期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2023年 第25卷 第4期 doi: 10.15302/J-SSCAE-2023.07.023

水产育种生物技术发展战略研究

1. 海水养殖生物育种与可持续产出全国重点实验室,山东青岛 266071;

2. 中国水产科学研究院黄海水产研究所,山东青岛 266071;

3. 中国科学院水生生物研究所,武汉 430072;

4. 西南大学生命科学学院,重庆 400715;5. 中国海洋大学海洋生命学院,山东青岛 266003;

6. 中国科学院海洋研究所,山东青岛 266071;7. 中国水产科学研究院,北京 100141;

8. 湖南师范大学生命科学学院,长沙 410081

资助项目 :中国工程院咨询项目“生物技术助力水产种业高质量发展战略研究”(2022-XY-97);山东省重点研发计划项目(2023ZLYS02);山东省泰山学者攀登计划项目 收稿日期: 2023-02-26 修回日期: 2023-04-17 发布日期: 2023-07-26

下一篇 上一篇

摘要

生物技术是水产种业可持续发展的核心驱动力,全面提升水产育种生物技术创新能力并实现种源自主可控,对于保障国家食品安全具有重要意义。本文梳理了我国水产育种的发展现状和存在的问题,总结了国内外水产行业在转基因育种、倍性育种、分子标记辅助育种、基因组选择育种、基因组编辑育种、分子设计育种、生殖干细胞移植等生物技术方向的研究进展与应用情况,进一步分析了相关技术方向上的未来研发需求。研究提出了未来水产育种生物技术的发展目标,包括水产生物优异种质资源收集、保存与精准鉴定,重要性状遗传基础与调控机制深度解析,高效精准育种技术创建,突破性新品种创制在内的重点任务。研究建议,优化水产种业发展政策、推动水产育种技术创新、建立水产良种创制与转化平台、设立专门项目推动技术创新和种业发展,以此推动我国由水产种业大国向水产种业强国的深刻转变。

参考文献

[ 1 ] Food and Agriculture Organization of the United Nations. The state of world fisheries and aquaculture 2022, towards blue transformation [EB/OL]. (2022-06-29)‍[2023-02-05]. https://www.fao.org/3/cc0461en/online/cc0461en.html.‍ 链接1

[ 2 ] 农业农村部渔业渔政管理局 , 全国水产技术推广总站 , 中国水产学会‍‍ . 2022中国渔业统计年鉴 [M]‍. 北京 : 中国农业出版社 , 2022 ‍.
Bureau of Fisheries of the Ministry of Agriculture and Rural Affairs of the People´s Republic of China, National Fisheries Technology Extension Center, China Society of Fisheries‍ . China fishery statistic yearbook 2022 [M]‍. Beijing : China Agriculture Press , 2022 ‍.

[ 3 ] Zhang G F, Fang X D, Guo X M, al et‍. The oyster genome reveals stress adaptation and complexity of shell formation [J]‍. Nature‍, 2012, 490: 49‒54‍.

[ 4 ] Chen S L, Zhan G J, Shao C W, al et‍. Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle [J]‍. Nature Genetics‍, 2014, 46: 253‒260‍.

[ 5 ] Xu P, Zhang X F, Wang X M, al et‍. Genome sequence and genetic diversity of the common carp, Cyprinus carpio [J]‍. Nature Genetics, 2014, 46(11): 1212‒1219‍.

[ 6 ] Ao J Q, Mu Y N, Xiang L X, al et‍. Genome sequencing of the perciform fish Larimichthys crocea provides insights into molecular and genetic mechanisms of stress adaptation [J]‍. PLoS Genetics‍, 2015, 11(4): e1005118‍.

[ 7 ] Wang Y P, Lu Y, Zhang Y, al et‍. The draft genome of the grass carp (Ctenopharyngodon idellus) provides insights into its evolution and vegetarian adaptation [J]‍. Nature Genetics‍, 2015, 47: 625‒631‍.

[ 8 ] Shao C W, Bao B L, Xie Z Y, al et‍. The genome and transcriptome of Japanese flounder provide insights into flatfish asymmetry [J]‍. Nature Genetics, 2017, 49(1): 119‒124‍.

[ 9 ] Wang S, Zhang J B, Jiao W Q, al et‍. Scallop genome provides insights into evolution of bilaterian karyotype and development [J]‍. Nature Ecology & Evolution, 2017, 1: 0120‍.

[10] Li Y L, Sun X Q, Hu X L, al et‍. Scallop genome reveals molecular adaptations to semi-sessile life and neurotoxins [J]‍. Nature Communication, 2017, 8(1): 1721‍.

[11] Shao C W, Li C, Wang N, al et‍. Chromosome-level genome assembly of the spotted sea bass, Lateolabrax maculatus [J]‍. GigaScience‍, 2018, 7(11): 114‍.

[12] Zhang X J, Yuan J B, Sun Y M, al et‍. Penaeid shrimp genome provides insights into benthic adaptation and frequent molting [J]‍. Nature Communication‍, 2019, 10: 356‍.

[13] Tang B P, Wang Z K, Liu Q N, al et‍. High-quality genome assembly of Eriocheir japonica sinensis reveals its unique genome evolution [J]‍. Frontiers in Genetics‍, 2020, 10: 1340‍.

[14] Tang B P, Zhang D Z, Li H R, al et‍. Chromosome-level genome assembly reveals the unique genome evolution of the swimming crab (Portunus trituberculatus) [J]‍. GigaScience, 2020, 9(1): 161‍.

[15] Zhang X J, Sun L N, Yuan J B, al et‍. The sea cucumber genome provides insights into morphological evolution and visceral regeneration [J]‍. PLoS Biology, 2017, 15: e2003790‍.

[16] Ye N H, Zhang X W, Miao M, al et‍. Saccharina genomes provide novel insight into kelp biology [J]‍. Nature Communication, 2015, 6: 6986‍.

[17] 陈松林 , 徐文腾 , 刘洋‍ . 鱼类基因组研究十年回顾与展望 [J]‍. 水产学报‍ . 2019 , 43 1 : 1 ‒ 14 ‍.
Chen S L , Xu W T , Liu Y‍ . Fish genomic research: Decade review and prospect [J]‍. Journal of Fisheries of China‍ , 2019 , 43 1 : 1 ‒ 14 ‍.

[18] Li J T, Wang Q, Huang Yang M D, al et‍. Parallel subgenome structure and divergent expression evolution of allo-tetraploid common carp and goldfish [J]‍. Nature Genetics, 2021, 53: 1493‒1503‍.

[19] Wang Y, Li X Y, Xu W J, al et‍. Comparative genome anatomy reveals evolutionary insights into a unique amphitriploid fish [J]‍. Nature Ecology & Evolution, 2022, 6: 1354‒1366‍.

[20] Liu S J, Luo J, Chai J, al et‍. Genomic incompatibilities in the diploid and tetraploid offspring of the goldfish × common carp cross [J]‍. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113: 1327‒1332‍.

[21] Chen S L, Li J, Deng S P, al et‍. Isolation of female-specific AFLP markers and molecular identification of genetic sex in half-smooth tongue sole (Cynoglossus semilaevis) [J]‍. Marine Biotechnology‍, 2007, 9(2): 273‒280‍.

[22] Wang D, Mao H L, Chen H X, al et‍. Isolation of Y- and X-linked SCAR markers in yellow catfish and application in the production of all-male populations [J]‍. Animal Genetics‍, 2009, 40: 978‒981‍.

[23] Chen J J, Wang Y L, Yue Y Y, al et‍. A novel male-specific DNA sequence in the common carp, Cyprinus carpio [J]‍. Molecular and Cellular Probes‍, 2009, 23(5): 235‒239‍.

[24] Ma H Y, Chen S L, Yang J F, al et‍. Isolation of sex-specific AFLP markers in spotted halibut (Verasper variegatus) [J]‍. Environmental Biology of Fishes, 2010, 88: 9‒14‍.

[25] 王德寿 , 孙运侣 , 曾圣 , 等‍ . 尼罗罗非鱼性染色体特异分子标记及遗传性别鉴定方法 : CN101962641B [P]‍. 2013-06-05 ‍.
Wang D S , Sun Y L , Zeng S , al e t ‍. Method for identifying sex chromosome-specific molecular marker and genetic gender in Nile tilapia : CN101962641B [P]‍. 2013-06-05 ‍.

[26] Ou M, Yang C, Luo Q, al et‍. An NGS-based approach for the identification of sex-specific markers in snakehead (Channa argus) [J]‍. Oncotarget‍, 2017, 8(58): 98733‒98744‍.

[27] 王志勇 , 林爱强 , 肖世俊‍ . 一种鉴别大黄鱼遗传性别的分子标记及其应用 : CN107236814A [P]‍. 2017-10-10 ‍.
Wang Z Y , Lin A Q , Xiao S J‍ . A molecular marker for identifying genetic gender and its application in large yellow croaker : CN107236814A [P]‍. 2017-10-10 ‍.

[28] Liu H Y, Pang M X, Yu X M, al et‍. Sex-specific markers developed by next-generation sequencing confirmed an XX/XY sex determination system in bighead carp (Hypophthalmichthys nobilis) and silver carp (Hypophthalmichthys molitrix) [J]‍. DNA Research‍, 2018, 25(3): 247‒264‍.

[29] 周云红 , 葛婉仪 , 夏星 , 等‍ . 鳜雌雄表型差异及性别相关标记筛选 [J]‍. 安徽农业大学学报 , 2020 , 47 1 : 30 ‒ 35 ‍.
Zhou Y H , Ge W Y , Xia X , al e t ‍. Phenotypic difference between the males and females and screening the sex-specific molecular marker in Siniperca chuatsi [J]‍. Journal of Anhui Agricultural University , 2020 , 47 1 : 30 ‒ 35 ‍.

[30] Dou J, Li X, Fu Q, al et‍. Evaluation of the 2b-RAD method for genomic selection in scallop breeding [J]‍. Scientific Reports, 2016, 6: 19244‍.

[31] Liu Y, Lu S, Liu F, al et‍. Genomic selection using BayesCπ and GBLUP for resistance against Edwardsiella tarda in Japanese flounder (Paralichthys olivaceus) [J]‍. Marine Biotechnology‍, 2018, 20(5): 559‒565‍.

[32] Lu S, Liu Y, Yu X J, al et‍. Prediction of genomic breeding values based on pre‑selected SNPs using ssGBLUP, WssGBLUP and BayesB for edwardsiellosis resistance in Japanese flounder [J]‍. Genetics Selection Evolution, 2020, 52: 49‍.

[33] Lu S, Zhou Q, Chen Y D, al et‍. Development of a 38 K single nucleotide polymorphism array and application in genomic selection for resistance against Vibrio harveyi in Chinese tongue sole, Cynoglossus semilaevis [J]‍. Genomics‍, 2021, 113(4): 1838‒1844‍.

[34] Dong L S, Xiao S J, Chen J W, al et‍. Genomic selection using extreme phenotypes and pre-selection of SNPs in large yellow croaker (Larimichthys crocea) [J]‍. Marine Biotechnology‍, 2016, 18: 575‒583‍.

[35] Dong L S, Xiao S J, Wang Q R, al et‍. Comparative analysis of the GBLUP, emBayesB, and GWAS algorithms to predict genetic values in large yellow croaker (Larimichthys crocea) [J]‍. BMC Genomics, 2016, 17: 460‍.

[36] Zhou J, Bai H Q, Ke Q Z, al et‍. Genomic selection for parasitic ciliate Cryptocaryon irritans resistance in large yellow croaker [J]‍. Aquaculture, 2021, 531: 735786‍.

[37] Bai Y L, Wang J Y, Zhao J, al et‍. Genomic selection for visceral white-nodules diseases resistance in large yellow croaker [J]‍. Aquaculture, 2022, 559: 738421‍.

[38] Lu S, Zhu J J, Du X, al et‍. Genomic selection for resistance to Streptococcus agalactiae in GIFT strain of Oreochromis niloticus by GBLUP, wGBLUP, and BayesCπ [J]‍. Aquaculture‍, 2020, 523: 735212‍.

[39] Liu J Y, Peng W Z, Yu F, al et‍. Genomic selection applications can improve the environmental performance of aquatics: A case study on the heat tolerance of abalone [J]‍. Evolutionary Applications, 2022, 15(6): 992‒1001‍.

[40] Xu J, Zhao Z X, Zhang X F, al et‍. Development and evaluation of the first high-throughput SNP array for common carp (Cyprinus carpio) [J]‍. BMC Genomics, 2014, 15: 307‍.

[41] Zhou Q, Chen Y D, Lu S, al et‍. Development of a 50K SNP array for Japanese flounder and its application in genomic selection for disease resistance [J]‍. Engineering‍, 2021, 7(3): 406‒411‍.

[42] Zhou T, Chen B H, Ke Q Z, al et‍. Development and evaluation of a high-throughput single-nucleotide polymorphism array for large yellow croaker (Larimichthys crocea) [J]‍. Frontiers in Genetics, 2020, 11: 571751‍.

[43] Qi H G, Song K, Li C Y, al et‍. Construction and evaluation of a high-density SNP array for the Pacific oyster (Crassostrea gigas) [J]‍. PLoS One‍, 2017, 12(3): e0174007‍.

[44] Lv J, Jiao W Q, Guo H B, al et‍. HD-Marker: A highly multiplexed and flexible approach for targeted genotyping of more than 10, 000 genes in a single-tube assay [J]‍. Genome Research, 2018, 28(12): 1919‒1930‍.

[45] Wang J Y, Miao L W, Chen B H, al et‍. Development and evaluation of liquid SNP array for large yellow croaker (Larimichthys crocea) [J]‍. Aquaculture, 2023, 563(4): 739021‍.

[46] Li M H, Yang H H, Zhao J E, al et‍. Efficient and heritable gene targeting in tilapia by CRISPR/Cas9 [J]‍. Genetics‍, 2014, 197(2): 591‒599‍.

[47] Cui Z K, Liu Y, Wang W W, al et‍. Genome editing reveals dmrt1 as an essential male sex-determining gene in Chinese tongue sole (Cynoglossus semilaevis) [J]‍. Scientific Reports‍, 2017, 7: 42213‍.

[48] Gui T S, Zhang J Q, Song F G, al et‍. CRISPR/Cas9-mediated genome editing and mutagenesis of EcChi4 in Exopalaemon carinicauda [J]‍. G3 Genes, Genomes, Genetics‍, 2016, 6(11): 3757‒3764‍.

[49] 陈松林 , 王德寿 , 匡友谊 , 等‍ . 中国鱼类基因组编辑育种研究现状及存在问题与展望 [J]‍. 水产学报 , 2023 , 47 1 : 13 ‒ 26 ‍.
Chen S L , Wang D S , Kuang Y Y , al e t ‍. Fish genome editing breeding in China: Status, problems and prospects [J]‍. Journal of Fisheries of China , 2023 , 47 1 : 13 ‒ 26 ‍.

[50] 朱作言 , 许克圣 , 谢岳峰 , 等‍ . 转基因鱼模型的建立 [J]‍. 中国科学B辑 化学 生命科学 地学‍ , 1989 , 19 2 : 147 ‒ 155 ‍.
Zhu Z Y , Xu K S , Xie Y F , al e t ‍. Establishment of transgenic fish model [J]‍. Science in China Series B‒Chemistry , Life Sciences Earth Sciences‍, 1989 , 19 2 : 147 ‒ 155 ‍.

[51] 张成合 , 宋长志 , 王淑芳‍ . 多倍体育种综述 [J]‍. 河北农业大学学报‍ , 1988 2 : 136 ‒ 139 ‍.
Zhang C H , Song C Z , Wang S F‍ . Review of polyploid breeding [J]‍. Journal of Heibei Agricultural University , 1988 2 : 136 ‒ 139 ‍.

[52] P‍ Otto S. The evolutionary consequences of polyploidy [J]‍. Cell‍, 2007, 131(2): 452‒462‍.

[53] Liu S J‍. Distant hybridization leads to different ploidy fishes [J]‍. Science China Life Sciences, 2010, 53(4): 416‒425‍.

[54] Thoraard G H, Jazwin M E, R‍ Stier A. Polyploidy induced by heat shock in rainbow trout [J]‍. Transactions of the American Fisheries Society, 1981, 110: 546‒550‍.

[55] Yang X Q, Chen M R, Yu X M, al et‍. Biological characters and growth rates of diploid and triploid Japanese phytophagous crucian carp (JPCC) [J]‍. Aquaculture‍, 1993, 111(1‒4): 320‒321‍.

[56] Refstie T‍. Tetraploid rainbow trout produced by cytochalasin B [J]‍. Aquaculture‍, 1981, 25(1): 51‒58‍.

[57] Bidwell C A, Chfisman C L, Libey G‍. Polyploidy induced by heat shock in channel catfish [J]‍. Aquaculture, 1985, 51(1): 25‒32‍.

[58] Chourrout D, Chevassus B, Krieg F, al et‍. Production of second generation triploid and tetraploid rainbow trout by mating tetraploid males and diploid females—Potential of tetraploid fish [J]‍. Theoretical and Applied Genetics‍, 1986, 72: 193‒206‍.

[59] Chourrout D, Nakayama I‍. Chromosome studies of progenies of tetraploid female rainbow trout [J]‍. Theoretical and Applied Genetics, 1987, 74(6): 687‒692‍.

[60] Liu S J, Qin Q B, Xiao J, al et‍. The Formation of the polyploid hybrids from different subfamily fish crossings and its evolutionary significance [J]‍. Genetics, 2007, 176: 1023‒1034‍.

[61] Devlin R H, Mcneil B K, Groves T, al et‍. Isolation of a Y-chromosomal DNA probe capable of determining genetic sex in chinook salmon (Oncorhynchus tshawytscha) [J]‍. Canadian Journal of Fisheries and Aquatic Sciences, 1991, 48: 1606‒1612‍.

[62] 刘洋 , 陈松林 , 高峰涛 , 等‍ . 半滑舌鳎性别特异微卫星标记的SCAR转化及其应用 [J]‍. 农业生物技术学报‍ , 2014 , 22 6 : 787 ‒ 792 ‍.
Liu Y , Chen S L , Gao F T , al e t ‍. SCAR-transformation of sex-specific SSR marker and its application in half-smooth tongue sole Cynoglossus semiliaevis [J]‍. Journal of Agriculture Biotechnology , 2014 , 22 6 : 787 ‒ 792 ‍.

[63] Fuji K, Kobayashi K, Hasegawa O, al et‍. Identification of a single major genetic locus controlling the resistance to lymphocystis disease in Japanese flounder (Paralichthys olivaceus) [J]‍. Aquaculture‍, 2006, 254: 203‒210‍.

[64] Fuji K, Hasegawa O, Honda K, al et‍. Marker-assisted breeding of a lymphocystis disease-resistant Japanese flounder (Paralichthys olivaceus) [J]‍. Aquaculture, 2007, 272(1‒4): 291‒295‍.

[65] Houston R, Haley C, Hamilton A, al et‍. The susceptibility of Atlantic salmon fry to freshwater infectious pancreatic necrosis is largely explained by a major QTL [J]‍. Heredity, 2010, 105: 318‍‒327.

[66] Moen T, Torgersen J, Santi N, al et‍. Epithelial cadherin determines resistance to infectious pancreatic necrosis virus in Atlantic salmon [J]‍. Genetics‍, 2015, 200(4): 1313‒1326‍.

[67] Liu S X, Vallejo R L, Evenhuis J P, al et‍. Retrospective evaluation of marker-assisted selection for resistance to bacterial cold water disease in three generations of a commercial rainbow trout breeding population [J]‍. Frontiers in Genetics‍, 2018, 9: 286‍.

[68] Meuwissen T H E, Hayes B J, E‍ Goddard M. Prediction of total genetic value using genome-wide dense marker maps [J]‍. Genetics, 2001, 157(4): 1819‒1829‍.

[69] Ødegård J, Moen T, Santi N, al et‍. Genomic prediction in an admixed population of Atlantic salmon (Salmo salar) [J]‍. Frontiers in Genetics‍, 2014, 5: 402‍.

[70] Tsai H Y, Hamilton A, Tinch A E, al et‍. Genome wide association and genomic prediction for growth traits in juvenile farmed Atlantic salmon using a high density SNP array [J]‍. BMC Genomics‍, 2015, 16: 969‍.

[71] Gutierrez A P, Matika O, Bean T P, al et‍. Genomic selection for growth traits in Pacific oyster (Crassostrea gigas): Potential of low-density marker panels for breeding value prediction [J]‍. Frontiers in Genetics‍, 2018, 9: 391‍.

[72] Vallejo R L, Leeds T D, Fragomeni B O, al et‍. Evaluation of genome-enabled selection for bacterial cold water disease resistance using progeny performance data in rainbow trout: Insights on genotyping methods and genomic prediction models [J]‍. Frontiers in Genetics, 2016, 7: 96‍.

[73] Bangera R, Correa K, Lhorente J P, al et‍. Genomic predictions can accelerate selection for resistance against Piscirickettsia salmonisin Atlantic salmon (Salmo salar) [J]‍. BMC Genomics, 2017, 18(1): 121‍.

[74] Wang Q C, Yang Y, Li F H, al et‍. Predictive ability of genomic selection models for breeding value estimation on growth traits of Pacific white shrimp Litopenaeus vannamei [J]‍. Chinese Journal of Oceanology and Limnology, 2017, 35: 1221‒1229‍.

[75] Houston R D, Taggart J B, Cézard T, al et‍. Development and validation of a high density SNP genotyping array for Atlantic salmon (Salmo salar)‍ [J]‍. BMC Genomics‍, 2014, 15: 90‍.

[76] Correa K, Lhorente J P, López M E, al et‍. Genome-wide association analysis reveals loci associated with resistance against Piscirickettsia salmonis in two Atlantic salmon (Salmo salar L‍.) chromosomes [J]‍‍. BMC Genomics, 2015, 16: 854‍.

[77] Palti Y, Gao G, Liu S, al et‍. The development and characterization of a 57K single nucleotide polymorphism array for rainbow trout [J]‍‍‍. Molecular Ecology Resources, 2015, 15(3): 662‒672‍.

[78] Liu P P, Lv J, Ma C, al et‍. Targeted genotyping of a whole-gene repertoire by an ultrahigh-multiplex and flexible HD-marker approach [J]‍. Engineering‍, 2022, 13(12): 186‒196‍.

[79] Porteus M H, Carroll D‍. Gene targeting using zinc finger nucleases [J]‍. Nature Biotechnology‍, 2005, 23(8): 967‒973‍.

[80] Boch J, Scholze H, Schornack S, al et‍. Breaking the code of DNA binding specificity of TAL-type III effectors [J]‍. Science‍, 2009, 326(5959): 1509‒1512‍.

[81] Cong L, Ran F A, Cox D, al et‍. Multiplex genome engineering using CRISPR/Cas systems [J]‍. Science‍, 2013, 339(6121): 819‒823‍.

[82] Wargelius A, Leininger S, Skaftnesmo K O, al et‍. Dnd knockout ablates germ cells and demonstrates germ cell independent sex differentiation in Atlantic salmon [J]‍. Scientific Reports, 2016, 6: 21284‍.

[83] Li M H, Yang H H, Li M R, al et‍. Antagonistic roles of dmrt1 and foxl2 in sex differentiation via estrogen production in tilapia as demonstrated by TALENs [J]‍. Endocrinology‍, 2013, 154(12): 4814‒4825‍.

[84] Cleveland B M, Yamaguchi G, Radler L M, al et‍. Editing the duplicated insulin-like growth factor binding protein-2b gene in rainbow trout (Oncorhynchus mykiss) [J]‍. Scientific Reports, 2018, 8(1): 16054‍.

[85] Bao L S, Tian C X, Liu S K, al et‍. The Y chromosome sequence of the channel catfish suggests novel sex determination mechanisms in teleost fish [J]‍. BMC Biology‍, 2019, 17(1): 6‍.

[86] Gan R H, Wang Y, Li Z, al et‍. Functional divergence of multiple duplicated foxl2 homeologs and alleles in a recurrent polyploid fish [J]‍. Molecular Biology and Evolution‍, 2021, 38(5): 1995‒2013‍.

[87] Wang M T, Li Z, Ding M, al et‍. Two duplicated gsdf homeologs cooperatively regulate male differentiation by inhibiting cyp19a1a transcription in a hexaploid fish [J]‍. PLoS Genetics‍, 2022, 18: e1010288‍.

[88] Higuchi K, Kazeto Y, Ozaki Y, al et‍. Targeted mutagenesis of the ryanodine receptor by Platinum TALENs causes slow swimming behaviour in Pacific bluefin tuna (Thunnus orientalis) [J]‍. Scientific Reports‍, 2019, 9: 13871‍.

[89] Kim J, Cho J Y, Kim J W, al et‍. CRISPR/Cas9-mediated myostatin disruption enhances muscle mass in the olive flounder Paralichthys olivaceus [J]‍. Aquaculture, 2019, 512: 734336‍.

[90] Wang L, Tan X G, Wu Z H, al et‍. Targeted mutagenesis in the olive flounder (Paralichthys olivaceus) using the CRISPR/Cas9 system with electroporation [J]‍. Biologia‍, 2021, 76: 1297‒1304‍.

[91] Ohama M, Washio Y, Kishimoto K, al et‍. Growth performance of myostatin knockout red sea bream Pagrus major juveniles produced by genome editing with CRISPR/Cas9 [J]‍. Aquaculture, 2020, 529: 735672‍.

[92] Yu H, Li H J, Li Q, al et‍. Targeted gene disruption in Pacific oyster based on CRISPR/Cas9 ribonucleoprotein complexes [J]‍. Marine Biotechnology, 2019, 21(3): 301‒309‍.

[93] Li M H, Feng R J, Ma H, al et‍. Retinoic acid triggers meiosis initiation via stra8-dependent pathway in Southern catfish, Silurus meridionalis [J]‍. General and Comparative Endocrinology‍, 2016, 232: 191‒198‍.

[94] Kawamura W, Hasegawa N, Yamauchi A, al et‍. Production of albino chub mackerel (Scomber japonicus) by slc45a2 knockout and the use of a positive phototaxis-based larviculture technique to overcome the lethal albino phenotype [J]‍. Aquaculture, 2022, 560: 738490‍.

[95] Japan embraces CRISPR-edited fish [J]‍. Nature Biotechnology, 2022, 40: 10‍.

[96] Brinster R L, W‍ Zimmermann J. Spermatogenesis following male germ-cell transplantation [J]‍. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91: 11298‒11302‍.

[97] 贾天玉 , 刘龙会 , 沈豪飞 , 等‍ . 生殖干细胞的研究进展 [J]‍. 国际生殖健康计划生育杂志 , 2019 , 38 3 : 222 ‒ 225 ‍.
Jia T Y , Liu L H , Shen H F , al e t ‍. Research progress of germline stem cells [J]‍. Journal of International Reproductive HealthFamily Planning‍ , 2019 , 38 3 : 222 ‒ 225 ‍.

[98] Ciruna B, Weidinger G, Knaut H, al et‍. Production of maternal-zygotic mutant zebrafish by germ-line replacement [J]‍. Proceedings of the National Academy of Sciences of the United States of America, 2022, 99(23): 14919‒14924‍.

[99] Takeuchi Y, Yoshizaki G, Takeuchi T‍. Generation of live fry from intraperitoneally transplanted primordial germ cells in rainbow trout [J]‍. Biology of Reproduction, 2003, 69(4): 1142‒1149‍.

[100] Okutsu T, Shikina S, Kanno M, al et‍. Production of trout offspring from triploid salmon parents [J]‍. Science, 2007, 317(5844): 1517‍.

[101] Ye H, Li C J, Yue H M, al‍ er. Establishment of intraperitoneal germ cell transplantation for critically endangered Chinese sturgeon Acipenser sinensis [J]‍. Theriogenology‍, 2017, 94: 37‒47‍.

[102] Zhang F H, Hao Y K, Li X M, al et‍. Surrogate production of genome-edited sperm from a different subfamily by spermatogonial stem cell transplantation [J]‍. Science China Life Sciences‍, 2022, 65(5): 969‒987‍.

[103] Zhou L, Wang X Y, Liu Q H, al et‍. Successful spermatogonial stem cells transplantation within pleuronectiformes: First breakthrough at inter-family level in marine fish [J]‍. International Journal of Biological Sciences‍, 2021, 17(15): 4426‒4441‍.

[104] 朱作言 , 胡炜‍ . 转基因鱼及其安全性 [J]‍. 科学 , 2017 , 69 6 : 25 ‒ 27, 4 ‍.
Zhu Z Y , Hu W‍ . Transgenic fish and its biosafety [J]‍. Science , 2017 , 69 6 : 25 ‒ 27, 4 ‍‍.

[105] Qin P, Lu H W, Du H L, al et‍. Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations [J]‍. Cell‍, 2021, 184(13): 3542‒3558, e16‍.

[106] Gui S T, Wei W J, Jiang C L, al et‍. A pan-Zea genome map for enhancing maize improvement [J]‍. Genome Biology, 2022, 23: 178‍.

[107] Zhou Y, Zhang Z Y, Bao Z G, al et‍. Graph pangenome captures missing heritability and empowers tomato breeding [J]‍. Nature, 2022, 606: 527‒534‍.

[108] Talenti A, Powell J, Hemmink J D, al et‍. A cattle graph genome incorporating global breed diversity [J]‍. Nature Communications, 2022, 13: 910‍.

[109] Tian X M, Li R, Fu W W, al et‍. Building a sequence map of the pig pan-genome from multiple de novo assemblies and Hi-C data [J]‍. Science China Life Science, 2020, 63: 750‒763‍.

相关研究