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Model mismatches can cause multi-dimensional uncertainties for the receding horizon control strategies
of automated vehicles (AVs). The uncertainties may lead to potentially hazardous behaviors when the AV
tracks ideal trajectories that are individually optimized by the AV’s planning layer. To address this issue,
this study proposes a safe motion planning and control (SMPAC) framework for AVs. For the control layer,
a dynamic model including multi-dimensional uncertainties is established. A zonotopic tube-based
robust model predictive control scheme is proposed to constrain the uncertain system in a bounded min-
imum robust positive invariant set. A flexible tube with varying cross-sections is constructed to reduce
the controller conservatism. For the planning layer, a concept of safety sets, representing the geometric
boundaries of the ego vehicle and obstacles under uncertainties, is proposed. The safety sets provide the
basis for the subsequent evaluation and ranking of the generated trajectories. An efficient collision avoid-
ance algorithm decides the desired trajectory through the intersection detection of the safety sets
between the ego vehicle and obstacles. A numerical simulation and hardware-in-the-loop experiment
validate the effectiveness and real-time performance of the SMPAC. The result of two driving scenarios
indicates that the SMPAC can guarantee the safety of automated driving under multi-dimensional
uncertainties.

� 2024 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

1.1. Motivation

Automated vehicles (AVs) have become a critical link in the
development of intelligent transportation systems (ITS) owing to
their vast potential to enhance safety, reduce energy consumption,
and optimize traffic flow [1,2]. The general hierarchical scheme of
an AV consists of three layers: ① perception layer, ② planning
layer, and ③ control layer. These layers rely on sensing, network
[3], processing of complex algorithms, and actuation implemented
by electrical and/or electronic (E/E) systems. This study focuses on
the planning and control layers of the AV system, which assumes
that the perception layer works satisfactorily.

With the increase of advanced functionalities included in AVs,
safety during their operational phase is of paramount importance
for the road vehicles industry. However, there have been several
fatal accidents involving AVs [4,5], which underscore the impor-
tance and urgency of guaranteeing their safety. The reasons for
the above accidents can be attributed to three typical safety issues
faced by AVs: ①functional safety (ISO 26262) [6], ② safety of the
intended functionality (SOTIF, ISO 21448) [7], and ③ cybersecurity
(ISO 21434) [8]. Among these three, the SOTIF stands out as both a
current academic research hotspot and an immediate challenge for
AV applications. The SOTIF aims to handle potentially hazardous
behaviors (PHBs), including insufficiencies or limitations related
to the specifications, performance, and situational awareness, with
or without reasonably foreseeable misuse, and surrounding
impacts (e.g., other users, passive infrastructure, weather, and elec-
tromagnetic interference).

Given this consideration, this study deduced that the current
motion planning and control techniques also suffer from issues
that fall within the scope of the SOTIF. For example, uncertainties
such as model mismatches will inevitably lead to control errors
in the future while the planning layer does not consider the impact
of these errors within the planning cycle. Moreover, AVs are
affected by environmental uncertainty, and their actuators and
sensors have performance limitations.
TRMPC,
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Fig. 1(a) shows an example scenario where uncertainties may
lead to PHBs in automated driving. To date, however, most
research on motion planning and control has not fully considered
these uncertainties, and the desired trajectory is generally opti-
mized individually by the planning layer. Therefore, as shown in
Fig. 1(b), the main focus of this study is to reduce the possible haz-
ardous/unknown areas in automated driving scenario categories.
Specifically, this study generates and tracks a trajectory that can
avoid obstacles and corresponding uncertainties, and mitigate
unavoidable crashes.
1.2. Related work

The planning layer is the core that directly impacts driving
safety. This layer is responsible for deciding the optimal driving
behavior and generating a collision-free local trajectory to be fol-
lowed at each instant. Heuristic approaches, including A* [9], Dijk-
stra [10], and rapidly exploring random tree (RRT) [11], were first
applied to robot path planning. However, the heuristic approaches
have difficulty generating smooth trajectories with continuous
curvature. Therefore, curve-based methods, including the polyno-
mial [12], Bezier-based [13], spline curve [14], and generation-
selection-based [15] methods, were utilized to generate smooth
trajectories. The quintic polynomials were proved as the jerk-
optimal connections between a start state and an end state [12].
Moreover, the curve-based methods require a further assessment
of the generated trajectories to select the optimal trajectory. There-
fore, optimization-based methods, such as artificial potential field
(PF) method [16], can be used to obtain smooth and curvature con-
tinuous trajectories. Nevertheless, the trajectories generated by the
PF and gradient descent methods may converge toward local min-
ima, resulting in rough and unexpected trajectories. Additionally,
some artificial intelligence (AI)-based motion planning methods
using historical data have emerged recently, such as reinforcement
learning (RL) and deep learning (DL) [17]. The AI-based techniques
are challenging to interpret and require high hardware costs for
online applications. Considering the trade-off between computa-
tional cost and optimality, this study uses a quintic polynomial
for smooth curve constructions and a PF function considering the
obstacle sizes for discrete assessment.

The control layer is the core that directs the AV’s actuators to
follow the reference trajectories optimized by the planning layer.
State-of-the-art approaches, such as dynamical game-based con-
trol [18], robust control [19], optimal control [20], RL-based control
[21], and model predictive control (MPC) [22–24], are commonly
applied to trajectory-tracking tasks. The main disadvantage of
most of these approaches is that the AV’s critical safety and actua-
Fig. 1. Motivation. (a) Example of PHBs. (b) Evolution of scenario categories
resulting from SOTIF.
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tor constraints are not explicitly considered. Moreover, robust con-
trol can be computationally intensive and behaves too
conservatively, whereas RL-based control requires improved inter-
pretability. By contrast, MPC has been extensively studied and
applied to AV systems owing to its ability to systematically exploit
prediction information and handle multiple-input multiple-output
(MIMO) under constraints.

Nevertheless, the traditional MPC could not handle uncertain-
ties such as model mismatches and sensor noises. Therefore,
schemes considering the impact of uncertainties in future evolu-
tion were studied. The common approaches are robust MPC
(RMPC) [25] with a bounded set description and stochastic MPC
(SMPC) with a probabilistic description [26]. However, it should
be noted that uncertainties such as model mismatches are difficult
to describe using probability. Hence, we consider the RMPC more
promising than the SMPC in AV control tasks.

The RMPC schemes address all possible uncertainties by consid-
ering the worst case. Min–max RMPC [27] was first proposed by
solving dynamical programming (DP) at each time step; however,
it is computationally expensive. Subsequently, a more efficient
tube-based RMPC (TRMPC) [28] was developed to guarantee the
robustness and stability of the constraint satisfaction with a lower
computational cost. The TRMPC scheme creates a condition similar
to the real state being tightened in a tube. Compared to the tradi-
tional MPC, the online computational burden of the TRMPC is
slightly increased.

Therefore, the TRMPC scheme has been applied widely in the
AV control field, such as lateral control for AVs [29], trajectory
tracking for autonomous race cars [30], active safety control for
four-wheel steering [31], fault-tolerant control [32], and platoon
control [33].

However, traditional TRMPC also faces difficulties in practical
applications. For example, the high cost of set operations often lim-
its computation to only a few time steps, which prevents the eval-
uation of the uncertainties in future evolution.

1.3. Contribution

Inspired by the existing literature on motion planning and con-
trol, the main contribution of this study is to propose a safe motion
planning and control (SMPAC) framework for AVs to guarantee the
safety of automated driving under multi-dimensional uncertain-
ties. Fig. 2 shows the overall schematic of the study.

The core idea of SMPAC can be summarized as follows:
(1) For the control layer, we develop a flexible zonotopic TRMPC

(FTMPC) controller by leveraging an efficient reachability
analysis on the uncertainties. The controller can converge
the future evolution of all possible uncertainties into a min-
imal robust positive invariant (mRPI) set.

(2) For the planning layer, we propose a concept of safety sets,
which describes the geometric boundaries that ego vehi-
cle/obstacles may reach by considering the bounded multi-
dimensional uncertainties from the control layer. The safety
sets guarantee that the real trajectories of the ego vehicle are
always constrained in a safety tube.

Furthermore, the proposed SMPAC is a general scheme with
interchangeable planning methods. Therefore, we believe that
SMPAC has potential applications in other robotic systems, includ-
ing but not limited to mobile robots and unmanned underwater
vehicles.

1.4. Paper organization

The remainder of this study is presented as follows. Section 2
introduces the preliminaries for the set operations and zonotopes.
In section 3, the dynamic model with uncertainties is developed,



Fig. 3. Construction of a zonotope, for example, c ¼ 0;0½ �; g1 ¼ 1;0½ �; g2 ¼
0;1½ �; g3 ¼ 1;1½ �. (b) Interval hull of a zonotope. D: Dimension, Di is the i-th
dimension.

Fig. 2. Schematic of the overall block diagram.
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and the FTMPC scheme is proposed. Section 4 presents the motion
planning approach with safety sets to cope with multi-
uncertainties. The co-simulations (MATLAB/Simulink, R2021b,
MathWorks, USA; CarSim, 2019 version, Mechanical Simulation
Corporation, USA) and hardware-in-the-loop experiments (HIL)
performed to validate the proposed SMPAC are described in section
5. Finally, the conclusions are summarized in section 6.

2. Preliminaries

2.1. Definition of set operations

This study revolves around a set theory, hence the following
three basic set operations are introduced first.

For a linear matrix L 2 Rnl�n, sets S1; S2 � Rn, and elements
s1; s2 2 Rn,

Linear map:

LS1 ¼ Ls1js1 2 S1f g ð1Þ
Minkowski sum:

S1 � S2 ¼ s1 þ s2js1 2 S1; s2 2 S2f g ð2Þ
Pontryagin difference:

S1 � S2 ¼ s1js1 � S2 #S1f g: ð3Þ
Table 1
Accuracy: e denotes exact computation, o denotes outer approximation; time
complexity O �ð Þ: � denotes that it is determined by methods. n is the order of the
set representation.

Set Representation Linear Map Minkowski Sum

Half-space Polytopes e;O n3
� �

e;O 2n� �
Vertex Polytopes e;O n22n� �

e;O n22n
� �

Ellipsoids e;O n3
� �

o;�
Zonotopes e;O n3

� �
e;O nð Þ
2.2. Zonotopes

A bounded polyhedral set is a polytope. The zonotope shown in
Fig. 3 (a) is a class of centrally-symmetric polytopes.

The zonotope is also an affine transformation of the hypercube.
An n-order zonotope (Z � Rn) transformed from an s-order hyper-
cube (Bs � Rs) is described by

Z ¼ c � GBs ¼ c þ Geje 2 Bs;Bs ¼ �1;1½ �s� �
; ð4Þ

where c 2 Rn is the center and G ¼ g1; g2; � � � ; gs½ � 2 Rn�s is the gen-
erator. In this study, the zonotope is abbreviated as Z ¼ c;Gh i.
3

Moreover, zonotopes hold the following essential properties.
For c1; c2 2 Rn;G1;G2 2 Rn�s, the linear map and Minkowski sum

of two zonotopes are computed by

L c;Gh i ¼ Lc; LGh i; ð5Þ
c1;G1h i � c2;G2h i ¼ c1 þ c2; G1;G2½ �h i: ð6Þ
The Frobenius norm of the generator denotes the size of the

zonotope Z ¼ c;Gh i:

Fr Zð Þ ¼ kGkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trace GTG

� �r
: ð7Þ

The interval hull �Z of a zonotope Z is computed by

Z ¼ c � rs Gð ÞBn; ð8Þ

where rs Gð Þ a diagonal matrix such that rs Gð Þii ¼
Ps

j¼1jGijj,
i ¼ 1; � � � ; n. Fig. 3 (b) illustrates the geometric interpretation of
the interval hull �Z.

The P-radius of a zonotope Z is defined by

Pr Zð Þ ¼ max
z2Z

kz � ck2P
� �

; ð9Þ

where P ¼ PT 	 0 is a symmetric and positive definite matrix. P is
set as the identity matrix in this study, such that

ffiffiffiffiffiffiffiffiffiffiffiffi
Pr Zð Þp

represents
the Euclidean distance.

Furthermore, all defined sets in this study are represented by
zonotopes. The main reasons are summarized as follows:

(1) Zonotopes guarantee that all sets defined in this study are
compact, convex, and contain the origin in their interior.

(2) The zonotopic set operations in Eqs. (5) and (6) enable an
exact, fast, and visual exploration of the system evolution
in the FTMPC scheme.

(3) Table 1 illustrates that the zonotopes provide higher accu-
racy than ellipsoids while having lower time complexity
than polytopes [34].



Fig. 5. Error model for trajectory tracking.

H. Zheng, Y. Li, L. Zheng et al. Engineering xxx (xxxx) xxx
3. Flexible zonotopic TRMPC scheme

The FTMPC controller for uncertainties is introduced in this sec-
tion. The process includes modeling the AV and uncertainties,
determining known constraints, evaluating the evolution of the
uncertain system, and developing a varying zonotopic tube.

3.1. Dynamics and uncertainties modeling for AV

3.1.1. 3-degree of freedom vehicle model
Considering the trade-off between the model accuracy and

computational cost, a simplified vehicle model consisting of a 1-
degree of freedom (1-DOF) longitudinal model and a 2-DOF bicycle
model is used under certain assumptions [35]. Fig. 4 depicts the
vehicle model with the longitudinal, lateral, and yaw dynamics
governed by

m _vx � vy
_w

� �
¼ FxT

m _vy þ vx
_w

� �
¼ Fyf cosdþ Fxf sindþ Fyr

Iz€w ¼ Fyf lf cos dþ Fxf lf sin d� Fyrlr ;

8>>><>>>: ð10Þ

where XOY is the inertial coordinate system for the ground and xoy
is the vehicle coordinate system. For the xoy body-fixed coordinates,
m is the vehicle mass, lf and lr are the front and rear wheelbase, Iz is
the moment of inertia through the center of gravity about the yaw
axis, vx and vy are the vehicle’s longitudinal and lateral velocities, w
is the vehicle heading angle, d is the steering angle of the front
wheels, FxT is the total longitudinal tire force, and Fxi and Fyi

(i ¼ f ; rf g) are the longitudinal and lateral forces of the front/rear
tires, respectively.

Assuming that the lateral acceleration ay and vehicle sideslip
angle b are small, and the vertical tire load is constant, for simplic-
ity, the lateral tire forces Fyf and Fyr are considered to be linear with
the tire slip angles af front tireð Þ and ar (rear tire):

Fyf ¼ cfaf

Fyr ¼ crar

af ¼ d� lf _wþvyð Þ
vx

ar ¼ lr _w�vyð Þ
vx

;

8>>>>><>>>>>:
ð11Þ

where cf and cr are the corner-stiffnesses of the front and rear tires,
respectively.

3.1.2. Error model for trajectory tracking
Leveraging an error model is a more effective approach for

tracking a pre-planned trajectory. As shown in Fig. 5, ev , ey, and
ew are the tracking errors of the longitudinal velocity, lateral dis-
tance, and heading angle with respect to the reference trajectory,
Fig. 4. 3-DOF vehicle model.
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respectively. According to the kinematic relationship, _ev , _ey, €ey,
_ew, and €ew are defined as

_ev ¼ FxT
m þ vy

_w� _vx;des

_ey ¼ vy þ vxew
€ey ¼ _vy þ vx _ew
_ew ¼ _w� _wdes

€ew ¼ €w;

8>>>>>><>>>>>>:
ð12Þ

where _vx;des ¼ vy;des
_wdes þ ax;des, vy;des is the desired lateral velocity,

ax;des is the desired longitudinal acceleration, _wdes ¼ vx
R is the desired

yaw rate, and R is the radius of the reference trajectory.
According to the state variable dynamics in Eqs. (10) and (11),

as well as the tracking error expression in Eq. (12), the continuous
real AV model can be described as follows

_xe ¼ Acxe þ B1ue þ B2wdes þ B3wc ð13Þ
Ac ¼

0 0 0 0 0
0 0 1 0 0
0 0 � cfþcr

mvx

cfþcr
m

�cf lfþcr lr
mvx

0 0 0 0 1

0 0 � cf lf�cr lr
Izvx

cf lf�cr lr
Iz

� cf l
2
f þcr l2r
Izvx

26666664

37777775 ð14Þ
B1 ¼

1
m 0
0 0
0 cf

m

0 0
0 cf lf

Iz

26666664

37777775;B2 ¼

�1 0
0 0

0 �vx � cf lf�cr lrð Þ
mvx

0 0

0 � cf l
2
f þcr l2rð Þ
Izvx

266666664

377777775 ð15Þ

where xe ¼ ev ; ey; _ey; ew; _ew
	 
T is the state, ue ¼ FxT ; d½ �T is the control

input, andwdes ¼ _vx;des; _wdes

h iT
denotes the information from the ref-

erence trajectory. The additive disturbancewc generalizes the inter-
nal and external uncertainties caused by all the adverse factors.
Here, the internal uncertainties mainly include the coupled dynam-
ics of longitudinal and lateral (the vy

_w term in Eq. (12)) time-
varying parameters, and unmodeled dynamics. The external uncer-
tainties mainly include sensor noises and environmental distur-
bances. The disturbance matrix B3 is determined under scenarios
encompassed by the operational design domain (ODD) of auto-
mated driving.
3.1.3. Zero steady-state error model
The presence of the B2wdes term in Eq. (13) prevents the track-

ing errors from all converging to zero. Hence a feedforward term of
the control inputs is designed to ensure a zero steady-state error.



Fig. 6. Visual projection of zonotopes W. (a) 3D view of internal disturbance set
Win , D1–D2–D5. (b) 3D view of Win , D2–D3–D4. (c) 2D view of Win , D2–D4. (d)
Relationship of disturbance set W, internal disturbance set Win , and external
disturbance set Wex , (D: Dimension).
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The steady-state xss and steady-input uss are obtained by the final
value theorem,

xss ¼ 0;0;0; qlf mv
2
x

Cr l
� qlr ;0

h iT
uss ¼ �m _vx;des;q lþ KVv2

x

� �	 
T
8<: ð16Þ

where q ¼ 1=R is the reference curvature, l ¼ lf þ lr is the wheel-
base, and KV ¼ lrm=cf l� lfm=crl is the understeer gradient.

Substitute Eq. (16) into Eq. (13) and define x ¼ xe � xss,
uD ¼ ue � uss. The zero steady-state error model can be described
by

_x ¼ Acxþ B1uD þ B3wc; ð17Þ
with the full-output y ¼ Ccx, Cc ¼ Inx , Inx is an identity matrix.

3.1.4. Real system
By the zero-order hold method, the discrete real AV system to

be controlled can be expressed as

xk ¼ Axk�1 þ Buk�1 þw ð18Þ
with the output yk ¼ Cxk, where xk 2 Rnx , uk 2 Rnu ,

A ¼ eAcTs 2 Rnx�nx , B ¼ R Ts
0 eAcTsdtB1 ¼

P1
k¼0

Acð Þk Tsð Þkþ1
kþ1ð Þ! B1 2 Rnx�nu ,

w ¼ R Ts
0 eAcTs dtB3wc 2 Rnw , C ¼ Cc 2 Rny�nx , Ts is the sample time.

3.2. Zonotopic constraints of real system

Moreover, the real AV system in Eq. (18) is subject to zonotopic
hard constraints, that is, 8k 2 Nþ, xk 2 X ¼ 0;Gxh i#Rnx ,
uk 2 U ¼ 0;Guh i#Rnu , and w 2W ¼ 0;Gwh i#Rnw . The zonotope
generators Gx 2 Rnx�na and Gu 2 Rnu�nb are known matrices deter-
mined by the characteristics of the AV system, which include the
following aspects:

Trajectory tracking constraints:

evj j 
 emax
v

ey
�� �� < 1

2 rw � rvð Þ
ew
�� �� 
 emax

w

8><>: ð19Þ

where rw is the lane width, rv is the width of the ego vehicle, emax
v

and emax
w are the maximum values of the velocity errors (ev ) and

heading angle errors (ey), respectively.
Handling stability constraints: The vehicle sideslip angle b has

the empirical constrained boundary and the yaw rate _w has a limit:

bj j ¼ vy

vx
¼ 1

vx
_ey � ew

��� ��� 
 arctan 0:02lgð Þ
_w

�� �� ¼ _ew þ _wdes

�� �� 
 lyg
vx

8<: ð20Þ

where the tire-ground adhesion coefficient l (lateral for ly) is
assumed to be known for the controller, and g is the gravity
acceleration.

Actuator constraints: The control inputs FxT , d and their incre-
ments DFxT , and Dd have boundaries:

Fmin
xT 
 FxT 
 Fmax

xT ;DFmin
xT 
 DFxT 
 DFmax

xT

dmin 
 d 
 dmax;Ddmin 
 Dd 
 Ddmax

(
ð21Þ

Furthermore, the disturbance w consists of the internal distur-
bance win 2Win and the external disturbance wex 2Wex, that is,
W ¼Win �Wex. Here, win can be determined by comparing the
responses of the real model (CarSim model) and the nominal
model in Eq. (22) within the ODD.

Fig. 6 (a)–(c) show the visual projection of Win in 3D and 2D
views.
5

Assuming that the wex (e.g., sensor noise boundary) is known,
the generator Gw 2 Rnx�nc of the w can be determined. Fig. 6 (d)
shows the visual relationship of W, Win, and Wex.

3.3. FTMPC control law and uncertainty evolution

The discrete-time real system in Eq. (18) satisfies the finite time
controllability condition [36]. In this section, the real system is
divided into a nominal system and an uncertain system, which
are handled separately.

3.3.1. Nominal system
We extract the deterministic part of the real system in Eq. (18),

and the nominal model without considering the disturbance w is
defined asbxk ¼ Abxk�1 þ Bbuk�1 ð22Þ
where all top marks ba represent the corresponding nominal vari-
ables. The nominal control input buk is obtained by solving an MPC
optimization problem for the nominal dynamics.

3.3.2. Uncertain system
We remove the deterministic part (Eq. (22)) from the real sys-

tem in Eq. (18), and the uncertain model composed of the distur-
bance w can be obtained,

x
�
k ¼ Ax

�
k�1 þ Bu

�
k�1 þw ð23Þ

where x
�
k ¼ xk � x̂k, u

�
k ¼ uk � ûk, and all top marks a

�
represent the

corresponding uncertain variables. The state feedback gain solved
by the linear quadratic regulator (LQR) is used to guarantee the sta-

bility of the uncertain system, that is, K ¼ LQR A;Bð Þ, u�k ¼ Kx
�
k. The

FTMPC control law applied to the real system in Eq. (18) is then
expressed as

uk ¼ ûk þ Kx
�
k ð24Þ

Hence, the uncertain system in Eq. (23) is rewritten as a stable
autonomous system:

x
�
k ¼ A0x

�
k�1 þw ð25Þ
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where the feedback gain matrix K makes A0 ¼ Aþ BK 2 Rnx�nx

Schur stable.

3.3.3. mRPI and stability of the uncertain system
The future evolution law of the uncertain system is evaluated

by leveraging the reachability analysis.
According to the zonotope properties in Eqs. (5) and (6), the

evolution of the uncertain system (Eq. (25)), x
�
kþhjk 2 X

�
kþhjk,

u
�
kþhjk 2 U

�
kþhjk, 0 refer to the zero matrix) with time steps h 2 Nþ

is revealed as:

exkþhjk ¼ A0h þ � � � þ A0 þ I
� �

w

X
�

kþhjk ¼ h0; A0h þ � � � þ A0 þ I
� �

Gwieukþhjk ¼ KexkþhjkeUkþhjk ¼ K eXkþhjk

8>>>>>><>>>>>>:
ð26Þ

Proposition 1. The control law in Eq. (24) stabilizes the uncertain
system in Eq. (23).
Proof 1. Fig. 7(a) draws all zonotopes of X
�

kþhjk in the finite horizon
(h ¼ 1000) with CORA [37] to visualize the evolution of the uncer-
tain system in Eq. (23). In Fig. 7(a), the boundary lines of the zono-
topes become denser as the time steps increase.

Moreover, based on the definition of the zonotope size in Eq.

(7), the size change rate of the uncertain state constraints X
�

kþhjk
is defined as

Rsize
kþh ¼

kX
�
kþhþ1jkkF�kX

�
kþhjkkF

kX
�
kþhjkkF

: ð27Þ

Fig. 7(b) shows that the Rsize
kþh decreases with the time steps

rapidly, which indicates that the difference between two adjacent
zonotopes will quickly converge to zero.

Consequently, owing to the Schur matrix A0, the uncertain states

constraints X
�

kþhjk in Eq. (26) will converge rapidly in a bounded set

(mRPI#Rnx ). Hence, the Kx
�
k term in the control law (Eq. (24)) sta-

bilizes the uncertain system in Eq. (23).

3.4. Flexible zonotopic tube for nominal system

According to the nominal model in Eq. (22), the prediction
model of the nominal system over the prediction horizon Np can
be expressed asbXk ¼ Wkbxk þHk

bUk ð28Þ
Fig. 7. Visual projection of mRPI (D2–D4). (a) Evolution of uncertain system. (b) Size
change rate Rsize

kþi with time steps.
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where Nc is the control horizon, Hk 2 R nx�Npð Þ� nu�Ncð Þ,

Hk ¼

B 0 � � � 0

..

. ..
. . .

. ..
.

ANc�1B ANc�2B � � � B

..

. ..
. . .

. ..
.

ANp�1B ANp�2B � � � ANp�NcB

266666666664

377777777775
Wk ¼ A; � � � ;ANp

h i
2 R

nx�Npð Þ�nx

bXk ¼ x̂Tkþ1jk; � � � ; x̂
T
kþNp jk

h iT
2 X^

k #R
nx�Npð Þ

bXk ¼ h0; bGx
ki ¼ bXT

kþ1jk; � � � ; bXT

kþNp jk
h iT

bUk ¼ ûT
kþ1jk; � � � ; û

T
kþNc jk

h iT
2 bUk #R

nu�Ncð Þ

bUk ¼ h0; bGu
ki ¼ bUT

kþ1jk; � � � ; bUT

kþNc jk
h iT

ð29Þ

With the evolution of the X
�

kþijk and U
�

kþijk, it yields that the MPC
optimization problem for the nominal dynamics (nominal MPC) is

subject to two tightened constraint sets, that is, bXk ¼ X�X
�

k,bUk ¼ U�U
�

k ¼ U� KX
�

k.

Remark 1. According to Eq. (26), as the disturbance set W

increases, the uncertain constraint X
�
k increases, and the controller

conservatism strengthens. If the disturbance set W acts too

significant, either X�X
�
k or U� KX

�
k will be an empty set,

rendering the controller unsolvable. For the W determined in
Subsection 3.2, the controller is sufficient.

To increase the quadratic programming (QP) feasible region of
the nominal MPC and reduce conservatism, a flexible tube with
varying cross-sections is designed at a negligible increase in com-
putational cost [29]. The state and control tubes are parameterized

with matrices bGx

k and bGu

k as

bGx
k ¼

bGkþNp jk A0NpGw � � � A03Gw A02GwbGkþNp jk A0NpGw � � � A03Gw 0

..

. ..
. � � � 0 0bGkþNp jk A0NpGw 0 0 0

bGkþNp jk 0 0 0 0

26666666666664

37777777777775
ð30Þ

bG u
k ¼

bGu
kþNc jk KA0NcGw � � � KA03Gw KA02GwbGu
kþNc jk KA0NcGw � � � KA03Gw 0

..

. ..
. � � � 0 0bGu

kþNc jk KA0NcGw 0 0 0bGu
kþNc jk 0 0 0 0

26666666664

37777777775
ð31Þ

where bXkþNp jk ¼ X�X
�

kþNp jk ¼ h0; bGx
kþNp jki; bUkþNc jk ¼ U� KX

�
kþNc jk ¼

h0; bGu
kþNc jki.

The final optimization of the nominal MPC is expressed as

minVNp
bXk; bUk

� �
¼ bXT

kQ c
bXk þ bUT

kRc
bUk þ qe2

s:t: bXk 2 bXk; bUk 2 bUk

ð32Þ
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where q 2 Rne�ne is the weight matrix of slack e,
Q c 2 R nx�Npð Þ� nx�Npð Þ, and Rc 2 R nu�Ncð Þ� nu�Ncð Þ are the weight matri-
ces. Additionally, the final zonotopic constraint can be transformed
to half-space polytopic constraints by Eq. (4) to make the QP opti-
mization faster and more efficient [38].

Proposition 2. The control law in Eq. (24) stabilizes the nominal
system in Eq. (22).
Fig. 8. Shape and location set of ego vehicle. (a) Physical dimension set Vpd. (b)
Relationship of mRPI12, physical dimension set Vpd , and shape and location set Vsl.

Fig. 9. Ego vehicle set. (a) Heading angle set with rotation function. (b) Relationship
of ego vehicle set Vs and heading angle error set Vew .
Proof 2. The nominal system in Eq. (22) has been proved to be
exponentially stable under the assumption that the initial nominal
state bxt at each sample time (t > 0) is optimized as a parameter of
the control law [28]. The optimization problem is subject to a sig-
nificant constraint of xt 2 bxt �mRPI, that is, the optimal initial

nominal state x̂�t and optimal control sequence bU�t at time t are
computed by

x̂�t ; bU�t� �
¼ argmin

x̂t ;bUt

VNp tð ÞjbUt 2 bUt ; xt 2 x̂t �mRPI
n o

ð33Þ

In this study, bxt is derived from the real state and control input

of the previous time step to measure the uncertain state x
�
t and

determine the internal disturbance set in subsection 3.2, that is,bxt ¼ Axt�1 þ But�1. The uncertain state x
�
t at time t satisfies thatext ¼ xt � x̂t ¼ w 2W. The real state xt at time t also satisfies the

above significant constraint, that is, xt ¼ bxt þw 2 bxt �W �bxk �mRPI. Hence the nominal MPC term (Eq. (32)) in the control
law (Eq. (24)) stabilizes the nominal system in Eq. (22).

4. Motion planning with safety sets

This section introduces a motion planning algorithm that con-
siders uncertainties in the Frenet Frame. The process consists of
safety sets, trajectory generation, ranking, and collision detection.

4.1. Safety sets

Because the uncertain system evolution is demonstrated by
reachability analysis in subsection 3.3, the mRPI can effectively
describe all possible uncertainties caused by the tracking layer of
the ego vehicle. Moreover, the uncertain areas of the mRPI may
cause a potential collision. Therefore, a concept of safety sets is
proposed to describe the geometric boundaries that the ego vehicle
and obstacles may reach. The safety sets will be developed and
applied in subsequent planning sections to guarantee motion plan-
ning security.

4.1.1. Ego vehicle set
Assuming that the effects of the acceleration variables are

ignored, the safety set of the ego vehicle mainly considers the
shape, location, and heading angle w.

(1) Shape and location: The ego vehicle’s shape and location set
Vsl consists of the physical dimension set Vpd and the uncer-
tainty of the tracking errors mRPI12.

For the former Vpd, the zonotope shown in Fig. 8 (a) is used to
enclose the physical dimension of the stationary ego vehicle. This
zonotope is defined as the physical dimension set Vpd #R2, which
can effectively represent the original shape and location of the ego
vehicle.

For the latter, the vehicle tracking errors are constrained by the
first and second dimensions of the mRPI set, a result emanating
from the introduced FTMPC in section 3. Accordingly, mRPI12 is
defined as the reachable set of the ego vehicle’s longitudinal and
lateral tracking errors. The reachable set can be computed within
7

a finite safety horizon Nsafe or an infinite horizon based on the evo-
lution of the uncertain system.

Therefore, Vsl ¼ Vpd �mRPI12 ¼ ce;Gslh i#R2. Fig. 8 (b) shows
the visual relationship of the mRPI12, the original vehicle set Vpd,
and the shape and location set Vsl.

(2) Heading angle w: The heading angle should be considered in
the ego vehicle set when the ego vehicle is driving. There-
fore, a rotation matrix is introduced to modify the generator
Gsl of the Vsl:

Rm wð Þ ¼ cosw �sinw
sinw cosw

� 

ð34Þ

As shown in Fig. 9 (a), the rotation function Rm wð Þ should mod-
ify the generator of Vsl without changing its center. Thus, the ego
vehicle set with a heading angle w can be represented by the
matrix multiplication of the rotation matrix Rm wð Þ and the genera-
tor Gsl, that is, ce;Rm wð ÞGslh i.

Remark 2. Moreover, the heading angle error ew is constrained by
the fourth dimension of the mRPI, that is, emin

w 
 ew 
 emax
w . There-

fore, the ego vehicle set with the heading angle error Vew can be

simplified as the union of Vmin
ew and Vmax

ew :

Vew ¼ ce;Rm emin
w

� �
Gsl

D E
[ ce;Rm emax

w

� �
Gsl

D E
ð35Þ

Finally, Vew is reduced to an interval hull �Vew and �Vew is
rotated with the heading angle w. The ego vehicle setVs is obtained
and shown in Fig. 9 (b).

4.1.2. Obstacle sets
The observation (or prediction) of the i-th (i ¼ 1; � � � ;no) obsta-

cle (obsi) by the ego vehicle has a bounded error [39], which can
be described by an obstacle error set Oi

e #Rnx . Similar to the pro-
cess of the ego vehicle set, we first define a physical dimension
set Oi

pd #R2 for the i-th obstacle. Afterward, the i-th obstacle set

with uncertainties Oi
s #R2 can be computed with the obstacle



Fig. 11. PF of road Uroad. (a) 3D view, pm ¼ 0:4. (b) 2D view, pm ¼ 0:4.
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physical dimension set Oi
in, obstacle error set Oi

e, and obstacle

heading angle wi
o.

4.2. Generation of candidate trajectories

In the Frenet coordinate system, the s-axis is set as the center-
line of the rightmost lane, and the d-axis is perpendicular to the s-
axis. The origin is merged with the origin of the Cartesian coordi-
nate system and moves along the s-axis with the ego vehicle.

The quintic polynomial is proved as the jerk-optimal connection
between the start state at t0 and the end state at t1 [12]. Therefore,
the motions in the s and d directions are described by quartic and
quintic polynomials:

s tð Þ ¼ a0 þ a1t þ a2t2 þ a3t3 þ a4t4

d tð Þ ¼ b0 þ b1t þ b2t2 þ b3t3 þ b4t4 þ b5t5;

(
ð36Þ

where a0�4 and b0�5 are undetermined coefficients and t is the time.
The start and end states are expressed as

s t0ð Þ; _s t0ð Þ;€s t0ð Þ;d t0ð Þ; _d t0ð Þ; €d t0ð Þ
_s t1ð Þ;€s t1ð Þ;d t1ð Þ; _d t1ð Þ; €d t1ð Þ:

(
ð37Þ

In addition, all the start states are set to be the same as the final
vehicle state of the last control cycle to ensure continuity. The end

states €s t1ð Þ, _d t1ð Þ, and €d t1ð Þ are set to zero to ensure vehicle stabil-
ity. Two sequences of the end velocity _s t1ð Þ and the end d position
d t1ð Þ are designed to ensure that the candidate trajectories can
cover all lanes. The following matrix equation is then obtained
by taking an orthogonal combination of the two sequences of
_s t1ð Þ and d t1ð Þ:

T1P1 ¼ S1;T1 2 R
5�5;P1 2 R

5�ns ; S1 2 R
5�ns ;

T2P2 ¼ S2;T2 2 R
6�6;P2 2 R

6�nd ; S2 2 R
6�nd ;

(
ð38Þ

where T1, P1, S1 and T2, P2, S2 are presented in (Appendix A),
respectively. The p-th (p ¼ 1;2; � � � ;ns) column of the matrix P1 cor-
responds to the polynomial parameters of s tð Þ under the condition

of _s t1ð Þ pð Þ, and 0 
 _s t1ð Þ pð Þ 
 _s t1ð Þmax. The average acceleration
_s t1ð Þ pð Þ�_s t0ð Þ

t1�t0 should satisfy comfortable acceleration limits. The q-th

(q ¼ 1;2; � � � ;nd) column of the matrix P2 corresponds to the poly-

nomial parameters of d tð Þ under the condition of d t1ð Þ qð Þ, and

d t1ð Þ qð Þ should not exceed the road boundary.
As shown in Fig. 10, a cluster of the nt candidate trajectories can

be obtained by solving P1 and P2, where nt ¼ ns � nd.

4.3. Risk assessment and trajectory ranking

The candidate trajectories are discretely sampled and then
ranked for risk assessment (Jrisk), ride comfort (Jcom), and trajectory
stability (Jsta). The total cost function (Jtotal) is defined as

Jtotal ¼ kriskJrisk þ kcomJcom þ kstaJsta; ð39Þ

where krisk, kcom, and ksta are the corresponding weights.
Fig. 10. Cluster of candidate trajectories.
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4.3.1. Risk assessment
The risk assessment index Jrisk is considered from two perspec-

tives of road boundaries (crossable or non-crossable lane lines) and
obstacles of various sizes (e.g., other vehicles, accidentally dropped
cargo).

(1) Road boundary description: The periodic PF of the road
boundaries Uroad is generated by a trigonometric function
to deal with multi-lane roads. The Uroad 2 0;1½ �, and can be
written as

Uroad ¼ 1
2RA dð Þ cos 2pd

rw

� �
þ 1

� �
RA dð Þ ¼ pm þ 1

2 sgn dð Þ þ sgn d� dcnð Þj j 1� pmð Þ
ð40Þ

where s and d are the Frenet coordinates of the ego vehicle, rw is the
lane width, RA dð Þ is the amplitude varying with d, pm 2 0;1½ � denotes
the risk value at the crossable edge lines, and dcn is the d coordinate
of the leftmost lane centerline. Fig. 11 shows the PF of the road.

(2) Obstacle description with the obstacle setOi
s: The i-th obsta-

cle PF shown in Fig. 12(a) and (b) is generated by an expo-
nential function. In which, the obstacle PF in Eq. (41)
mainly considers the relative velocity Dv ið Þ and the obstacle
size.

Uobs ið Þ 2 0;1½ �, and can be written as

Uobs ið Þ ¼ exp � Dis
Dv ið Þþ�

� �
; Dv ið Þ 
 0

0; Dv ið Þ < 0

(

Dis ið Þ ¼ s�si
ries

� �2
þ d�di

lied

� �2

ð41Þ
Fig. 12. PF of obstacles Uobs ið Þ. (a) 3D view, Dv ¼ 5 m∙s�1, ri ¼ 5 m, li ¼ 2 m. (b) Top
view, Dv ¼ 5 m∙s�1, ri ¼ 5 m, li ¼ 2 m. (c) Top view, Dv ¼ 10 m/s, ri ¼ 5 m, li ¼ 2 m.
(d) Top view, Dv ¼ 5 m∙s�1, ri ¼ 1 m, li ¼ 0:5 m.
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where � ¼ 0:0001 is a safety coefficient formulated to prevent a sin-
gular value, Dis ið Þ is a function of the relative distance, ri and li are
the width and length of the interval hull �Oi

s projection on the
s� d plane, respectively, and es and ed are the shape and intensity
parameters, respectively.

The worst-case caused by the velocity uncertainties of the ego
vehicle and obstacle is considered. The possible maximum relative
velocity Dv ið Þ is expressed by Dv ið Þ ¼ vmax

x � vmin
i . Here,

vmax
x ¼ vx þ emax

v , emax
v is constrained by the first dimension of the

mRPI, vmin
i is the minimum obstacle velocity constrained by the

corresponding dimension of the obstacle set Oi
e. Fig. 12 (c) shows

that the higher the relative velocity, the stronger the PF energy.
Furthermore, an obstacle interval hull �Oi

s is used as the outer

approximation of the obstacle set Oi
s by Eq. (8) to simplify the

effect of the obstacle size on the obstacle PF. Fig. 12 (d) shows that
the smaller the size, the weaker the PF energy.

Remark 3. The Uobs ið Þ is set as a considerable fixed value when the
perception layer determines that the obstacle is alive (human
being or animal).

(3) Risk assessment index Jrisk: The PFs for all the discrete sam-
ple points in each trajectory are summed and then normal-
ized to obtain the Jrisk:

Jrisk ¼
Pnsp

j¼1 Uroadþ
Pno

i¼1Uobs ið Þ
� �

max
Pnsp

j¼1 Uroadþ
Pno

i¼1Uobs ið Þ
� � ; ð42Þ

where nsp is the number of discrete sample points and no is the
number of obstacles.

4.3.2. Ride comfort
The ride comfort index Jcom considers the curvature jj and the

heading angle increments Dwj j ¼ 1; � � � ;nsp
� �

for all the discrete
sample points:

Jcom ¼
Pnsp

j¼1 j2
j
þ Dwjj j

� �
max

Pnsp
j¼1 j2

j
þ Dwjj j

� �
þ�
; ð43Þ

where jj tð Þ ¼ _s tð Þ€d tð Þ� _d tð Þ€s tð Þ
_s2 tð Þþ _d2 tð Þð Þ3=2, Dwj ¼ wj � w t0ð Þ, w tð Þ ¼ arctan _s tð Þ

_d tð Þ

� �
, and

� prevents a singular value.

4.3.3. Trajectory stability
The trajectory stability index Jsta considers the difference

(Dsj;Ddj) between the present candidate trajectories and desired
trajectory of the last planning cycle to avoid the drastic change
of the desired trajectory.

Jsta ¼
Pnsp

j¼1 Ds2
j
þDd2j

� �
max

Pnsp
j¼1 Ds2

j
þDd2j

� � ð44Þ
Fig. 13. Example of trajectory planning with safety sets.
4.4. Collision avoidance with safety sets

Although the cost function in subsection 4.3 considers the risk
assessment, the trajectory does not impose a hard constraint on
collision avoidance. In this section, efficient collision detection is
achieved by determining the presence of intersections between
the ego vehicle set Vs and the obstacle sets Oi

s. Specifically, Algo-
rithm 1 is adopted to reduce the computation burden of collision
detection.

The candidate trajectories are detected in succession according
to the ranking in subsection 4.3. The detection stops when there is
9

a collision-free trajectory. If there are collisions in all trajectories,
the desired trajectory is optimized by another crash mitigation cost
function Jmit at crash points.

Jmit ¼ k1cv þ k2ch þ k3rv ; ð45Þ
where cv is the crash speed, ch is the crash angle, rv is the relative
volume, and k1, k2, and k3 are the corresponding weights. The crash
angle is divided into full overlap collision, 1

3 overlap near collision,
and 2

3 overlap collision [22].

The radii of the ego vehicle set Rv and the i-th obstacle Ri
o are

computed by the P-radius of the zonotopes in Eq. (9). For nsp dis-
crete sample points of the trajectory being detected, all Euclidean
distances Ed i; jð Þ between the centers of the two sets (Vs and Oi

s)
are computed. The detection begins when the Ed i; jð Þ is less than
the sum of the vehicle radius and obstacle radius, that is,
Ed i; jð Þ 
 Rv þ Ro ið Þ.

Algorithm 1 (Algorithm for collision detection.).
Input: Ranked candidate trajectories TRA kð Þ
Output: Desired trajectory
Initialize:

CI ¼ TRUE; k ¼ 0;Rv ¼ Pr Vsð Þ;Ro ið Þ ¼ Pr Oi
s

� �
while CI ¼ TRUE and k 
 nt do
CI FALSE;
for i 1 to no do
for j 1 to nsp do
Ed i; jð Þ  center of ego vehicle and obsi;
if Ed i; jð Þ 
 Rv þ Ro ið Þ then
CI i; jð Þ  isintersection? Vs;O

i
s

� �
;

CI ¼ OR CI;CI i; jð Þð Þ;
end

end
end
k kþ 1;

end
if CI ¼ FALSE then
return TRA kð Þ

else
Go to crash mitigation optimization in Eq. (45)

end

After executing the process described in section 4, Fig. 13 shows
an example of the MATLAB/Simulink result of trajectory planning
without control at a specific time.
5. Results and discussion

In this section, a HIL experiment platform based on the co-
simulation of MATLAB/Simulink and CarSim is conducted to vali-
date the feasibility of the proposed SMPAC framework.
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5.1. HIL experiment validation

(1) Experiment platform: The real-time performance of the
SMPAC scheme is validated by a HIL experiment, in which
‘‘Simulink Desktop Real-time” provides the real-time envi-
ronment. Fig. 14 (a) shows the schematic diagram of the
HIL platform, and Fig. 14 (b) shows the physical connection.
The host computer (i7-9700 K, Intel, USA) communicates
with a mobile real-time target machine (M3, Speedgoat,
Switzerland) and actuators with signal transmission compo-
nents. The components include a control area network (CAN)
card (Leaf Light v2, Kvaser, Sweden), a data acquisition
Table 2
Parameters of SMPAC.

Parameter Definition Value (unit)

m Vehicle mass 1723 kg
Iz Vehicle rotation inertia 3234 kg∙m�2

lf Front wheelbase 1.4 m
lr Rear wheelbase 1.65 m
cf Front-wheel cornering stiffness 65 000 N∙deg�1

cr Rear-wheel cornering stiffness 50 000 N∙deg�1

Tcs Controller sample Time 0.02 s
Tps Planner sample Time 0.1 s

Table 3
Information of test scenarios.

Scenario Traffic participant Start state

Name Type Length (m) Width (m) s0(m)

Scenario 1 Ego vehicle Car 5 2 0
Obstacle 1 Truck 10 1.72 60
Obstacle 2 Car 4.5 1.68 60
Obstacle 3 Car 4.5 1.68 0

Scenario 2 Ego vehicle Car 5 2 0
Obstacle 1 Truck 10 1.72 60
Obstacle 2 Bike 1.8 0.3 80
Obstacle 3 Car 4.5 1.68 0

Table 4
Tracking errors.

Scenario Controller ey(m)

Mean, Max

1 FTMPC 0.0179, 0.1807
ZMPC 0.0395, 0.4613
ZLQR 0.0773, 0.9205

2 FTMPC 5.352 � 10�4, 0.00
ZMPC 4.437 � 10�4, 0.00
ZLQR 7.064 � 10�4, 0.00

Fig. 14. Hardware-in-the-loop platform. (a) Schematic diagram. (b) Basic facilities.
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(DAQ) card (NI USB-6002, National Instruments, USA), a
motor (86EBP159ALC, Shidaichaoqun, China), a motor driver
(ZDM-2HA865, Shidaichaoqun, China), and a protocol con-
version module (CAN to RS485, EBYTE, China).

(2) Comparisons and test scenarios: The proposed SMPAC with
the FTMPC controller is compared with a zero steady-state
error TRMPC controller (ZMPC) and a zero steady-state error
LQR controller (ZLQR) under the same framework. The zero
steady-state error refers to the feedforward term in Eq.
(16). The SMPAC framework provides decision-making,
planning, and tracking for the ego vehicle. Table 2 summa-
rizes the parameters of the SMPAC, including the vehicle,
planner, and controller.

Moreover, two driving scenarios are constructed for validation
and evaluation. Table 3 summarizes the information of the test sce-
narios, including the traffic participants, start states, and end
states. Table 4 compares the tracking errors of the three controllers
across the two scenarios.
5.2. Scenario 1

Scenario 1 simulates that the ego vehicle faces a stationary mal-
functioning car (large non-crossable obstacle) ahead and two sur-
rounding vehicles in the left and right lanes. Additionally, the
malfunctioning vehicle has contaminated a stretch of 0 to 60 m
in Lane-2 with engine oil, resulting in the road surface having a
friction coefficient of l ¼ 0:3. The friction coefficient of the normal
road surface is l ¼ 0:95. In this scenario, the ego vehicle is operat-
ing at the handling limits, which is challenging for the AV’s motion
planning and control.

Specifically, as presented in Table 3, the ego vehicle is a car that
initially drives along the centerline of Lane-2 at 20 m∙s�1. Addition-
ally, there are three obstacles. Obstacle 1 is a truck trying to change
from Lane-1 (60 m) to Lane-2, with velocities of 15 m∙s�1 and
20 m∙s�1 before and after the lane change, respectively. Obstacle
2 is the stationary vehicle located 60 m directly ahead of the ego
vehicle. Obstacle 3 is a car driving along the centerline of Lane-3
at a constant velocity of 25 m∙s�1.
End state

d0(m) vx0(m∙s�1) Driving behavior vx1(m∙s�1)

3.5 20 Change from Lane-2 to Lane-3 24
0 15 Change from Lane-1 to Lane-2 20
3.5 0 Stationary 0
7 25 Uniform linear motion 25
3.5 20 Collision avoidance 18
0 15 Change from Lane-1 to Lane-2 20
2.5 0 Stationary 0
7 20 Uniform linear motion 20

ew(�) ev (m∙s�1)

Mean, Max Mean, Max

0.2178, 3.594 0.0248, 0.0670
0.2709, 4.756 0.0451, 0.1266
0.5346, 13.42 0.0326, 0.1698

33 0.0492, 0.2043 0.0271, 0.0652
26 0.0480, 0.2038 0.0424, 0.1101
44 0.0483, 0.2033 0.0211, 0.0492



H. Zheng, Y. Li, L. Zheng et al. Engineering xxx (xxxx) xxx
Fig. 15(a)–(c) show the safety sets and trajectories of the pro-
posed SMPAC with the FTMPC, ZMPC, and ZLQR schemes. The light
blue lines denote the planned trajectories (without CarSim
involved) of the ego vehicle at each planning cycle. The red points,
green squares, and blue diamonds represent the real trajectories
(with CarSim involved) of the ego vehicle, obstacle 2, and obstacle
3, respectively. Additionally, the safety sets of the ego vehicle and
obstacles are drawn as zonotopes every second, where the differ-
ent colors denote the different vehicles. Fig. 15(d) shows the par-
tially enlarged view of Fig. 15(c). Fig. 15(e)–(g) show the planned
velocities (light blue lines) and real velocities (red line) of the
ego vehicle at each planning cycle. Fig. 15(h)–(n) show the compar-
ison of the three controllers in the control inputs, tracking perfor-
mances, and vital dynamic states of the ego vehicle. These indexes
include the total longitudinal force, steering angle, lateral error,
heading angle error, velocity error, yaw rate, and lateral
acceleration.

In scenario 1, the ego vehicle decides to change from Lane-2 to
Lane-3 to avoid collision with the stationary obstacle 2. The lane
change process can be summarized in three steps. First, the ego
vehicle deviates from the Lane-2 centerline to the Lane-3 bound-
ary, decelerates to approximately 10 m∙s�1, and prepares to change
lanes. Second, after the surrounding vehicle (obstacle 3) passes, the
ego vehicle completes the lane change and maintains the velocity
Fig. 15. Scenario 1: lane change at handling limits. (a) Safety sets and trajectories (SMPA
trajectories (ZLQR). (d) Partially enlarged view of (c). (e) Longitudinal velocity (SMPAC w
Total longitudinal force. (i) Steering angle. (j) Lateral tracking error. (k) Heading angle e
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for a while. Finally, the ego vehicle adjusts its lateral position to
the Lane-3 centerline and accelerates to approximately 25 m∙s�1.

(1) Safety satisfaction: As shown in Fig. 15(a)–(b), both SMPAC
with FTMPC and ZMPC could avoid collision under uncer-
tainties. Nevertheless, the proposed SMPAC with FTMPC
keeps the ego vehicle farther away from obstacles and thus
safer. In Fig. 15(c)–(d), it is observed that the ZLQR scheme
exhibits PHBs because of the intersection of the ego vehicle
set Vs and obstacle 2 set O2

s at 4.6 s. Consequently, the pro-
posed SMPAC with FTMPC can guarantee safety at the han-
dling limits, whereas conventional frameworks and
controllers may exhibit PHBs.

(2) Tracking performance: Fig. 15(h)–(n) and Table 4 both illus-
trate that FTMPC has the best tracking performance and
vehicle stability among the three controllers at the handling
limits and exhibits a significant improvement over ZMPC
and ZLQR. Therefore, the proposed FTMPC has better robust-
ness.

5.3. Scenario 2

Scenario 2 simulates that the ego vehicle faces an unlawful
stationary bike (small non-crossable obstacle) ahead and two
C with FTMPC controller). (b) Safety sets and trajectories (ZMPC). (c) Safety sets and
ith FTMPC). (f) Longitudinal velocity (ZMPC). (g) Longitudinal velocity (ZLQR). (h)

rror. (l) Velocity error. (m) Yaw rate. (n) Lateral acceleration.



Fig. 16. Scenario 2: collision avoidance under normal conditions. (a) Safety sets and trajectories of all comparisons. (b) Longitudinal velocity of all comparisons. (c) Total
longitudinal force. (d) Steering angle. (e) Lateral tracking error. (f) Heading angle error. (g) Velocity error. (h) Yaw rate. (i) Lateral acceleration.
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surrounding vehicles in the left and right lanes. In this scenario, the
vehicle is operating under normal conditions.

Specifically, as illustrated in Table 3, the ego vehicle is a car that
initially drives along the centerline of Lane-2 at 20 m∙s�1. More-
over, there are three obstacles. Obstacle 1 is a truck trying to
change from Lane-1 (60 m) to Lane-2, with velocities of 15 m∙s�1

and 20 m∙s�1 before and after the lane change, respectively. Obsta-
cle 2 is a stationary bike located 80 m in front of the ego vehicle
and 1 m to the right of the Lane-2 centerline. Obstacle 3 is a car
driving along the centerline of Lane-3 at a constant speed of
20 m∙s�1.

Similar to scenario 1, Fig. 16 (a) shows the safety sets of the ego
vehicle and obstacles every second. Fig. 16 (b) shows the planned
and real velocities of the ego vehicle at each planning cycle. How-
ever, it is noteworthy that the trajectories of all the comparison
groups in Fig. 16 (a) and (b) almost overlap, hence only one group
is shown. Fig. 16 (c)–(i) show the control inputs, tracking perfor-
mances, and vital dynamic states of the ego vehicle.

In scenario 2, the ego vehicle decides to deviate a little distance
from the Lane-2 centerline toward the Lane-3 boundary to avoid
collision with the stationary obstacle 2. The collision avoidance
process can be summarized in three steps. First, the ego vehicle
moves a distance away from the Lane-2 centerline to the Lane-3
boundary and gradually decelerates. Second, after avoiding obsta-
cle 2, the ego vehicle returns to the Lane-2 centerline and deceler-
ates to approximately 10 m∙s�1. Finally, the ego vehicle drives
along the Lane-2 centerline and accelerates to approximately
20 m∙s�1.

(1) Safety satisfaction: As shown in Fig. 16 (a) and (b), with
the SMPAC framework, all three controllers are able to avoid
collision under uncertainties. The differences between the
three schemes are negligible. Therefore, the proposed
SMPAC framework can guarantee safety under normal
conditions.

(2) Tracking performance: As shown in Fig. 16 (c)–(i) and
Table 4, the tracking errors of FTMPC, ZMPC, and ZLQR are
all minima owing to the feedforward term in Eq. (16). In
addition, the differences between the three are almost
negligible. Therefore, the proposed FTMPC has a high perfor-
mance and less conservatism under normal conditions.
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6. Conclusion

A SMPAC framework was proposed to address multi-
dimensional uncertainties in autonomous driving. A dynamic
model with multi-dimensional uncertainties was established for
the control layer to accurately describe the real AV system. The
FTMPC controller with the flexible tube was designed to guarantee
robust stability and constrain the uncertain system in the bounded
mRPI. For the planning layer, the safety sets were introduced to
determine the geometric boundaries that the ego vehicle or obsta-
cles possibly reach accordingly. The trajectory planning and colli-
sion avoidance with the safety sets were studied to reduce the
PHBs caused by the uncertainties.

The HIL platform tested two types of scenarios: an active lane
change scenario at the handling limits and a collision avoidance
scenario under normal conditions. The results validated the safety,
effectiveness, and real-time performance of the SMPAC scheme.
Consequently, the SMPAC scheme can reduce possible hazardous/
unknown areas in automated driving scenario categories for the
SOTIF.

Further research directions include: ① The disturbance set can
be further reduced by leveraging linearization methods for the
nonlinear vehicle system to reduce the conservatism of the SMPAC
framework. ② The embedding of state-of-the-art motion planning
approaches can be implemented in the SMPAC framework for
improved capability.
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Appendix A

The Components of Candidate Trajectories:

T1 ¼

1 0 0 0 0
0 1 0 0 0
0 0 2 0 0
0 1 2t1 3t21 4t31
0 0 2 6t1 12t21

26666664

37777775;

P1 ¼

a 1ð Þ
1 a 2ð Þ

1 � � � a nsð Þ
1

a 1ð Þ
2 a 2ð Þ
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..

. ..
. . .

. ..
.

a 1ð Þ
5 a 2ð Þ

5 � � � a nsð Þ
5

2666664

3777775;

S1 ¼

s 0ð Þ s 0ð Þ � � � s 0ð Þ
_s 0ð Þ _s 0ð Þ � � � _s 0ð Þ
€s 0ð Þ €s 0ð Þ � � � €s 0ð Þ
_s t1ð Þ 1ð Þ _s t1ð Þ 2ð Þ � � � _s t1ð Þ nsð Þ
€s t1ð Þ €s t1ð Þ � � � €s t1ð Þ

26666664

37777775:

ðA1Þ

T2 ¼

1 0 0 0 0 0
0 1 0 0 0 0
0 0 2 0 0 0
1 t1 t21 t31 t41 t51
0 1 2t1 3t21 4t31 5t41
0 0 2 6t1 12t21 20t31

2666666664

3777777775
;

P2 ¼

b 1ð Þ
1 b 2ð Þ

1 � � � b ndð Þ
1

b 1ð Þ
2 b 2ð Þ

2 � � � b ndð Þ
2

..

. ..
. . .

. ..
.

b 1ð Þ
6 b 2ð Þ

6 � � � b ndð Þ
6

2666664

3777775;

S2 ¼

d 0ð Þ d 0ð Þ � � � d 0ð Þ
_d 0ð Þ _d 0ð Þ � � � _d 0ð Þ
€d 0ð Þ €d 0ð Þ � � � €d 0ð Þ

d t1ð Þ 1ð Þ d t1ð Þ 2ð Þ � � � d t1ð Þ ndð Þ
_d t1ð Þ _d t1ð Þ � � � _d t1ð Þ
€d t1ð Þ €d t1ð Þ � � � €d t1ð Þ
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