y, Tanase D, al et‍. Tomakomai CCS demonstration project of Japan, CO2 injection in process [J]‍. Energy Procedia, 2017, 114: 5836‒5846‍.

[10] Helgesen L I, Cauchois G, Nissen-Lie T, al et‍. CO2 footprint of the Norwegian longship project [C]‍. Abu Dhabi: Proceedings of the 15th Greenhouse Gas Control Technologies Conference, 2021‍.

[11] Allen M J, Faulkner D R, Worden R H, al et‍. Geomechanical and petrographic assessment of a CO2 storage site: Application to the Acorn CO2 storage site, offshore United Kingdom [J]‍. International Journal of Greenhouse Gas Control, 2020, 94: 102923‍.

[12] Akerboom S, Waldmann S, Mukherjee A, al et‍. Different this time? The prospects of CCS in the Netherlands in the 2020s [J]‍. Frontiers in Energy Research, 2021, 9: 1‒17‍.

[13] Balakrisnan M, Halim R B A, Johan A L, al et‍. Methodological engineering approach in designing injector and observation wells incorporating MMV requirements in carbonate CCS Project in offshore Malaysia [C]‍. Abu Dhabi: International Petroleum Exhibition & Conference, 2022‍.

[14] Hoffman N, Marshall S, Horan S‍. Successful appraisal of the CarbonNet Pelican CO2 offshore storage site [C]‍. Abu Dhabi: The 15th Greenhouse Gas Control Technologies Conference, 2021‍.

[15] Loria P, B‍ Bright M. Lessons captured from 50 years of CCS projects [J]‍. The Electricity Journal, 2021, 34: 106998‍.

[16] 瞿剑‍ . 我国首个海上二氧化碳封存示范工程启动 [N]‍. 科技日报 , 2021-08-31 02‍.
Qu J‍ . China launches first offshore carbon storage project [N]‍. Science and Technology Daily , 2021-08-31 02‍.‍

[17] Zhou D, Li P, Liang X, al et‍. A long-term strategic plan of offshore CO2 transport and storage in northern South China Sea for a low-carbon development in Guangdong Province, China [J]‍. International Journal of Greenhouse Gas Control, 2018, 70: 76‒87‍.

[18] Li H, Lau H C, Wei X, al et‍. CO2 storage potential in major oil and gas reservoirs in the Northern South China Sea [J]‍. International Journal of Greenhouse Gas Control, 2021, 108: 103328‍.

[19] International Energy Agency‍. Energy technology perspectives 2020: Chapter 2‍. Technology needs for net-zero emissions [R]‍. Paris: International Energy Agency, 2020‍.

[20] Ritchie H, Roser M‍. China: CO2 country profile [EB/OL]‍. (2022-12-31)[2023-02-08]‍. https://ourworldindata‍.org/CO2/country/china‍. 链接1

[21] 甘满光 , 张力为 , 李小春 , 等‍ . 欧洲CCUS技术发展现状及对我国的启示 [JOL]‍. 热力发电 : 1 ‒ 13 [ 2023-02-09 ]‍. https:doi‍.org10‍.19666j‍.rlfd‍.202210245‍ .
Gan M G , Zhang L W , Li X C , al e t ‍. CCUS technology development in Europe as well as enlightenment and suggestions to China [JOL]‍. Thermal Power Generation : 1 ‒ 13 [ 2023-02-09 ]‍. https:doi‍.org10‍.19666j‍.rlfd‍.202210245‍ . 链接1

[22] Zhou D, Li P C, Zhao Z X, al et‍. Assessment of CO2 storage potential for Guangdong Province, China [R]‍. Guangzhou: Global CCS institute, 2013‍.

[23] 蔡博峰 , 李琦 , 张贤 , 等‍ . 中国二氧化碳捕集利用与封存 CCUS 年度报告 2021——中国CCUS路径研究 [R]‍. 北京 武汉 : 生态环境部环境规划院, 中国科学院武汉岩土力学研究所, 中国21世纪议程管理中心 , 2021 ‍.
Cai B F , Li Q , Zhang X , al e t ‍. China carbon dioxide capture, utilization and storage CCUS annual report 2021‍—Study on the CCUS pathway in China [R]‍. BeijingWuhan : Chinese Academy of Environmental Planning, Institute of Rock and Soil Mechanics of Chinese Academy of sciences, The Administrative Center for China´s Agenda 21 , 2021 ‍.

[24] Institute‍ Global CCS. Roadmap for carbon capture and storage demonstration and deployment in the People´s Republic of China [R]‍. Metro Manila: Asian Development Bank, 2015‍.

[25] Dahowski R T, Li X, Davidson C L, al et‍. Regional opportunities for carbon dioxide capture and storage in China: A comprehensive CO2 storage cost curve and analysis of the potential for large scale carbon dioxide capture and storage in the People´s Republic of China [R]‍. Richland: Pacific Northwest National Lab, 2009‍.

[26] 张贤 , 李阳 , 马乔 , 等‍ . 我国碳捕集利用与封存技术发展研究 [J]‍. 中国工程科学 , 2021 , 23 6 : 70 ‒ 80 ‍.
Zhang X , Li Y , Ma Q , al e t ‍. Development of carbon capture, utilization and storage technology in China [J]‍. Strategic Study of CAE , 2021 , 23 6 : 70 ‒ 80 ‍.

[27] Li J H‍. Accelerate the offshore CCUS to carbon-neutral China [J/OL]‍. Fundamental Research:1‒10 [2022-11-09]‍. https://doi‍.org/10‍.1016/j‍.fmre‍.2022‍.10‍.015‍. 链接1

[28] Ringrose P S, Thorsen R, Zweigel P, al et‍. Ranking and risking alternative CO2 storage sites offshore Norway [C]‍. Malmö: Fourth Sustainable Earth Sciences Conference, 2017‍.

[29] 单彤文 , 张超 , 秦锋 , 等‍ . 二氧化碳规模化封存典型技术路线解析与产业前景展望 [J]‍. 中国海上油气 , 2022 , 34 6 : 196 ‒ 204 ‍.
Shan T W , Zhang C , Qin F , al e t ‍. Typical technical roadmap analysis and industry prospect of large-scale CO 2 sequestration [J]‍. China Offshore Oil and Gas , 2022 , 34 6 : 196 ‒ 204 ‍.

[30] Li P, Zhou D, Zhang C, al et‍. Assessment of the effective CO2 storage capacity in the Beibuwan Basin, offshore of Southwestern P‍. R‍. China [J]‍. International Journal of Greenhouse Gas Control, 2015, 37: 325‒339‍.

[31] Franchi G, Capocelli M, De Falco M, al et‍. Hydrogen production via steam reforming: A Critical analysis of MR and RMM technologies [J]‍. Membranes, 2020, 10(1): 1‒20‍.

[32] Eide L I, Batum M, Dixon T, al et‍. Enabling large-scale carbon capture, utilisation, and storage (CCUS) using offshore carbon dioxide (CO2) infrastructure developments—A review [J]‍. Energies, 2019, 12(10): 1945‍.

[33] 华东阳 , 张晓敏 , 马梦桐‍ . 海上平台"膜分离+酸气回注"工艺技术研究 [J]‍. 天然气与石油 , 2022 , 40 5 : 26 ‒ 31 ‍.
Hua D Y , Zhang X M , Ma M T‍ . Study on "membrane separation + acid gas reinjection" technology on offshore platform [J]‍. Natural Gas and Oil , 2022 , 40 5 : 26 ‒ 31 ‍.

[34] 王全德‍ . 超临界CO 2 管道输送研究现状 [J]‍. 云南化工 , 2018 , 45 12 : 120 ‒ 121 ‍.
Wang Q D‍ . Research status of supercritical CO 2 pipeline transportation [J]‍. Yunan Chemical Technology , 2018 , 45 12 : 120 ‒ 121 ‍.

[35] Zhang Y, Wang D, Yang J, al et‍. Correlative comparison of gas CO2 pipeline transportation and natural gas pipeline transportation [J]‍. Modelling, Measurement and Control B, 2017, 86(1): 63‒75‍.

[36] Brownsort P A, Scott V, R‍ Haszeldine S. Reducing costs of carbon capture and storage by shared reuse of existing pipeline—Case study of a CO2 capture cluster for industry and power in Scotland [J]‍. International Journal of Greenhouse Gas Control, 2016, 52: 130‒138‍.

[37] Yamasaki A‍. An overview of CO2 mitigation options for global warming—Emphasizing CO2 sequestration options [J]‍. Journal of Chemical Engineering of Japan, 2023, 36(4): 361‒375‍.

[38] Li P, Liu X, Lu J, al et‍. Potential evaluation of CO2 EOR and storage in oilfields of the Pearl River Mouth Basin, northern South China Sea [J]‍. Greenhouse Gases: Science and Technology, 2018, 8(5): 954‒977‍.

[39] 李春峰 , 赵学婷 , 段威 , 等‍ . 中国海域盆地CO 2 地质封存选址方案与构造力学分析 [J]‍. 力学学报 , 2023 , 55 2 : 1 ‒ 13 ‍.
Li C F , Zhao X T , Duan W , al e t ‍. Strategic and geodynamic analyses of geo-sequestration of CO 2 in China Offshore Sedimentary Basins [J]‍. Chinese Journal of Theoretical and Applied Mechanics , 2023 , 55 2 : 1 ‒ 13 ‍.

[40] Ringrose P, Mechel T‍. Maturing global CO2 storage resources on offshore continental margins to achieve 2DS emissions reductions [J]‍. Scientific Reports, 2019, 9(1): 17944‍.

[41] Wildenborg T, Loeve D, Neele F‍. Large-scale CO2 transport and storage infrastructure development and cost estimation in the Netherlands offshore [J]‍. International Journal of Greenhouse Gas Control, 2022, 118: 103649‍.

[42] Sachde D, McKaskle R, Lundeen J‍. Review of technical challenges, risks, path forward, and economics of offshore CO2 transportation and infrastructure [C]‍. Houston: Offshore Technology Conference, 2019‍.

[43] Lindeberg E, Grimstad A A, Bergmo P, al et‍. Large scale tertiary CO2 EOR in mature water flooded Norwegian Oil Fields [J]‍. Energy Procedia, 2017, 114: 7096‒7106‍.

[44] Goldberg D, Aston L, Bonneville A, al et‍. Geological storage of CO2 in sub-seafloor basalt: The CarbonSAFE pre-feasibility study offshore Washington State and British Columbia [J]‍. Energy Procedia, 2018, 146: 158‒165‍.

[45] Van Pham T H, Aagaard P, Hellevang H‍. On the potential for CO2 mineral storage in continental flood basalts-PHREEQC batch-and 1D diffusion-reaction simulations [J]‍. Geochemical Transactions, 2012, 13(1): 1‒12‍.

[46] Mattera J M, Broecker W S, Stute M, al et‍. Permanent carbon dioxide storage into basalt: The CarbFix pilot project, Iceland [J]‍. Energy Procedia, 2009, 1(1): 3641‒3646‍.

[47] Goldberg D S, Takahashi T, L‍ Slagle A. Carbon dioxide sequestration in deep-sea basalt [J]‍. Proceedings of the National Academy of Sciences, 2008, 105(29): 9920‒9925‍.

[48] Aradóttir E, Beuttler C, Bonneville A‍. Accelerating offshore carbon capture and storage: Opportunities and challenges for CO2 removal [R]‍. New York: Columbia World Projects, 2019‍.

[49] Knoope M M, Ramírez A A, P‍ Faaij A. The influence of uncertainty in the development of a CO2 infrastructure network [J]‍. Applied Energy, 2015, 158: 332‒347‍.

[50] Cantucci B, Buttinelli M, Procesi M, al et‍. Geologic carbon sequestration: Algorithms for CO2 storage capacity estimation: Review and case study [M]‍. Switzerland: Springer Cham, 2016: 21‒44‍.

[51] Lee H, Shinna Y J, Ong S H, al et‍. Fault reactivation potential of an offshore CO2 storage site, Pohang Basin, South Korea [J]‍. Journal of Petroleum Science and Engineering, 2017, 152: 427‒442‍.

[52] Metz B, Davidson O, de Coninck H C, al et‍. IPCC special report on carbon dioxide capture and storage [R]‍. Cambridge: Intergovernmental Panel on Climate Change, 2005‍.

[53] Haugan P M, Joos F‍. Metrics to assess the mitigation of global warming by carbon capture and storage in the ocean and in geological reservoirs [J]‍. Geophysical Research Letters, 2004, 31(18): L18202‍.

[54] Hassenrück C, Fink A, Lichtschlag A, al et‍. Quantification of the effects of ocean acidification on sediment microbial communities in the environment: The importance of ecosystem approaches [J]‍. FEMS Microbiology Ecology, 2016, 92: fiw027‍.

[55] Blackford J, Bull J M, Cevatoglu M, al et‍. Marine baseline and monitoring strategies for carbon dioxide capture and storage (CCS) [J]‍. International Journal of Greenhouse Gas Control, 2015, 38: 221‒229‍.

[56] Blackford J, Alendal G, Avlesen H, al et‍. Impact and detectability of hypothetical CCS offshore seep scenarios as an aid to storage assurance and risk assessment [J]‍. International Journal of Greenhouse Gas Control, 2020, 95: 102949‍.

[57] Connelly D P, Bull J M, Flohr A, al et‍. Assuring the integrity of offshore carbon dioxide storage [J]‍. Renewable and Sustainable Energy Reviews, 2022, 166: 112670‍.

[58] 周蒂 , 李鹏春 , 张翠梅‍ . 离岸二氧化碳驱油的国际进展及我国近海潜力初步分析 [J]‍. 南方能源建设 , 2015 , 2 3 : 1 ‒ 9 ‍.
Zhou D , Li P C , Zhang C M‍ . Offshore CO 2 -EOR: Worldwide progress and a preliminary analysis on its potential in offshore sedimentary basins off China [J]‍. Southern Energy Construction , 2015 , 2 3 : 1 ‒ 9 ‍.

[59] 刘雪雁 , 李鹏春 , 周蒂 , 等‍ . 南海北部珠江口盆地惠州21-1油田CO 2 -EOR与碳封存潜力快速评价 [J]‍. 海洋地质前沿 , 2017 , 33 3 : 56 ‒ 65 ‍.
Liu X Y , Li P C , Zhou D , al e t ‍. Quick assessment of CO 2 -EOR and CO 2 sequestration potential in Huizhou21-1 Oilfield, Pearl River Mouth Basin, Northern South China Sea [J]‍. Marine Geology Frontiers , 2017 , 33 3 : 56 ‒ 65 ‍.

[60] Sweatman R E, Crookshank S, Edman S‍. Outlook and technologies for offshore CO2 EOR/CCS projects [C]‍. Houston: Offshore Technology Conference, 2011‍.

[61] Thomas S‍. Enhanced oil recovery—An overview [J]‍. Oil & Gas Science and Technology, 2007, 63: 9‒19‍.

[62] Fergusona R, Nichols C, Leeuwen T V, al et‍. Storing CO2 with enhanced oil recovery [J]‍. Energy Procedia, 2009, 1(1): 1989‒1996‍.

[63] Schmelz W J, Hochman G, G‍ Miller K. Total cost of carbon capture and storage implemented at a regional scale: northeastern and midwestern United States [J]‍. Interface focus, 2020, 10: 20190065‍.

[64] 樊栓狮 , 刘发平 , 郎雪梅 , 等‍ . CO 2 捕集与置换开采天然气水合物中甲烷的研究进展 [J]‍. 天然气化工—C1化学与化工 , 2022 , 47 4 : 1 ‒ 10 ‍.
Fan S S , Liu F P , Lang X M , al e t ‍. Research progress of CO 2 capture and replacement of methane from natural gas hydrates [J]‍. Natural Gas Chemical Industry , 2022 , 47 4 : 1 ‒ 10 ‍.

[65] 陈文钢 , 李东泽‍ . NH 3 作为CO 2 置换CH 4 水合物促进剂的分子动力学模拟研究 [J]‍. 石油与天然气化工 , 2021 , 50 5 : 50 ‒ 53 ‍.
Chen W G , Li D Z‍ . Molecular dynamics simulation of NH 3 as a promoter for CO 2 replacement of CH 4 hydrate [J]‍. Chemical Engineering of Oil Gas , 2021 , 50 5 : 50 ‒ 53 ‍.

[66] Boswell R, Schoderbek D, Collett T S, al et‍. The Iġnik Sikumi field experiment, Alaska North Slope: Design, operations, and implications for CO2-CH4 exchange in gas hydrate reservoirs [J]‍. Energy & Fuels, 2017, 31(1): 140‒153‍.

[67] 中华人民共和国自然资源部‍ . 中国矿产资源报告 [M]‍. 北京 : 地质出版社 , 2018 ‍.
Ministry of Natural Resources of the People´s Republic of China‍ . China mineral resources [M]‍. Beijing : Geological Publishing House Co‍., Ltd‍. , 2018 ‍.

[68] 李清平 , 周守为 , 赵佳飞 , 等‍ . 天然气水合物开采技术研究现状与展望 [J]‍. 中国工程科学 , 2022 , 24 3 : 214 ‒ 224 ‍.
Li Q P , Zhou S W , Zhao J F , al e t ‍. Research status and prospects of natural gas hydrate exploitation technology [J]‍. Strategic Study of CAE , 2022 , 24 3 : 214 ‒ 224 ‍.

[69] Jarrell P M, Fox C, Stein M, al et‍. Practical aspects of CO2 flooding [M]‍. Texas: Society of Petroleum Engineers, 2002‍.

[70] Wang J, Ryan D, Anthony E‍ J, al et‍. Effects of impurities on geological storage of CO2 [R]‍. Cheltenham: IEA Environmental Projects Ltd‍., 2011‍.

[71] Porter R T, Fairweather M, Pourkashanian M, al et‍. The range and level of impurities in CO2 streams from different carbon capture sources [J]‍. International Journal of Greenhouse Gas Control, 2015, 36: 161‒174‍.

[72] Morgan H, Large D, Bateman K, al et‍. The effect of variable oxygen impurities on microbial activity in conditions resembling geological storage sites [J]‍. Energy Procedia, 2017, 114: 3077‒3087‍.

相关研究