期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第11期 doi: 10.1016/j.eng.2020.10.016

基于BH-1模拟月壤的低碱高强地聚合物的制备与表征

a School of Transportation Science and Engineering, Beihang University, Beijing 100191, China
b Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, Shanghai 200092, China

收稿日期: 2020-06-15 修回日期: 2020-08-12 录用日期: 2020-10-19 发布日期: 2021-12-29

下一篇 上一篇

摘要

建设月球基地以支持月面科研任务和资源利用一直是各国研究人员的目标。使用月球材料进行原位资源利用制备建筑材料对于节省昂贵的太空运费具有重要意义。本文研制了一种新型模拟月壤,名为北航(BH)-1。通过X射线荧光光谱(XRF)、X射线衍射(XRD)、扫描电子显微镜(SEM)和反射光谱结果证实,BH-1 的化学矿物组成和微观结构与真实月壤非常相似。本研究还在模拟月球环境条件下合成了一种基于BH-1 模拟月壤的地聚合物,并研究了补充铝源对地聚合物强度的影响。测定了碱激发BH-1 浆体的流变性能。采用XRF、XRD、傅里叶红外光谱、SEM能谱分析和27Al 魔角旋转核磁共振分析对地聚合物进行表征。试验结果表明,BH-1 浆体的流变曲线符合Herschel-Bulkley 模型,表现为剪切变稀流体。添加铝源的BH-1 地聚合物与对照组相比,28 天抗压强度可提高100.8%。同时,产生单位强度所需的添加剂的质量降低,显著减少了从地球运输至月球用于地聚合物制备的材料质量,有望节约太空运输成本。微观实验分析表明,通过添加额外的铝源来改善BH-1 地聚合物的力学性能机理为:促进了硅氧基中铝原子基团对硅原子基团的取代作用,生成更致密的无定形凝胶结构。

图片

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

图15

图16

参考文献

[ 1 ] Wang C, Nie H, Chen J, Lee HP. The design and dynamic analysis of a lunar lander with semi-active control. Acta Astronaut 2019;157:145–56. 链接1

[ 2 ] Dalton C, Hohmann E. Conceptual design of a lunar colony. Technical reports. Texas: National Aeronautics and Space Administration (NASA)/ American Society for Engineering Education (ASEE) Systems Design Institute; 1972. 链接1

[ 3 ] Zheng Y, Ouyang Z, Li C, Liu J, Zou Y. China’s lunar exploration program: present and future. Planet Space Sci 2008;56(7):881–6. 链接1

[ 4 ] Vaniman D, Reedy R, Heiken G, Olhoeft G, Mendell W. The lunar environment. In: Heiken G, Vaniman D, French BM, editors. Lunar sourcebook: a user’s guide to the moon. New York: Cambridge University Press; 1991. p. 27–60. 链接1

[ 5 ] Davis G, Montes C, Eklund S. Preparation of lunar regolith based geopolymer cement under heat and vacuum. Adv Space Res 2017;59(7):1872–85. 链接1

[ 6 ] Brandenburg B. Lunar rover on the moon [Internet]. Utah: Bryan Brandenburg; 2013 Mar 17 [cited 2020 Jun 9]. Available from: http:// bryanmbrandenburg.com/lunar-rover-on-moon/. 链接1

[ 7 ] [Lunar rover Yutu travels an average of 200 meters per hour] [Internet]. Hong Kong: Phoenix New Media; 2013 Dec 16 [cited 2020 Jun 9]. Available from: http://news.ifeng.com/mainland/special/changesanhao/content-3/detail_2013_ 12/16/32145473_0.shtml?_114sobiaoqian. Chinese. 链接1

[ 8 ] Dominguez JA, Whitlow J. Upwards migration phenomenon on molten lunar regolith: new challenges and prospects for ISRU. Adv Space Res 2019;63 (7):2220–8. 链接1

[ 9 ] Winkless L. Moondust: a building material for a lunar base? Mater Today 2015;18(4):181. 链接1

[10] Anand M, Crawford LA, Balat-Pichelin M, Abanades S, van Westrenen W, Peraudeau G, et al. A brief review of chemical and mineralogical resources on the Moon and likely initial in situ resource utilization (ISRU) applications. Planet Space Sci 2012;74(1):42–8. 链接1

[11] Khoshnevis B, Yuan X, Zahiri B, Zhang J, Xia B. Construction by contour crafting using sulfur concrete with planetary applications. Rapid Prototyping J 2016;22 (5):848–56. 链接1

[12] Montes C, Broussard K, Gongre M, Simicevic N, Mejia J, Tham J, et al. Evaluation of lunar regolith geopolymer binder as a radioactive shielding material for space exploration applications. Adv Space Res 2015;56(6):1212–21. 链接1

[13] Wilhelm S, Curbach M. Review of possible mineral materials and production techniques for a building material on the moon. Struct Concr 2014;15 (3):419–28. 链接1

[14] Taylor SL, Jakus AE, Koube KD, Ibeh AJ, Geisendorfer NR, Shah RN, et al. Sintering of micro-trusses created by extrusion-3D-printing of lunar regolith inks. Acta Astronaut 2018;143:1–8. 链接1

[15] Taylor LA, Pieters CM, Britt D. Evaluations of lunar regolith simulants. Planet Space Sci 2016;126:1–7. 链接1

[16] McKay DS, Carter JL, Boles WW, Allen CC, Allton JH. JSC-1: a new lunar regolith simulant. In: Proceedings of the 24th Lunar and Planetary Science Conference; 1993 Mar 15–19; Houston, TX, USA; 1993. 链接1

[17] Hill E, Patchen AD, Taylor L, Day J, Day JMD. Supplement, quantitative characterization of JSC-1 and MLS-1 lunar soil simulants. In: Proceedings of 68th Annual Meeting of the Meteoritical Society; 2005 Sep 12–16; Gatlinburg, TN, USA; 2005. 链接1

[18] Zheng Y, Wang S, Ouyang Z, Zou Y, Liu J, Li C, et al. CAS-1 lunar soil simulant. Adv Space Res 2009;43(3):448–54. 链接1

[19] Ray CS, Reis ST, Sen S, O’Dell JS. JSC-1A lunar soil simulant: characterization, glass formation, and selected glass properties. J Non-Cryst Solids 2010;356 (44–49):2369–74. 链接1

[20] Ryu BH, Wang CC, Chang L. Development and geotechnical engineering properties of KLS-1 lunar simulant. J Aerosp Eng 2018;31(1):04017083. 链接1

[21] Davidovits J. Geopolymers and geopolymeric materials. J Therm Anal 1989;35 (2):429–41. 链接1

[22] Chindaprasirt P, Chareerat T, Hatanaka S, Cao T. High-strength geopolymer using fine high-calcium fly ash. J Mater Civ Eng 2011;23(3):264–70. 链接1

[23] Zhang Z, Provis JL, Reid A, Wang H. Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete. Cem Concr Res 2015;62:97–105. 链接1

[24] Slavik R, Bednarik V, Vondruska M, Nemec A. Preparation of geopolymer from fluidized bed combustion bottom ash. J Mater Process Technol 2008;200(1– 3):265–70. 链接1

[25] Wang A, Zheng Y, Zhang Z, Liu K, Li Y, Shi L, et al. The durability of alkaliactivated materials in comparison with ordinary portland cements and concretes: a review. Engineering 2020;6(6):695–706. 链接1

[26] Wallah SE. Drying shrinkage of heat-cured fly ash-based geopolymer concrete. Mod Appl Sci 2009;3(12):14–21. 链接1

[27] Anand M. Lunar water: a brief review. Earth Moon Planets 2010;107(1):65–73. 链接1

[28] Wang KT, Lemougna PN, Tang Q, Li W, Cui XM. Lunar regolith can allow the synthesis of cement materials with near-zero water consumption. Gondwana Res 2017;44:1–6. 链接1

[29] Pilehvar S, Arnhof M, Pamies R, Valentini L, Kjøniksen AL. Utilization of urea as an accessible superplasticizer on the moon for lunar geopolymer mixtures. J Clean Prod 2020;247:119177. 链接1

[30] Mckay DS, Heiken G, Basu A, Blanford G, Simon S, Reedy R, et al. Lunar sourcebook: a user’s guide to the moon. New York: Cambridge University Press; 1991. p. 305–6. 链接1

[31] Li Z, Gong J, Du S, Wu J, Li J, Hoffman D, et al. Nano-montmorillonite modified foamed paste with a high volume fly ash binder. RSC Adv 2017;7(16):9803–12. 链接1

[32] Tchakoute Kouamo H, Elimbi A, Mbey JA, Ngally Sabouang CJ, Njopwouo D. The effect of adding alumina-oxide to metakaolin and volcanic ash on geopolymer products: a comparative study. Constr Build Mater 2012;35:960–9. 链接1

[33] Djobo JNY, Elimbi A, Tchakouté HK, Kumar S. Volcanic ash-based geopolymer cements/concretes: the current state of the art and perspectives. Environ Sci Pollut Res Int 2017;24(5):4433–46. 链接1

[34] Barnes HA, Barnes JF, Walters K. An introduction to rheology. Amsterdam: Elsevier; 1989. 链接1

[35] Zhang Y, Zhang Y, She W, Yang L, Liu G, Yang Y. Rheological and harden properties of the high-thixotropy 3D printing concrete. Constr Build Mater 2019;201:278–85. 链接1

[36] Panda B, Tan MJ. Rheological behavior of high volume fly ash mixtures containing micro silica for digital construction application. Mater Lett 2019;237:348–51. 链接1

[37] Hamideh M, Ebrahim NK, Sanchez AP, Fernandez-Jimenez A. Rheology of activated phosphorus slag with lime and alkaline salts. Cem Concr Res 2018;113:121–9. 链接1

[38] Poulesquen A, Frizon F, Lambertin D. Rheological behavior of alkali-activated metakaolin during geopolymerization. J Non-Cryst Solids 2011;357 (21):3565–71. 链接1

[39] Wallevik OH, Feys D, Wallevik JE, Khayat KH. Avoiding inaccurate interpretations of rheological measurements for cement-based materials. Cem Concr Res 2015;78(Pt A):100–9. 链接1

[40] Aiad I. Influence of time addition of superplasticizers on the rheological properties of fresh cement pastes. Cem Concr Res 2003;33(8):1229–34. 链接1

[41] Yahia A, Khayat KH. Applicability of rheological models to high-performance grouts containing supplementary cementitious materials and viscosity enhancing admixture. Mater Struct 2003;36(6):402–12. 链接1

[42] Peng J, Deng D, Liu Z, Yuan Q, Ye T. Rheological models for fresh cement asphalt paste. Constr Build Mater 2014;71:254–62. 链接1

[43] Djobo JNY, Tchadjié LN, Tchakoute HK, Kenne BBD, Elimbi A, Njopwouo D, et al. Synthesis of geopolymer composites from a mixture of volcanic scoria and metakaolin. J Asian Ceram Soc 2014;2(4):387–98. 链接1

[44] Alexiadis A, Alberini F, Meyer ME. Geopolymers from lunar and Martian soil simulants. Adv Space Res 2017;59(1):490–5. 链接1

[45] Slyuta EN. Physical and mechanical properties of the lunar soil (a review). Sol Syst Res 2014;48(5):330–53. 链接1

[46] Zhou S, Zhu X, Lu C, Li F. Synthesis and characterization of geopolymer from lunar regolith simulant based on natural volcanic scoria. Chin J Aeronauti. In press.

[47] ASTM D2196-18e1: Standard test methods for rheological properties of nonnewtonian materials by rotational viscometer. ASTM standard. West Conshohocken: ASTM International; 2018.

[48] Williams JP, Paige DA, Greenhagen BT, Sefton-Nash E. The global surface temperatures of the Moon as measured by the Diviner Lunar Radiometer Experiment. Icarus 2017;283:300–25. 链接1

[49] Gates-Rector S, Blanton T. The Powder Diffraction File: a quality materials characterization database. Powder Diffr 2019;34(4):352–60. 链接1

[50] Robens E, Bischoff A, Schreiber A, Unger KK. Investigation of surface properties of lunar regolith part III. J Therm Anal Calorim 2008;94(3):627–31. 链接1

[51] Li C, Xie K, Liu A, Shi Z. The preparation and characterization of NEU-1 lunar soil simulants. JOM 2019;71(4):1471–6. 链接1

[52] PrEN ISO 3219-1: Plastics—polymers/resins in the liquid state or as emulsions or dispersions—determination of viscosity using a rotational viscometer with defined shear rate ISO/TC 35/SC 9 general test methods for paints and varnishes. Geneva: International Organization for Standardization; 1993.

[53] Shi C, Fernández-Jiménez A, Palomo A. New cements for the 21st century: the pursuit of an alternative to Portland cement. Cem Concr Res 2011;41 (7):750–63. 链接1

[54] Verdolotti L, Iannace S, Lavorgna M, Lamanna R. Geopolymerization reaction to consolidate incoherent pozzolanic soil. J Mater Sci 2008;43(3):865–73. 链接1

[55] Fernández-Jiménez A, Palomo A. Composition and microstructure of alkali activated fly ash binder: effect of the activator. Cem Concr Res 2005;35 (10):1984–92. 链接1

[56] Zhang Y, Sun W, Li Z. Composition design and microstructural characterization of calcined kaolin-based geopolymer cement. Appl Clay Sci 2010;47(3– 4):271–5. 链接1

[57] Tchakouté HK, Kong S, Djobo JNY, Tchadjié LN, Njopwouo D. A comparative study of two methods to produce geopolymer composites from volcanic scoria and the role of structural water contained in the volcanic scoria on its reactivity. Ceram Int 2015;41(10):12568–77. 链接1

[58] Zhang M, Zhao M, Zhang G, El-Korchi T, Tao M. A multiscale investigation of reaction kinetics, phase formation, and mechanical properties of metakaolin geopolymers. Cement Concr Compos 2017;78:21–32. 链接1

[59] Djobo JNY, Elimbi A, Tchakouté HK, Kumar S. Reactivity of volcanic ash in alkaline medium, microstructural and strength characteristics of resulting geopolymers under different synthesis conditions. J Mater Sci Technol 2016;51 (22):10301–17. 链接1

相关研究