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1. Introduction

Despite being widely known and investigated as a computer
science discipline, artificial intelligence (AI) has attracted incompa-
rable interest from researchers in diversified areas [1]. In 1950,
Alan Turing raised the classic question that has inspired numerous
researchers to date: ‘‘Can machines think?” [2]. The ultimate
benchmark of AI was set by Turing’s revised ‘‘imitation game,” also
known as the Turing test, in which the intelligence of a model is
tested linguistically through the interrogator’s evaluation of its
similarity to human responses. Turing’s work prompted the public
to relate AI to computer capabilities, which led to the official iden-
tification of the field of AI at the Dartmouth Conference in 1956,
organized by the mathematics professor John McCarthy. In his pro-
posal of this historical event, McCarthy set a bold vision of AI, ‘‘. . .
on the basis of the conjecture that every aspect of learning or any
other feature of intelligence can in principle be so precisely
described that a machine can be made to simulate it” [3].

Since its birth, the field of AI has experienced several periods of
growth and stagnation. Unrealistically high expectations from
many early pioneers caused the first winter of AI to occur roughly
between 1974 and 1980, as most attention and funding were sud-
denly shifted away. Researchers had forecasted that all human
tasks could be accomplished by supercomputers within 20 years
of the birth of AI. However, the most used AI system by that time,
the ‘‘expert-rule-based system,” could not proceed with sophisti-
cated tasks due to the difficulties of assembling expert-based
knowledge that was updated in a timely fashion and extracting
the major rules behind those tasks. Later, the development of the
ground-breaking concepts of neural networks and back-propaga-
tion brought the end of the first winter and drew significant atten-
tion—coupled with financial support—back to AI investigations.
This boom, however, was terminated due to the limitations of
computational resources in the early 1990s. Fortunately, these
limitations have gradually been alleviated since the mid-1990s,
due to the scaling power of Moore’s law [4], as publicly revealed
through the news that the supercomputer Deep Blue defeated
the famous chess champion, Kasparov, in 1997. Since then,
both the development of AI methods (e.g., the invention of
convolutional neural networks (CNNs)) and the development of
computer devices (e.g., graphical processing units (GPUs)) have
triggered a tremendous boost in AI studies in all possible fields.

Andrew Ng is a world-famous leading thinker in AI with numer-
ous titles; he is the founder and chief executive officer (CEO) of
Landing AI, the co-founder and chairman of Coursera, a former AI
guru of both Google and Baidu, and an adjunct professor of com-
puter science at Stanford University. Ng has referred to AI as the
‘‘new electricity,” commenting: ‘‘Just as electricity transformed
almost everything 100 years ago, today I actually have a hard time
thinking of an industry that I don’t think AI will transform in the
next several years.” This ‘‘new electricity” is now transforming
how the world operates and creating enormous economic value.
It is expected that there will be a 13 trillion USD increase in the
global economy caused by developments related to AI technologies
by 2030, according to the McKinsey Global Institute report [5].
These expected economic benefits indicate a new era—the AI trans-
formation era—in which AI technologies and strategies are
expected to become transformative industrial practices.

The transition to this new era is reflected in the shift of aca-
demic focus in AI investigations toward AI applications within
the engineering domain. An analysis of the Web of Science regard-
ing AI-related studies (Fig. 1) shows that the total number of pub-
lications on AI investigations has generally increased over time.
Until 2018, the changing tendency in the total number of AI-
related publications was almost exactly the same as the changing
tendency in the number of AI-related publications in the field of
computer science. However, within the past four years, the number
of AI-related publications in computer science does not show as
dramatic an increase as the total number of AI-related publica-
tions. On the other hand, the number of AI-related studies in engi-
neering has displayed a significant increase over the last four years.
In particular, AI-related publications in chemical engineering (CE),
despite being relatively few in comparison with those in other
areas, have increased over the last four years, as shown in the inset
in Fig. 1. This difference in the tendencies of the number of
publications indicates that the focus of development in AI is
gradually shifting from methodology improvements, which are
primarily conducted in computer science, to transformative
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Fig. 1. A Web of Science analysis of the number of publications of AI-related studies over the past two decades with corresponding categories/keywords of ‘‘computer
science,” ‘‘engineering,” ‘‘artificial intelligence,” and ‘‘chemical engineering.”
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industrial utilizations, which are practiced in engineering. Never-
theless, solely considering the number of publications, investiga-
tions in computer science still currently account for the major
contribution to AI development. A new era of AI transformation
is being loudly announced by both industry and academia, and this
change is analogous to a call to arms for engineers in all fields to
turn their attention and efforts to accelerating this transformation
for maximal benefits.

Engineers—especially chemical engineers—have certainly
acknowledged this call, and AI seems to have quickly become the
‘‘apple of our eyes,” attracting significant attention from engineers
in recent years. In fact, AI development has a history of over
70 years, since Turing proposed the ultimate criterion of AI, and
transformative utilization of AI has already achieved a certain level
of success in many domains, such as robotics, speech recognition,
and natural language processing [6]. However, AI applications in
CE did not make a significant impact until after 2005 [6]. This stag-
nation predominately came from the inherent characteristics of CE
itself, which ultimately presented difficulties in the development
of transformative AI applications within CE. Despite these difficul-
ties, the tremendous developments in AI methodologies and com-
puter devices still brought a remarkable boost of interest in AI
utilization in CE after 2005. The currently popular deep learning
method makes it possible to establish a structure with multiple
hidden layers, enabling the system to extract system features hier-
archically [6,7]. Such modern AI methodologies have also made
exceptional progress in areas such as medical practice. The possi-
ble dramatic improvements brought by AI to many application
areas are urgently needed and expected in CE, an area in the very
front lines of critical needs such as heavy-duty manufacturing
and energy supplies. Optimized AI utilization in CE is expected to
bring about revolutionary improvements in everyday human lives,
especially in our global environment. This article highlights the
features of and gaps in the transformative utilization of AI in CE
and proposes a potential scenario, denoted as intelligent intercom-
municating multiscale engineering (IIMSE), for optimal AI utiliza-
tion in CE with the possibility of maximizing the benefits from
the AI transformation. This proposed IIMSE scenario holds the
potential to lead the anticipated AI transformation in CE. For
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readers’ reference, this article also discusses the early trials and
advancements of the transformative utilization of AI and hybrid
modeling applications, which are positioned along the path toward
IIMSE. In addition, a specific framework under the IIMSE scenario
and additional prospects are proposed as possible future research
focuses. This article provides a glimpse of the inevitable transfor-
mation in CE brought about by the ‘‘new electricity,” AI, to inspire
more chemical engineers to join this battle for revolutionary
development.
2. AI transformation in CE

2.1. Major challenges of AI transformation in CE

In order to build transformative applications of AI in CE, it is
necessary to know where the challenges lie. Historically, CE prob-
lems suffer from overly sophisticated controlling rules that have
led to difficulty in the implementation of earlier AI technologies.
This has hindered the development of rule-based expert systems
for CE processes, which rely heavily upon such rules. Moreover, a
simple structured AI method, such as those developed in the early
1990s, which have only one hidden layer, cannot recognize the
complex patterns necessary to satisfy CE requirements. Further-
more, CE processes are generally governed by physical and/or
chemical laws, which must be revealed for the development of
CE processes. However, empirical AI methodologies cannot provide
theoretical interpretations to fulfill this requirement [8]. In addi-
tion, CE is not a typical big data domain such as pharmaceutical
or language-related fields [6], which limits the data-driven utiliza-
tion of AI in CE. Due to these aspects of CE, AI transformation is not
easy in this field.
2.2. IIMSE: A possible optimal AI utilization scenario in CE

Considering all these challenges, how should chemical engi-
neers battle for AI transformation in our field? An optimal scenario,
IIMSE, is introduced here as a new weapon that can potentially
exceed the limitations of traditional approaches for the optimized
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utilization of AI within CE applications. IIMSE is a hybrid modeling
strategy that combines empirical AI methods and multiscale theo-
retical methodologies with direct information exchange between
different scales, connecting microscopic insights to macroscopic
observations. More specifically, the ‘‘intelligent” in IIMSE refers
to exploiting the intelligent capacities of AI algorithms on the basis
of a theoretical multiscale modeling scenario (i.e., AI-assisted mul-
tiscale modeling), while ‘‘intercommunicating” refers to direct
information transformation between scales, which would ideally
be bidirectional between all investigated scales. At present, how-
ever, due to the limits of current models and computing resources,
only partial intercommunication can be achieved. Further discus-
sions of AI assistance and the intercommunication mechanism
are provided below. The following paragraphs will deliberate on
the motivations for the development of IIMSE and reasons why this
scenario can play a leading role in the development of AI within CE.

Although some of the main barriers to AI implementation—such
as computing capacity and implementation difficulties—are
removed or reduced by the increase in accessible computing
resources and related methodologies such as deep learning or rein-
forcement learning, AI utilization is still challenged by its heavy
reliance on having sufficient and representative input data samples
to learn from. Moreover, empirical AI cannot comprehensively
explain a system that is dominated by physical and chemical laws.
In order to overcome the issues mentioned above, we suggest com-
bining data-driven AI with theoretical models. In IIMSE, well-
known theoretical models can predict and screen the appropriate
input samples required for AI training and can also partially inter-
pret the underlying physical and chemical laws. Furthermore, the
AI algorithm corrects the errors introduced by the theoretical
model predictions, solidifies the unclear aspects of the studied pro-
cess, and—most importantly—significantly improves the phe-
nomenological models’ computational efficiency.

CE systems consist of intrinsic phenomena that evolve over
multiple lengths and timescales. For example, a typical CE process
can be analyzed using quantum chemistry simulations through the
electron distribution information [9]; it can also be investigated by
means of computational fluid dynamics (CFD) based on the system
hydrodynamics. It should be noted that both of these investiga-
tions are conducted to interpret the same system. However, the
conclusions obtained cannot be easily connected: It is difficult to
relate the energetic outcome at the atomic scale to the two-phase
distribution information within an operating unit. This disconnec-
tion leads to gaps in understanding between the different scales of
the system. In particular, in such cases, the microscopic outcomes
such as the elementary reaction mechanisms and favored reaction
sites cannot be validated by experimental observations due to the
limits caused by spatial and temporal differences. Similarly, few
microscopic insights can be provided to support macroscopic
observations. The mentioned gaps between the different scales of
understanding within CE studies emphasize the necessity of build-
ing multiscale investigations for a comprehensive understanding of
the studied systems, whose phenomena range from the electronic
scale (e.g., density functional theory (DFT)) to the macroscopic
scale (e.g., CFD). In this multiscale scenario, the microscopic out-
comes lay a foundation for establishing macroscopic models and
provide microscopic insights into the macroscopic performance.
Conversely, the macroscopic outputs can be directly validated by
the experimental results, which can subsequently prove the accu-
racy of the coupled microscale insights. Multiscale simulations are
powerful tools that connect the finest scale behavior to the contin-
uum properties of the studied systems. Without multiscale inter-
pretations, investigations of system behavior are akin to the
Chinese idiom of ‘‘looking at a leopard through a tube,” which
refers to how only a ‘‘spot” of information can be retrieved for a
unilateral understanding of a phenomenon. Accordingly, in order
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to maximize the benefits of AI transformative utilization in CE,
the theoretical model portion of the proposed AI-assisted hybrid
scenario should utilize multiscale modeling.

However, multiscale modeling investigations often require inten-
sive computational resources, especially for electron-population-
based microscopic simulation techniques, which prevent these
theoretical studies from providing efficient computational analysis
within practical applications. The expectations of connecting micro-
scopic behavior to macroscopic properties also require a near-
impossible amount of computing resources, since more than four
scales of theoretical calculations [10,11] are required for the com-
plete understanding of just a single particle. Fortunately, AI has
emerged as a handy and efficient tool with the potential to improve
the efficiencies of multiscale predictions. Furthermore, the multi-
scale models within the hybrid scenario, IIMSE, are expected to be
capable of direct information transformation. This means that the
quantitative results from other simulation scales are interpreted
into the information to implement each model scale. For example,
between quantum chemistry and molecular simulations, the reac-
tion or adsorption rates together with the surface events required
in the molecular simulations are directly computed from the ener-
getic results of the quantum chemistry analyses, where the neces-
sary intercommunication mechanism is established between the
two models (e.g., the quantum chemistry and molecular simulation
models). Moreover, between the molecular simulation and the con-
tinuum equations, the statistical dynamics properties calculated
from the molecular simulations are applied as the boundary condi-
tions of the continuum equations, while the results from these equa-
tions are fed back to impact the surface revolution of the molecular
models. It should be noted that, in these simulations, the key infor-
mation is transferred between the models, while the core calcula-
tion at each scale remains independent to ensure the individual
prediction quality of the system properties.

The discussed intercommunication mechanism is imperative in
order to expand beyond simplified paralleled multiscale studies in
which the results from different scales cannot be directly con-
nected or compared. A simplified paralleled multiscale analysis
can be related to a metaphor of multiple investigators studying
the same system, each speaking a different language and therefore
being unable to communicate without translators. Like the investi-
gators, a multiscale model needs intercommunication mechanism
‘‘translators,” which can be accomplished using AI and analytical
models to foster an appropriate exchange of information between
the different scales. In addition, AI algorithms and theoretical mod-
els inherently intercommunicate within a serial structure. In par-
ticular, AI algorithms can serve as a bridge connecting
microscopic information to macroscopic metrics through data
mapping, even with unknown parameters or models in between
the microscopic and macroscopic models.

In summary, IIMSE—an AI-assisted intercommunicating multi-
scale modeling scenario that couples data-driven AI methods with
comprehensive theoretical multiscale modeling schemes contain-
ing intercommunicating features to connect microscopic insights
to macroscopic observations—provides the best opportunity to
satisfy the requirements of CE development so as to theoretically
optimize AI utilization in CE.

2.3. Advantages of IIMSE

By integrating AI with theoretical models, IIMSE opens up the
possibility of effectively generating a comprehensive understand-
ing of practical systems at multiple scales and efficiently predicting
system performance for specific applications. In addition, the AI
algorithms in IIMSE provide tools to correct the errors in the pre-
dictions caused by hard-to-access system-oriented parameters in
the theoretical models. Moreover, AI paradigms provide solutions
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to implement sophisticated processes involving models with
unknown mathematical representations. Furthermore, the inter-
communicating multiscale models in IIMSE—that is, the theoretical
models—address the issue that an empirical AI approach cannot
reveal the underlying mechanisms required in CE studies. The
theoretical models can also provide adequate data for AI training
to lower the cost of data generation in CE processes. With these
improvements, IIMSE features potentially revolutionary improve-
ments in computational efficiency, making it possible to operate
the computationally intensive interpretations and predictions of
a convoluted CE process. The proposed IIMSE scenario is also
expected to form an intercommunicating system that connects
microscopic insights to macroscopic observations. The connections
built by IIMSE will lead to a comprehensive understanding of the
studied systems and will enable CE technologies to be directly
developed, from microscopic design to process intensification
and/or optimization. Therefore, IIMSE can satisfy the requirements
of CE development by providing comprehensive interpretations
and efficient predictions based on CE features. This method aims
to maximize the benefits of AI applications in CE and can poten-
tially accelerate the transformation imparted by AI.

2.4. Early attempts towards IIMSE: From data-driven AI to hybrid
modeling

At present, the proposed IIMSE scenario is still in its infancy,
leaving almost all avenues open for exploration. Along the path of
transformative applications of AI in CE toward the possible future
world-leading scenario of IIMSE, early attempts have primarily con-
sisted of purely data-driven AI utilization and simplified hybrid
modeling strategies; in other words, AI-assisted single-scale simula-
tions. A few studies have conducted reduced AI-assisted multiscale
simulations, in which AI is mostly used to relate mesoscale parame-
ters to macroscopic simulations such as CFD [12,13]. However,
either the intercommunicating mechanism was not presented
within the theoretical scenario established in these studies, or a con-
nection was not built between the microscopic insights and macro-
scopic predictions, both of which achievements are expected in
IIMSE. Despite these inadequacies, these early attempts in AI trans-
formative utilization illustrate some of the advantages of AI-assisted
multiscale models in interpretation and prediction capacities in
material development and process intensification.

Among the CE studies that can be thought of as leading towards
IIMSE, a comprehensive hybrid modeling scenario combining data-
driven AI methods with theoretical intercommunicating multiscale
methods, this section presents early attempts ranging from data-
driven AI utilization to simplified/reduced hybrid modeling scenar-
ios in both materials development and process intensification. In
material functionality development, the assistance of AI has been
observed to significantly accelerate the screening process of an
extensive pool of candidates for specific applications by relating
the critical figures of merit within the materials (e.g., stability, sus-
tainability, or activity) to inexpensive descriptors as the surrogates.
For example, in the field of catalyst development in heterogeneous
systems, the stability of the catalyst can be related to the predic-
tion of the Gibbs energies. Bartel et al. [14] developed the sure
independence screening and sparsifying operator (SISSO) algo-
rithm to accurately forecast Gibbs energies for inorganic crystalline
solids, providing an efficient method for the study of material sta-
bility. Some studies within this area have focused on a crystal
graph CNN technique proposed by Xie and Grossman [15], which
presents the possibility for catalyst development based on local
chemical environments. The catalyst screening process is signifi-
cantly enhanced computationally via the application of AI. A favor-
able adsorption energy prediction is another significant
consideration for a heterogeneous catalyst system. With the
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adoption of AI, large quantities of adsorption configuration data
can be efficiently screened by adopting AI to eliminate unnecessary
and expensive electronic structure calculations for DFT analysis.
Accordingly, AI studies have also focused on developing both
hybrid [16,17] and purely data-driven models [18,19] for predict-
ing adsorption energies and conducting automated structure gen-
eration [20]. It should be noted that, in microscopic multiscale
modeling, algorithms involving quantum chemistry analysis are
usually extremely computationally intensive, due to the intense
calculations required to analyze the electronic distribution of a sys-
tem. Accordingly, replacing quantum chemistry analysis with AI
algorithms to connect quantum mechanics to molecular simula-
tions is prevalent in studies on this topic. For example, Misawa
et al. [21] exploited an artificial neural network (ANN) to correlate
atomic configurations and system potential energy functions,
which were then passed on to molecular dynamics (MD) simula-
tions to proceed with large spatial and temporal domain MD pre-
dictions while maintaining first-principles accuracy. The far-
from-equilibrium shock phenomenon was successfully described
through their proposed model, with 5000 times higher efficiency
than the traditional method. Extensive applications have demon-
strated that substituting first-principles potentials with ANN
potentials leads to dramatic efficiency improvement in ab initio
molecular simulations [22,23].

In addition to the fast screening of materials, the mechanism
revelation of a chemical reaction is usually computationally inten-
sive due to the need to conduct a first-principles analysis of the
electron distributions [24]. Furthermore, surface reaction network
establishment necessitates greater computational requirements
due to its high complexity. In order to overcome these issues, AI-
assisted hybrid models combining AI with ab initio calculations
can be constructed to speed up the predictions of energetic results
by simplifying the electronic structure simulations. The surface
reaction network complexity can be addressed by adopting AI to
identify the path of minimum energy. Working along these lines,
Ulissi et al. [25] adopted trained surrogate AI models to predict
the most important reaction step, thereby avoiding the enormous
complexity of surface reaction networks caused by hydrocarbons.
The surrogate model taught the Gaussian process the adsorption
energies based on group additivity fingerprints. Transition-state
scaling relations and a simple classifier were furthermore used to
determine the rate-limiting step.

In terms of reaction mechanism studies, AI combined with
ab initio analysis has provided more efficient ways to locate transi-
tion states (i.e., saddle points) on the potential energy surface (PES)
between the reactants and products. Considering the fact that sig-
nificant computational resources are spent on conducting accurate
calculations of unimportant electronic state structures in tradi-
tional ab initio calculations, Peterson [26] adopted AI to locate
the saddle points on the PES and to reduce the number of interme-
diate ab initio calculations for finding transition states. The located
saddle points were subsequently verified using ab initio calcula-
tions. This work demonstrated that AI can greatly accelerate
searches of transition states by significantly reducing the number
of ab initio force calculations required in case studies.

In addition to materials development, studies in process inten-
sification—mostly CFD coupled with AI—have demonstrated great
potential to relate multiple impact factors to system behavior, such
as the two-phase distributions of the system. In this approach, the
drag force can be correlated to multidimensional features of the
system for adequate predictions using AI models. Working along
these lines, Jiang et al. [27] adopted ANNs for a drift velocity corre-
lation to the filtered solid volume fraction, the slip velocity, and the
pressure gradient. Later on, Zhang et al. [28] and Jiang et al. [29]
discovered the effects of neighboring coarse grids and the particle
Reynolds number, respectively, through AI analyses. AI coupling
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has also been demonstrated to improve process intensification
through the usage of AI-assisted system clustering or prediction
models based on CFD outcomes [30,31].

In conclusion, AI-assisted hybrid modeling has been demon-
strated to be beneficial for CE process intensifications for multidi-
mensional correlations and simulation efficiency improvements in
both system predictions and their interpretations. Hybrid model-
ing combining theoretical models and data-driven AI satisfies the
requirements of incorporating and extracting first-principles
knowledge. Data-driven AI can be coupled beyond first-principles
models or mechanistic models when taking into account a broader
concept of hybridization. Both phenomenological models that offer
physical explanations of systems built based on empirical relations
and incomplete comprehensions that can be interpreted as nonlin-
ear partial differential equations (PDEs) can be integrated into
hybrid modeling [32–35]. The flexible and accessible implementa-
tions of hybrid models facilitate their widespread utilization and
currently remarkable position in AI transformations in CE. Due to
the focus of the present article, the wide-ranging applications of
hybrid models are not fully elaborated upon here; instead, inter-
ested readers are directed to these comprehensive studies for con-
sideration [8,32,36–38].

Unlike the abovementioned pure AI analysis of CE systems and
the simplified hybrid models that primarily couple AI with single-
scale theoretical analysis, IIMSE emphasizes the effects of AI-
assisted multiscale modeling with intercommunicating features
that connect microscopic insights to macroscopic observations.
However, this comprehensive AI-assisted multiscale simulation is
still a mostly hypothetical and ambiguous concept that is currently
in a preliminary trial period, even though its advantages of both
data-driven AI and comprehensive multiscale modeling have
respectively been emphasized in previous CE studies [39–41].
These studies, which are one step closer to IIMSE beyond simplified
hybrid models, are known as the reduced hybrid models. Although
reduced hybrid models provide a superior process description,
they either do not contain comprehensive theoretical models at
each scale or do not completely connect microscopic insights to
macroscopic observations. Nikolopoulos et al. [12] established an
ANN–energy minimization multiscale (ANN–EMMS) drag scheme
that adopted ANNs to map the heterogeneity index based on the
EMMS model for a wide range of gas–particle mixture properties,
which was directly delivered to a CFD model. On the basis of this
study, Yang et al. [13] developed a generic EMMS drag model for
dense fluidization through the adoption of ANNs. This work fur-
thermore balanced the prediction quality and computational cost
of the studied system through ANNs. Despite these contributions,
if we solely evaluate their prediction accuracy, these ANN–EMMS
models have not yet outperformed traditional models. However,
their great potential still stands out due to the advantage of corre-
lating the high-dimensional features, taking into account local/
temporal variations and particle size distribution, and making
straightforward extensions to other systems without intensive
computational requirements. Accordingly, additional investiga-
tions are required to contribute to improving this scenario.

Although these reduced models have presented great improve-
ments in process intensification, macroscopic process-intensifica-
tion phenomena still cannot be related to microscopic insights in
these studies. The first reduced hybrid model that provides this
connection was created by Chaffart and Ricardez-Sandoval [42],
who explored the development of more complex intercommuni-
cating hybrid multiscale models with applications to thin-film
deposition. Their model coupled together macroscopic continuum
models, which capture reactor operating conditions such as the
system temperature, with AI models being used to determine the
necessary parameters required to establish a microscale stochastic
PDE growth model of the thin-film surface. In their work, the
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interaction between the gas-phase reactor conditions (i.e., the
temperature and partial pressure of the precursor gas species)
and the key properties of the thin-film surface (i.e., its roughness
and growth rate) were explored. Furthermore, the AI algorithm
played a vital role in supplementing the missing empirical micro-
scale properties of the surface and relating the microscale thin-film
growth to the macroscopic system behavior. However, theoretical
models do not present multiscale features on their own; thus, no
intercommunication can be conducted within theoretical simula-
tions. This limits the contribution of this discussed work to the
comprehensive understanding of the system. Similarly, on the
basis of the same thin-film growth system, Kimaev and Ricardez-
Sandoval [43,44] adopted ANNs as a substitute for a multiscale
thin-film model in order to perform efficient nonlinear model
predictive control.

As mentioned above, these studies are still primitive, and none
of them have adopted comprehensive intercommunicating theo-
retical models that correlate microscopic and macroscopic mecha-
nisms. Consequently, there is an urgent need to develop IIMSE
models that can correlate the behavior of microscopic systems,
which are dominated by their intrinsic kinetics, with the behavior
of bulk-phase fluid interactions, which are dominated by macro-
scopic hydrodynamics. By combining the advantages of AI and
multiscale models, this proposed scenario is expected to be capable
of comprehensively explaining and efficiently predicting a wide
range of phenomena in CE applications with minimal computa-
tional cost.
3. Future perspectives

Among the inevitable changes caused by AI technologies, the
proposed IIMSE scenario holds the potential to play a leading role
in accelerating the AI-driven transformation within traditional CE
applications. Accordingly, Fig. 2 presents a possible example
framework under the proposed IIMSE scenario and introduces
our future research interest. In this framework, an intercommuni-
cating multiscale model in IIMSE within a particle at the micro-
scopic scale is established using DFT, kinetic Monte Carlo (kMC)
simulation, and continuum mass transportation equations in the
channel of a particle. Within this model, the DFT analysis provides
the elementary reaction mechanisms and the related energetic
properties, which are interpreted into surface events and reaction
rates to establish a kMC surface model. Subsequently, the statisti-
cal dynamics properties from the kMC simulation can be delivered
directly to the continuum equations as the boundary conditions in
the particle channel. The solutions of the continuum equations,
such as the coverages, can be transferred back to the kMC model
to affect the evolution of the surface. At the macroscopic scale, a
CFD analysis is established to contribute to an understanding of
the system hydrodynamics. This CFD analysis achieves process
intensification by providing heterogeneous phase distribution
and material conversion information.

The system’s mechanisms can be revealed by the aforemen-
tioned theoretical models. However, they cannot be related from
the microscopic to the macroscopic scale, due to the limits of com-
putational capacity and the current partial comprehension of the
multiscale phenomenon. With the assistance of ANNs, communica-
tion can be built between the comprehensive microscopic multi-
scale model and the macroscopic CFD model to avoid the
complexity caused by the highly empirical mesoscale models that
are otherwise required. In the scenario presented in Fig. 2, inter-
communication between the microscopic multiscale model and
the CFD model is established by the data-driven ANN in a serial
structure, which maps macroscopic metrics such as the productiv-
ity to microscopic insights such as the reaction rates under



Fig. 2. An example framework of intelligent intercommunicating multiscale modeling.
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different combinations of operating conditions, such as tempera-
tures and pressures. Accordingly, this framework relates the micro-
scopic mechanisms dominated by elementary reactions to the
macroscopic hydrodynamics, raising the possibility of efficiently
predicting the complete system information on the multiple scales
on which it occurs by breaking the limit of computing resources
with the assistance of AI. Furthermore, this framework has the
potential to implement a multiscale modeling strategy directly
into CE manufacturing, in order to incorporate the full range of sys-
tem behavior from microscopic design to process intensification.

In addition to this framework, extensive scenarios encompassed
within IIMSE can be further developed using other AI paradigms,
such as support-vector machines or random forests, for a wide
range of CE applications. Notably, there are numerous hybridiza-
tion methods for exploiting the features of AI to implement simu-
lations with a partial comprehension of systems or to improve the
modeling performance in IIMSE according to the research objec-
tives. The most simplified structures—whether serial or parallel
structures—that allow data-driven AI to combine with theoretical
models are respectively highlighted when unknown mathematical
representations or process parameters in convoluted environments
exist and when the available phenomenological mathematical
expressions are constrained by their prediction power [32]. A mis-
match of theoretical methods can be corrected by combining the
outcomes of data-driven models and mechanistic models through
weighted or unweighted addition, Kalman filtering, multiplication,
and so forth [45]. On the basis of simplified serial and parallel
structures, a myriad of mixed algorithms can be further established
in IIMSE to fulfill the requirements of extended investigations.

In addition to contributing to the proposed IIMSE, the features
of AI open up numerous other possibilities for improving various
CE applications in future investigations. For example, another criti-
cal topic in CE, that of real-time control, can benefit substantially
from AI through the general and flexible intelligent capabilities
of AI methods. The real-time control systems required in modern
production processes often require high adaptability in order to
manage all possible uncertainties within the process. However,
the simple mode-switching adaptability used in conventional
methods cannot meet this requirement, especially in highly
dynamic and sophisticated domains [46]. Therefore, AI technolo-
gies provide a potential solution to modern real-time control sys-
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tems, where even system modes that are difficult to observe can
be ‘‘detected” and scheduled, thereby ensuring their implementa-
tion, by relying on the generality of well-trained AI models. This
high adaptability of AI models can also be capitalized upon within
the scaleup processes of new technologies from the lab to indus-
trial scale. Furthermore, assistance from AI can be used to address
common issues such as unexpected features that may be present at
the industrial scale that cannot be observed or predicted from a
lab-scale system. As a result, the high adaptability of well-trained
AI systems holds the potential to provide economically and com-
putationally efficient scale-ups of new technology by eliminating
expensive pilot-scale demonstrations.
4. Concluding remarks

AI, as the ‘‘new electricity,” is radically transforming operating
modes throughout the world. Consequently, it is imperative for
chemical engineers to respond to the call of this new AI transfor-
mation era and exceed the limitations of current technologies by
using this powerful revolutionary innovation to its fullest extent.
Rooted in the features and challenges of the CE domain, such as
its complexity, the lack of big-data domains, and the necessity of
understanding the underlying laws governing chemical systems,
the IIMSE scenario is proposed to intellectualize the intercommu-
nication of multiscale phenomenological models in order to pro-
vide fast predictions and comprehensive system understandings.
The proposed framework under the IIMSE scenario efficiently pro-
vides complete process information on each of the relevant scales
and relates microscopic reaction mechanisms to macroscopic sys-
tem hydrodynamics. This scenario aims to bring revolutionary
improvements in efficiency and to exceed the limitations of tradi-
tional methods in CE investigations, toward the possibility of a
direct CE manufactory strategy from microscopic material design
to macroscopic process intensification. This IIMSE scenario has
the potential to occupy a leading role in the AI transformation
within CE, and the potential models under the umbrella of IIMSE
scenario can be readily extended to a variety of different studies.

In the current day and age, chemical engineers carry the heavy
duties of the world on their shoulders. Due to the inevitable
technological change of AI transformation, chemical engineers
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are urgently encouraged to embrace and master AI utilization in
order to not only efficiently fulfill our duty to society but also
win a position in this global competition of technologies.
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