更多

In view of the disadvantages of the traditional energy supply systems, such as separate planning, separate design, independent operating mode, and the increasingly prominent nonlinear coupling between various sub-systems, the production, transmission, storage and consumption of multiple energy sources are coordinated and optimized by the integrated energy system, which improves energy and infrastructure utilization, promotes renewable energy consumption, and ensures reliability of energy supply. In this paper, the mathematical model of the electricity-gas interconnected integrated energy system and its state estimation method are studied. First, considering the nonlinearity between measurement equations and state variables, a performance simulation model is proposed. Then, the state consistency equations and constraints of the coupling nodes for multiple energy sub-systems are established, and constraints are relaxed into the objective function to decouple the integrated energy system. Finally, a distributed state estimation framework is formed by combining the synchronous alternating direction multiplier method to achieve an efficient estimation of the state of the integrated energy system. A simulation model of an electricity-gas interconnected integrated energy system verifies the efficiency and accuracy of the state estimation method proposed in this paper. The results show that the average relative errors of voltage amplitude and node pressure estimated by the proposed distributed state estimation method are only 0.0132% and 0.0864%, much lower than the estimation error by using the Lagrangian relaxation method. Besides, compared with the centralized estimation method, the proposed distributed method saves 5.42 s of computation time. The proposed method is more accurate and efficient in energy allocation and utilization.

Micro gas turbine (MGT) is widely used in small-scale distributed power systems because of its low emissions and fuel flexibility. However, the under-utilization of its exhaust heat and the low electric efficiency are the main bottlenecks that restrict its application. Additionally, the flexible switching between the power generated by the MGT and the power grid is also a key factor for keeping the secure operation of a distributed power station. Therefore, this paper conducted some experimental investigations of a 30 kW MGT to provide reference solutions for the above issues. This MGT is located at Shanghai Jiao Tong University (SJTU), which is designed by the Gas Turbine Research Institute of SJTU, and is manufactured by a turbo-machinery factory in Chongqing, China. The demonstration prototype is mainly composed of a single stage centrifugal compressor, a radial turbine, a combustor, a high-speed permanent magnet generator, and a control system. The results show that the MGT can achieve steady operation at a low rotational speed from 10000 r/min to 34000 r/min in the case of using oil lubricated bearings, which can greatly reduce the economic cost compared with the use of air bearings. At the same time, the ignition success rate of combustion chamber (CC) reaches 98% at a low rotational speed, and a wide range of stable combustion area can be obtained, because of the novel design method of combustor by referencing the way applied in an axial flow aero-engine. The MGT generating set can achieve functions, such as starting up, ignition, stable operation, loaded operation, grid-connection and stopping. This system also can realize flexibly switching from the start motor mode to the generator mode, and from grid-connected mode to off-grid mode, because the innovative multi-state switching control system is adopted. The above research work can make our state master independent intellectual property rights of micro gas turbine, rather than continue to be subject to the technological monopoly of the developed states, which can provide theoretical and experimental support for the industrialization of MGT in China.

In a gas/particle two-phase test facility, a three-component particle-dynamics anemometer was used to measure the characteristics of gas/particle two-phase flows in a 29 megawatt (MW) pulverized coal industrial boiler equipped with a new type of swirling pulverized coal burner. The distributions of three-dimensional gas/particle velocity, particle volume flux, and particle size distribution were measured under different working conditions. The mean axial velocity and the particle volume flux in the central region of the burner outlet were found to be negative. This indicated that a central recirculation zone was formed in the center of the burner. In the central recirculation zone, the absolute value of the mean axial velocity and the particle volume flux increased when the external secondary air volume increased. The size of the central reflux zone remained stable when the air volume ratio changed. Along the direction of the jet, the peak value formed by the tertiary air gradually moved toward the center of the burner. This tertiary air was mixed with the peak value formed by the air in the adiabatic combustion chamber after the cross-section of / = 0.7. Large particles were concentrated near the wall area, and the particle size in the recirculation zone was small.

Micro/nanostructures play a key role in tuning the radiative properties of materials and have been applied to high-temperature energy conversion systems for improved performance. Among the various radiative properties, spectral emittance is of integral importance for the design and analysis of materials that function as radiative absorbers or emitters. This paper presents an overview of the spectral emittance measurement techniques using both the direct and indirect methods. Besides, several micro/nanostructures are also introduced, and a special emphasis is placed on the emissometers developed for characterizing engineered micro/nanostructures in high-temperature applications (e.g., solar energy conversion and thermophotovoltaic devices). In addition, both experimental facilities and measured results for different materials are summarized. Furthermore, future prospects in developing instrumentation and micro/nanostructured surfaces for practical applications are also outlined. This paper provides a comprehensive source of information for the application of micro/nanostructures in high-temperature energy conversion engineering.

排行