更多

提出一种多重知识表示框架,探讨了其对推动大数据人工智能技术在各个领域中发展的重要意义及深远影响。传统知识表达和现代基于深度学习的知识表达通常着眼于利用特定变换方式,将输入转换为符号编码或者向量。例如,知识图谱关注于描述各个概念之间的语义联系,而深度神经网络更像是感知原始信号输入的工具。多重知识表达是一种更为先进的人工智能表征框架,具备更完整的智能功能,比如原始信号感知、特征提取及向量化、知识符号化和逻辑推断。多重知识表达有如下两点优势:(1)与现有以深度学习为主导的人工智能技术相比,具有更强的解释性以及更好的泛化能力;(2)将多重知识表达集成于现有人工智能技术,有利于各种表征(例如原始信号感知以及符号化编码)发挥互补优势。我们希望多重知识表达相关研究以及应用能够驱动新一代人工智能蓬勃发展。

三元空间大数据一般定义为由其定义领域(包括数据、对象、任务、应用场景、主体等)所有元素组成的集合。可视分析是一种新兴的人在回路大数据分析范式,可利用人类感知提高人类认知效率。本文探讨三元空间大数据跨域可视化分析,强调三元空间大数据跨域性带来的新挑战——数据、主题和任务域,并提出一个新的可视分析模型和一套方法来应对这些挑战。

噪声是影响人类视觉感知最常见的图像失真类型。本文提出一种基于熵、梯度和峰度特征的无参考图像质量评估方法。具体来说,基于偏度不变性在离散余弦变换域进行图像噪声估计,进一步计算得到熵特征。在主成分分析变换域,通过统计有噪声图像与无噪声图像之间的显著差异得到峰度特征。此外,将熵和峰度特征与梯度系数结合,提高熵和峰度特征与主观得分之间的一致性。通过不同方向的滤波器对图像进行梯度特征提取,最后支持向量回归将所有提取的特征映射到综合评分系统中。为验证算法性能,在3个主流数据库(即LIVE、TID2013以及CSIQ)中对该方法进行评价。实验结果验证了该方法的优越性,尤其是在反映预测精度的皮尔逊线性相关系数方面的突出性能。

低功耗有损网络路由协议(RPL)由因特网工程任务组设计,主要适用于通信条件复杂、环境恶劣的低功耗有损网络。为进一步提高低功耗有损网络性能,本文提出一种基于三角模算子的情景感知RPL新算法(CAR-TMO)。首先设计了一种新的情景感知复合路由度量(CA-RM);CA-RM可综合评估候选父节点的剩余能量指数、缓存占用率、以及该候选父节点到根节点之间路径所需的期望传输数(ETX)、时延和跳数。CA-RM以递归方式评估了候选父节点及其偏好父节点的剩余能量指数和缓存占用率,以降低上游父节点对偏好父节点选择的影响。CA-RM综合使用路径上各链路ETX和时延的和值、均值和均方差值以进一步提高网络性能。其次,设计了上述各路由度量的隶属度函数。然后,基于三角模算子和各路由度量的隶属度函数构造综合隶属度函数和情景感知目标函数(CA-OF)。此外,提出新的计算节点秩值和偏好父节点选择机制。最后,理论分析和仿真结果均表明,CAR-TMO在分组投递成功率、能效等方面均优于RPL及其相关改进算法。