
Engineering 7 (2021) 1786–1796
Contents lists available at ScienceDirect

Engineering

journal homepage: www.elsevier .com/ locate/eng
Research
Civil Engineering—Article
Real-Time Detection of Cracks on Concrete Bridge Decks Using Deep
Learning in the Frequency Domain
https://doi.org/10.1016/j.eng.2020.07.026
2095-8099/� 2020 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail address: alavi@pitt.edu (A.H. Alavi).
Qianyun Zhang a, Kaveh Barri a, Saeed K. Babanajad b, Amir H. Alavi a,c,⇑
aDepartment of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
bWiss, Janney, Elstner Associates Inc., Northbrook, IL 60062, USA
cDepartment of Computer Science and Information Engineering, Asia University, Taichung, Taiwan 41354, China
a r t i c l e i n f o

Article history:
Received 18 April 2020
Revised 9 June 2020
Accepted 27 July 2020
Available online 19 November 2020

Keywords:
Crack detection
Concrete bridge deck
Deep learning
Real-time
a b s t r a c t

This paper presents a vision-based crack detection approach for concrete bridge decks using an integrated
one-dimensional convolutional neural network (1D-CNN) and long short-term memory (LSTM) method
in the image frequency domain. The so-called 1D-CNN-LSTM algorithm is trained using thousands of
images of cracked and non-cracked concrete bridge decks. In order to improve the training efficiency,
images are first transformed into the frequency domain during a preprocessing phase. The algorithm is
then calibrated using the flattened frequency data. LSTM is used to improve the performance of the devel-
oped network for long sequence data. The accuracy of the developed model is 99.05%, 98.9%, and 99.25%,
respectively, for training, validation, and testing data. An implementation framework is further developed
for future application of the trained model for large-scale images. The proposed 1D-CNN-LSTM method
exhibits superior performance in comparison with existing deep learning methods in terms of accuracy
and computation time. The fast implementation of the 1D-CNN-LSTM algorithm makes it a promising
tool for real-time crack detection.

� 2020 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

According to the American Society of Civil Engineers (ASCE)
report card [1], over 56 000 bridges in the United States are ‘‘struc-
turally deficient.” Economic and effective management of aging
bridges is becoming a challenging task for the state departments
of transportation and the government. Reliable condition evalua-
tion of bridges is required before any decision-making on repairing
and prevention. Although this concern motivates bridge owners to
conduct frequent structural inspections, the application of conven-
tional non-destructive evaluation (NDE) and visual inspection
methods requires a point-by-point inspection of individual ele-
ments in order to discover the location of multiple defects, in addi-
tion to bridge closures due to inspectors’ safety concerns.
Furthermore, these methods are time-consuming, expensive, sub-
jective, and highly dependent on inspectors’ experience. Many
research groups have been exploring alternative structural health
monitoring (SHM) methods to deal with these limitations [2–4].
Although global SHM techniques seem promising, they are only
capable of providing a coarse evaluation of structural behavior,
and cannot provide detailed information [5,6]. In addition, inter-
preting the results collected by the SHM methods is a challenging
task due to noise signals, sensor defects, or acquisition system
settings.

In recent years, vision-based methods have been gaining more
attention for civil infrastructure damage detection practices. A
number of studies have been conducted to detect superficial
defects such as cracks and corrosion. For example, segmentation
[7], filtering [8,9], and stereovision-based methods [10] have been
used to detect cracks and crack-like features in structural systems.
Vision-based methods typically follow two steps to detect cracks
[11]. In the first step, the image is filtered using a statistic filter,
and crack features are locally extracted to fuse the image. The sec-
ond step involves cleaning and linking the image segments to
define the crack [11]. Shadow-removal algorithms have also been
developed to remove the shadows from such images and pinpoint
the crack [12,13]. However, bridge inspection data are collected in
various situations and thus vary extensively. Issues such as noise
caused by lighting conditions and distortion, dependence on prior
knowledge, and the quality of image data are still challenging for
reliable crack detection.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eng.2020.07.026&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.eng.2020.07.026
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:alavi@pitt.edu
https://doi.org/10.1016/j.eng.2020.07.026
http://www.sciencedirect.com/science/journal/20958099
http://www.elsevier.com/locate/eng


Q. Zhang, K. Barri, S.K. Babanajad et al. Engineering 7 (2021) 1786–1796
A viable solution to cope with these issues is to deploy machine
learning (ML) methods. ML-based methods have been widely used
in the areas of SHM and NDE [14–16]. These approaches are gener-
ally used to interpret the signal data collected from the testing sys-
tems; as a result, they are particularly used to provide useful
information about the condition of structural systems. More recent
efforts in this area have focused on integrating image feature
extraction and ML techniques to develop novel SHM and NDE sys-
tems [17–19]. However, the use of over-extracted or false-
extracted features often causes significant complexity in the model
development. Convolutional neural networks (CNNs) can over-
come this issue by extracting effective image features. CNNs are
a class of deep learning algorithms inspired by the visual cortex
of animals [20]. This method can efficiently capture the grid-like
topology of images. It requires fewer computations due to sparsely
connected neurons and the pooling process, which will shrink the
image dimensions. Moreover, CNNs have shown reliable perfor-
mance in differentiating among a large number of classes [21,26].
Due to their outstanding performance on image data, CNNs are
becoming an efficient tool for the SHM systems [22–25]. Recently,
Azimi and Pekcan [27] introduced a CNN approach for SHM that
uses transfer learning techniques for compressed response data.
Their CNN models were trained using acceleration response histo-
ries. The developed models were then validated by experimental
data. Soukup and Huber-Mörk [28] proposed a CNN-based railway
defect detection method. Cha et al. [29] proposed a deep learning
crack damage detection system for concrete surfaces. Da Silva
and de Lucena [30] developed a CNN image classifier for concrete
crack detection. Although promising advancements have been
made, the major downside of the existing deep learning-based
SHM methods is their computational intensity and long training
times. These limitations not only affect the methods’ usefulness
in practice, but also present a barrier to developing a real-time con-
dition assessment system.

The present study presents a real-time deep learning approach
for the detection of cracks on the bridge deck. To this aim, one-
dimensional (1D)-CNN is integrated with an artificial recurrent
neural network (RNN) architecture called long short-term memory
(LSTM). The proposed 1D-CNN-LSTM algorithm is trained using
images transferred into the frequency domain rather than the spa-
tial domain. This strategy is adopted to reduce the computation
time and improve the detection accuracy. The efficiency of the pro-
posed system for real-time crack detection is discussed. This paper
is organized as follows: Section 2 presents the details of the rele-
vant deep learning methods. Section 3 provides an overview of
the proposed approach and the database used for model calibra-
tion, and describes the preprocessing steps and network architec-
ture. Section 4 provides the detection results and discusses the
implementation of the proposed method on an unseen testing
dataset. Section 5 provides a comparative study with existing deep
learning methods and two commonly used edge detector methods.
Further discussion and conclusions are presented in the last
section.
2. Methods

2.1. Convolutional neural networks

Deep learning is a subset of ML that is capable of extracting
higher level features from raw data using a multilayered artificial
neural network structure. Deep learning is also known as deep
neural learning or deep neural network. Among such techniques,
CNN is the best-known deep learning architecture. CNNs are
inspired by the biological processes of the animal visual cortex
[31,32]. In visual processing, individual cortical neurons respond
1787
to specific respective fields. The respective fields of different neu-
rons are then partially overlapped to cover the entire visual field.
CNNs employ the mathematical operation convolution for general
matrix multiplication in at least one of their layers [33]. A CNN
usually consists of an input layer, convolutional layers, pooling lay-
ers, fully connected layers, and an output layer. Usually, the input
layer is presented as a tensor of shape (number of images � image
height � image width � image channels). Convolutional layers
apply a number of filters to the local regions of inputs in order to
extract feature maps of the images, with a shape (number of
images � feature map height � feature map width � number of fil-
ters). For example, if the input consists of A images with sizeM � N
pixels and C color channels, the shape of the input tensor will be
A �M � N � C. Supposing that the number of filters is k, the weight

of filter i is Wi, bi is the bias of filter i, xs denotes the filter window
patch, and a is the activation function (like a rectified linear unit
(ReLU), sigmoid, and tanh), then the convolution of xs, given filter
i for each image, is defined as follows:

Zi;s ¼ a sum Wixs
� �

þ bi
h i

ð1Þ

By sliding the filter window through each image with patch
window size f � f � C and stride size s (i.e., the filter moving steps
in each direction) for all dimensions, the convolutional output is
given size N � M � fð Þ=sþ 1b cð Þ � N � fð Þ=sþ 1b cð Þ � k, where f is
filter size, C is image channel number, �b cð Þ is the round-down
function. Fig. 1 depicts the convolution processes of convolutional
layers.

Convolutional layers usually have a pooling layer. The pooling
layers are applied to reduce the dimension of the data by combin-
ing the outputs of neuron clusters at one layer into a single neuron
in the next layer [20]. The pooling process can compute the maxi-
mum or average, depending on the expectation of the outputs. Max
pooling computes the maximum value from each local cluster of
the previous layer and passes it to the next layer. Average pooling
passes the mean value of the local cluster of the previous layer to
the next layer. For example, max pooling of the xs patch can be
denoted as follows:

pools ¼ max xsð Þ ð2Þ
According to previous studies [34], max pooling provides better

performance than average pooling on image datasets. The last lay-
ers of a CNN are fully connected layers, which compute the class
scores. Fully connected layers connect every neuron in one layer
to every neuron in another layer. The flattened matrix goes
through a fully connected layer to classify the images. Widely used
CNN structures normally consist of input layers followed by sev-
eral convolutional layers, pooling layers, fully connected layers,
and output layers [35–37]. Fig. 2 shows an example of a CNN
architecture.

Depending on the convolution dimension and direction, there
are 1D, two-dimensional (2D), and three-dimensional (3D) CNNs.
1D-CNNs conduct convolution calculation in one dimension (along
one axis), while 2D- and 3D-CNNs calculate convolutional values in
two and three directions, respectively. In this study, a 1D-CNN is
applied to extract and learn features of the flattened image fre-
quency signals. Fig. 3 shows a simple example of 1D convolution.

2.2. Long short-term memory

RNNs are a class of deep learning that is suitable for sequential
data. General RNNs have short-term memory issues. If a sequence
is very long, it will be difficult for RNNs to carry information from
the earlier steps to the later steps. In other words, if the processing
signal is very long, RNNs may lose some important information
from the beginning. Moreover, RNNs suffer from the vanishing



Fig. 1. Details of the convolutional layers. (a) Overall convolution process for each image through convolutional layer; (b) detailed convolution process for each individual
filter.

Fig. 2. An example of a CNN architecture. k and h are the number of filters in different layers; Conv means convolutional.

Fig. 3. 1D convolution for N examples.

Q. Zhang, K. Barri, S.K. Babanajad et al. Engineering 7 (2021) 1786–1796
gradient problem during back propagation. For example, if the gra-
dient value becomes extremely small, the learning process would
not be improved significantly. In typical RNNs, small gradients
can stop the layers’ learning process. To solve these issues, an LSTM
approach [38] can be used. LSTM is an invariant RNN architecture
with internal gates that can be used to regulate the flow of infor-
mation. LSTM consists of three thresholding structures to filter
out empty inputs and redundant information and fuse similar
information. Fig. 4 shows the working mechanism of LSTM. Ct�1

and Ct are the cell states in the sequence, which act as conveyor
belts to pass on the information. Three gates are designed to add
1788
information to or remove it from the cell state. Gates are composed
of a sigmoid neural net layer and a pointwise multiplication oper-
ation. The output of the sigmoid layer is between 0 and 1 to
describe how much of each component should be passed through.
The first gate is called the ‘‘forget gate,” and decides what informa-
tion needs to be removed. For example, if the output number
equals 0, this component should be completely removed [38]. Eq.
(3) shows the calculation. The second gate is used to decide what
information needs to be added to the cell state. This consists of
the updated output of the sigmoid layer and a new candidate cre-
ated by a tanh layer. The combination of these two is added to



Fig. 4. Mechanism of LSTM.

Q. Zhang, K. Barri, S.K. Babanajad et al. Engineering 7 (2021) 1786–1796
update the state, as shown in Eqs. (4)–(6). The last step is to decide
what information needs to be output. The cell state is passed
through a sigmoid layer and a tanh layer to generate the final out-
put, as presented in Eqs. (7) and (8).

f t ¼ r Wf ht�1; Xt½ � þ bf
� � ð3Þ

it ¼ r Wi ht�1; Xt½ � þ bið Þ ð4Þ

C
�
t ¼ tanh WC ht�1; Xt½ � þ bCð Þ ð5Þ

Ct ¼ f tCt�1 þ itC
�
t ð6Þ

ot ¼ r Wo ht�1; Xt½ � þ boð Þ ð7Þ

ht ¼ ottanh Ctð Þ ð8Þ

where f t and it are the sigmoid layer outputs; C
�
t is the state that

needs to be added; rð Þ is the sigmoid function; Ct is the current
state; ot is the sigmoid output of the cell state; ht is the output of
the current time step; Wf , Wi, WC , and Wo are the layer weights;
ht�1 and Xt are the output of the previous time step and the input
of the current step, respectively; and bf , bi, bC , and bo are the bias
terms [38]. The LSTM algorithm has been applied to deal with long
sequence signals such as natural languages [39], heart rate signals
[40], and speech signals [41].

3. Proposed method for the real-time detection of concrete
cracks

As discussed in the previous section, CNNs are powerful for fea-
ture extraction. However, feature fusion plays a more important
role in overall model performance. Fully connected layers are
widely used to simply combine extracted features with adjusted
weights. Even though fully connected layers have decent perfor-
mance on feature hybridizing, they are often insufficient to extract
high-level information. To tackle this issue, this study integrates
1D-CNN with LSTM as a feature fusion layer. LSTM has proven to
be efficient in hybridizing features for the long-term dependence
of sequential data [42–48]. In bridge inspection, the input concrete
deck images are single images captured at a certain moment rather
than in a sequence. Therefore, in this study, LSTM is applied to the
feature level instead of the input level. During the 1D-CNN feature
extraction stage, the convolutional kernels are used to scan the
entire image frequency vector to extract the features of all the
objects in the image. Setting the kernel moving strides to be smal-
ler than the kernel size itself ensures that there will be overlapping
parts for each scanning area. Therefore, the feature blocks
1789
extracted by the convolutional kernels are strongly dependent on
each other, and can be treated as sequential data inputs for the
LSTM layer to conduct feature fusion. A fully connected layer is
then applied to further fuse sufficient features obtained from the
previous layers. Fig. 5 presents the framework of the proposed
method for the real-time detection of concrete cracks on bridges.
As shown in this figure, the first step is to collect a database that
includes thousands of images of cracked and non-cracked concrete
bridge decks. The database is then divided into training, validation,
and testing subsets. The training and validation datasets are passed
to the preprocessing stage, where the images are transformed into
the frequency domain. Arguably, the edge shape of the surface
cracks corresponds to high frequencies. Therefore, a high-pass fil-
ter (HPF) is applied to filter out the low frequencies corresponding
to the background. After filtering, the image frequency matrices are
flattened into vector frequency signals. These vectors are used to
train the proposed 1D-CNN-LSTM algorithm. The developed
method is applied to test images by conducting a sliding window
through the whole image. The local window with cracks is kept
in the output image.

3.1. Database

The 1D-CNN-LSTM models are developed using a database con-
taining 4800 images of manually labeled cracked and non-cracked
concrete bridge decks [54]. The database includes cracks as narrow
as 0.06 mm and as wide as 25 mm. The size of the images is
256 � 256 pixels. In order to improve the detection accuracy,
images are broken into sub-images with 64 � 64 pixels. Out of
the 4800 available images, 4300 images are cropped into 17200
small images. Images that are blurry or that include corner cracks
are eliminated. Finally, 16789 images are kept as the datasets for
this study. The remaining 500 bridge deck images are randomly
stitched into 20 images sized 1280 � 1280 pixels for testing the
generalization capacity of the developed classifier.

3.2. Preprocessing of data in the frequency domain

In many studies, images are processed in the spatial domain.
That is to say, images are processed as they are, without further
preprocessing. In the spatial domain, the values of the pixels
change with respect to the scene, and image processing is based
on the pixel values. An arguably more efficient approach to process
images is to transform them into the frequency domain [49].
Images can be transformed from the spatial domain to the fre-
quency domain by conducting a discrete Fourier transform (DFT).
In the frequency domain, the value and location are represented
by sinusoidal relationships that depend upon the frequency of a
pixel occurring within an image. In this domain, a pixel location



Fig. 5. The framework of the proposed method. FFT: fast Fourier transform.

Q. Zhang, K. Barri, S.K. Babanajad et al. Engineering 7 (2021) 1786–1796
is represented by its x- and y-frequencies, and its value is repre-
sented by an amplitude. Images can be transformed to the fre-
quency domain in order to determine which pixels contain more
important information and whether repeating patterns occur. In
other words, in the frequency domain, we deal with the rate at
which the pixel values are changing in the spatial domain. Since
the frequencies of images relate to the pixel value changing rate,
the images’ frequency components are divided into two parts:
high-frequency components, which correspond to edges in an
image; and low-frequency components, which correspond to
smooth regions. Many researchers have applied this property to
image filtering, compression, and reconstruction [50–52]. The
DFT is a sampled Fourier transform; therefore, it does not contain
all the frequencies forming an image, but only contains a set of
samples that is large enough to fully describe the spatial domain
image. The number of frequencies corresponds to the number of
pixels in the spatial domain image, so the images in the spatial
and Fourier domains are of the same size. For an image with size
M � N, the 2D DFT of the image can be presented as follows:
F k; lð Þ ¼
XM�1

x¼0

XN�1

y¼0

f x; yð Þexp �i2p
kx
M

þ ly
N

� �� 	
ð9Þ
where f x; yð Þ is the image pixel in the spatial domain, and

exp �i2p kx
M þ ly

N

� �h i
is the basis function corresponding to each point

F k; lð Þ in the frequency domain. The equation can be interpreted as
follows: The value of each point F k; lð Þ is obtained by multiplying
the spatial image with the corresponding base function and sum-
ming the result.

On the other hand, images in the frequency domain can be
transformed back into the spatial domain. The inverse Fourier
transform is given by the following equation:
f x; yð Þ ¼ 1
MN

XM�1

k¼0

XN�1

l¼0

F k; lð Þexp i2p
kx
M

þ ly
N

� �� 	
ð10Þ

For large images, a fast Fourier transform (FFT) usually reduces
the dimension complexity and computation time. The FFT pro-
duces complex values, which include the real and imaginary part
or the magnitude and phase. In image processing, only the magni-
1790
tude is usually displayed, because it contains most of the geometric
structure information of the spatial domain. The magnitude and
phase can be presented as follows:

F k; lð Þj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re k; lð Þ2 þ Im k; lð Þ2

q
ð11Þ
/ k; lð Þ ¼ tan�1 Im k; lð Þ
Re k; lð Þ

� 	
ð12Þ

where F k; lð Þj j is the magnitude, / k; lð Þ is the phase, and Re k; lð Þ
and Im k; lð Þ are the real part and imaginary part of the FFT output.
F k; lð Þ has a low frequency at the corners of the image but high-
frequency areas in the center, which is inconvenient to interpret.
Thus, the zero frequency will usually be shifted to the center.
Fig. 6 shows the shift of the frequency image center [53].

Converting images into the frequency domain can significantly
speed up the CNN training. Training the network with raw images,
as is done in the spatial domain by 2D convolution, is not an effi-
cient solution for bridge deck data. Instead, the training is per-
formed in the frequency domain, which is more like 1D signal
pattern recognition. Therefore, in the preprocessing stage, images
in RGB channels are read into a grayscale image matrix first. Then,
FFT is applied to each image in the image matrix. The center of the
frequency images is shifted, and the magnitude of each image is
calculated. Fig. 7 demonstrates the significant difference between
the frequency distribution of images with cracks and without
cracks. As shown in Fig. 7, the frequency spectrum has line-
shaped sparks for the image with cracks but does not have such
sparks for the image without cracks. Low frequencies correspond-
ing to smooth background regions are eliminated using an HPF.
Obviously, the main difference between the crack and non-crack
images is in the high-frequency domain. A frequency filter ratio
equal to 0.5 means that only the top 50% high frequencies are kept.
Ratios from 0.2 to 0.7 are tested to obtain the best performance.
Finally, 0.5 is selected to define the threshold. Any frequency
higher than the threshold is kept, and all low frequencies are
replaced with 0. After filtering, a frequency amplitude matrix is
calculated for each image and flattened to a frequency amplitude
vector. Fig. 8 shows the original and filtered amplitudes of crack
and non-crack images. The preprocessed image data are reshaped
into a matrix with shape (number of images � length of flattened



Fig. 6. A 2D image frequency center shift, where u and v are spatial frequency.

Fig. 7. (a) Crack image; (b) frequency spectrum for crack image; (c) non-crack image; (d) frequency spectrum for non-crack image.

Fig. 8. (a) Amplitude for crack image; (b) filtered amplitude for crack image; (c) amplitude for non-crack image; (d) filtered amplitude of non-crack image.

Q. Zhang, K. Barri, S.K. Babanajad et al. Engineering 7 (2021) 1786–1796

1791



Q. Zhang, K. Barri, S.K. Babanajad et al. Engineering 7 (2021) 1786–1796
frequency vector � 1). The reshaped data are used to develop the
1D-CNN with LSTM as the input layer.
3.3. The 1D-CNN-LSTM model architecture

The optimal 1D-CNN-LSTM architecture is selected via an
extensive trial-and-error approach and developed using
TensorFlow modules [55]. The optimal network consists of an
input layer, four sets of convolutional layers followed by a max
pooling layer, an LSTM layer, two fully connected layers, and an
output layer. For each convolutional layer, batch normalization is
applied. The ReLU function is used as the activation function for
the convolutional layers. Sigmoid and softmax functions are con-
sidered as the activation functions for the first and second fully
connected layers, respectively. The total network parameters are
230082, and the trainable parameters are 229378. For the training
process, a stochastic gradient descent is chosen as the optimizer
with a minibatch size of 32 out of 16789 images. An adaptive
and logarithmically decreasing learning rate is adopted to speed
up the convergence. The initial learning rate and weight decay
are 0.1 and 0.0001, respectively. A momentum value of 0.9 is
applied to avoid overfitting. Furthermore, dropout is added after
the LSTM layer and first fully connected layer. The dropout ratio
is set to 0.5. Early stopping is also added to the network, which
stops training when the model performance does not improve sig-
nificantly. Table 1 shows the architecture of the proposed 1D-CNN-
LSTM model.
Fig. 9. (a) Loss and (b) accuracy of the developed 1D-CNN-LSTM model.
4. Crack-detection results

4.1. Performance analysis

The ratio of the crack to non-crack images in the database is 1:2.
The preprocessed database of 16789 manually labeled images is
randomly divided into the training, validation, and testing sets
with respective percentages of 70%, 15%, and 15%. Fig. 9 shows
the loss and accuracy for the training and validation procedure.
The proposed method yields high accuracy on the training and val-
idation data. The maximum training and validation accuracy are,
respectively, 99.05% and 98.9%, achieved at the 49th and 40th
epochs. The testing accuracy is 99.25%. The best model is saved
to be applied to the unseen testing dataset. The simulations
are conducted on a desktop computer with Intel� Xeon� CPU
Table 1
The architecture of the 1D-CNN-LSTM model.

Layer (type) Output shape Number of para

Layer 1 conv1d_1 (Conv1D) (Input#, 4096, 32) 128
BN_1 (Batch Normalization) (Input#, 4096, 32) 128
activation_1 (Activation) (Input#, 4096, 32) 0
Maxpooling_1 (MaxPooling) (Input#, 2047, 32) 0

Layer 2 conv1d_2 (Conv1D) (Input#, 2047, 64) 6 208
BN_2 (Batch Normalization) (Input#, 2047, 64) 265
activation_2 (Activation) (Input#, 2047, 64) 0
Maxpooling_2 (MaxPooling) (Input#, 511, 64) 0

Layer 3 conv1d_3 (Conv1D) (Input#, 511, 128) 24 704
BN_3 (Batch Normalization) (Input#, 511, 128) 512
activation_3 (Activation) (Input#, 511, 128) 0
Maxpooling_3 (MaxPooling) (Input#, 127, 128) 0

Layer 4 conv1d_4 (Conv1D) (Input#, 127, 128) 49 280
BN_4 (Batch Normalization) (Input#, 127, 128) 512
activation_4 (Activation) (Input#, 127, 128) 0
Maxpooling_4 (MaxPooling) (Input#, 31, 128) 0

Layer 5 lstm_1 (LSTM) (Input#, 128) 131 584
Layer 6 dense_1 (Dense) (Input#, 128) 16 512
Layer 7 dense_2 (Dense) (Input#, 2) 258

1792
E5-1650 v4 @ 3.60 GHz, NVIDIA Quadro K420 GPU, and 31.9 GB
RAM. The total training time is 1 h 12 min 4 s.

4.2. Implementation of the 1D-CNN-LSTM model

An implementation running code is developed in Python 3.7 for
concrete bridge crack detection. Following the procedure described
in Section 3, large-scale images are broken into small image groups
with a size of 64 � 64 pixels. Each image group is transformed into
the frequency domain and filtered with the same scale HPF. The
developed model is then applied as a local window sliding through
each image group to classify small images in the group as crack or
meters Filter size Number of filters Stride Activation function

3 32 1 —
— — — —
— — — ReLU
4 — 2 —
3 64 1 —
— — — —
— — — ReLU
4 — 4 —
3 128 1 —
— — — —
— — — ReLU
4 — 4 —
3 128 1 —
— — — —
— — — ReLU
4 — 4 —
— — — —
— — — Sigmoid
— — — Softmax



Q. Zhang, K. Barri, S.K. Babanajad et al. Engineering 7 (2021) 1786–1796
non-crack images. In order to obtain more continuous cracks, an
overlapped local sliding window is applied. Fig. 10 provides a brief
description of the sliding process. As shown in the Fig. 11, the
detected cracks are more continuous after using the overlapped
sliding window. Small images with cracks are kept as the output
and restored to their original location in the large-scale image.
All other small images without cracks are eliminated. Fig. 12 shows
the crack-detection implementation framework. As discussed
before, 500 images sized 256� 256 pixels are stitched into 20 large
images sized 1280 � 1280 pixels to test the generalization of the
trained model. For each image, the time for output generation is
Fig. 10. A schematic representation of the overlapped sliding window.

Fig. 11. Detected cracks using the overlapped and non-overlapped windows.

Fig. 12. The 1D-CNN-LSTM implementation

1793
merely 5–7 s. Fig. 13 presents the crack-detection results for two
of the tested images. The implementation accuracy is calculated
as follows:

ACC ¼ TPþ TN
TPþ TNþ FPþ FN

� 100% ð13Þ

ER ¼ 100%� ACC ð14Þ
where ACC and ER are the accuracy percentage and error rate,
respectively; TP, TN, FP, and FN are the number of true positives,
true negatives, false positives, and false negatives, respectively.
Referring to Fig. 13, the implementation accuracies are 98.5% and
97.75%; accordingly, the error rates are 1.5% and 2.25%.
5. Comparative study

In order to provide insight into the implementation speed and
accuracy of the proposed 1D-CNN-LSTM method, it was compared
with existing deep learning methods and two commonly used edge
detectors: namely, the Canny [56] and Sobel [57] detectors. Almost
all existing studies in the area of deep learning for crack detection
are based on the use of classic CNN structures and training images
in the spatial domain [29,30]. Therefore, a 2D-CNN network similar
to the model recently proposed by Cha et al. [29] was also devel-
oped in this study. The same database was used for the training,
validation, and testing of the 2D-CNN method. The details of the
2D-CNN architecture are shown in Table 2. The total parameters
and trainable parameters are 896770 and 896322, respectively.
Table 3 summarizes the comparative study results. As seen in this
table, the proposed method not only provides better detection per-
formance, but also requires significantly fewer total and trainable
parameters. The most important observation here is that the com-
putation cost of the 2D-CNN method is about 129% and 710%
higher than the proposed 1D-CNN-LSTM approach for the calibra-
tion and implementation phases, respectively. The slow processing
speed of the 2D-CNN and other existing deep-learning-based
methods pertains to the fact that they deal with images in the spa-
tial domain. Also, applying the HPF in the preprocessing stage
reduces redundant data information, leading to faster processing.
The fast implementation of 1D-CNN-LSTM makes it ideal for the
real-time detection of cracks on bridge decks. Furthermore,
Fig. 14 shows a simple comparison of the 1D-CNN-LSTM, Canny,
and Sobel edge detectors on one of the testing samples. As seen
in this figure, 1D-CNN-LSTM notably outperforms the edge
process for concrete crack detection.



Fig. 14. (a) Original image; (b) output by the proposed 1D-CNN-LSTM method;
(c) output by the Canny edge detector; (d) output by the Sobel edge detector.

Fig. 13. Crack-detection results for two of the tested images.

Q. Zhang, K. Barri, S.K. Babanajad et al. Engineering 7 (2021) 1786–1796
detecting methods. In fact, the Canny method can hardly detect
any cracks, due to the uneven concrete surface, while the partially
detected cracks by the Sobel method are heavily affected by the
noisy background.
6. Conclusions

In this study, a new concrete crack-detection method was
presented that integrates 1D-CNN, LSTM, and a learning process
Table 2
The architecture of the classical 2D-CNN network for crack detection.

Layer (Type) Output shape Number of pa

Layer 1 conv2d_1 (Conv2D) (Input#, 64, 64, 32) 320
BN_1 (Batch Normalization) (Input#, 64, 64, 32) 128
activation_1 (Activation) (Input#, 64, 64, 32) 0
Maxpooling_1 (MaxPooling) (Input#, 63, 63, 32) 0

Layer 2 conv2d_2 (Conv2D) (Input#, 63, 63, 64) 18 496
BN_2 (Batch Normalization) (Input#, 63, 63, 64) 265
activation_2 (Activation) (Input#, 63, 63, 64) 0
Maxpooling_2 (MaxPooling) (Input#, 31, 31, 64) 0

Layer 3 conv2d_3 (Conv2D) (Input#, 31, 31, 128) 73 856
BN_3 (Batch Normalization) (Input#, 31, 31, 128) 512
activation_3 (Activation) (Input#, 31, 31, 128) 0
Maxpooling_3 (MaxPooling) (Input#, 7, 7, 128) 0
Flatten () (Input#, 6272) 0

Layer 4 dense_1 (Dense) (Input#, 128) 802 944
Layer 5 dense_2 (Dense) (Input#, 2) 258

Table 3
A comparison of the 2D-CNN and 1D-CNN-LSTM methods.

Method Total
parameters

Trainable
parameters

Training
accuracy

Standard 2D-CNN 896 770 896 322 98.52%
1D-CNN-LSTM 230 082 229 378 99.05%

1794
in the image frequency domain. Thousands of images of cracked
and non-cracked concrete bridge decks were used to train, validate,
and test the proposed 1D-CNN-LSTM algorithm. The accuracy of
the 1D-CNN-LSTM model was found to be 99.05%, 98.90%, and
99.25%, respectively, on the training, validation, and testing data-
sets. The implementation framework was able to successfully
deploy the well-trained model for the detection of cracks on unla-
beled large-scale images with high accuracy. Although the rate of
false positives and negatives was satisfactory in the implementa-
tion, the performance of the model can still be improved by
including more training data. The proposed method was compared
with an existing deep-learning-based method and two edge
detectors. The comparison results showed that the performance
rameters Filter size Number of filters Stride Activation function

3 32 1 —
— — — —
— — — ReLU
2 — 1 —
3 64 1 —
— — — —
— — — ReLU
2 — 2 —
3 128 1 —
— — — —
— — — ReLU
4 — 4 —
— — — —
— — — Sigmoid
— — — Softmax

Validation
accuracy

Testing
accuracy

Training time Implementation
output time

98.12% 97.80% 2 h 45 min 16 s 38–59 s per image
98.90% 99.25% 1 h 12 min 4 s 5–7 s per image



Q. Zhang, K. Barri, S.K. Babanajad et al. Engineering 7 (2021) 1786–1796
of 1D-CNN-LSTM is superior to the compared methods. One of the
significant advantages of the 1D-CNN-LSTM method over other
studied CNN algorithms is its significantly faster training and
implementation time. This issue is critical for real-time concrete
crack detection, especially for autonomous bridge inspection using
unmanned aerial vehicles. This observation clearly validates the
efficiency of data preprocessing in the frequency domain. Future
research can focus on developing models using larger and more
diverse datasets. Integrating other efficient deep learning methods
such as Yolo with LSTM in the frequency domain can also be a suit-
able topic for future research.

Ethical statement

Authors state that the research was conducted according to eth-
ical standards.

This research does not involve human participants and/or ani-
mals. I confirm that this work is original and has not been pub-
lished elsewhere. This submission is approved by all the authors
and, if accepted, will not be published elsewhere in the same form,
in English or in any other language, without the written consent of
the copyright holder.

Acknowledgments

The research reported on in this paper was conducted under a
project sponsored by the Impactful Resilient Infrastructure Science
and Engineering (IRISE) public/private research consortium. At the
time of publication, the consortium included the Pennsylvania
Department of Transportation, the Federal Highway Administra-
tion (ex officio), Allegheny County, the Pennsylvania Turnpike Com-
mission, Golden Triangle Construction, and Michael Baker
International. IRISE was established in the Civil and Environmental
Engineering Department in the University of Pittsburgh’s Swanson
School of Engineering to study problems related to transportation
infrastructure durability and resiliency.

Compliance with ethics guidelines

Qianyun Zhang, Kaveh Barri, Saeed K. Babanajad, and Amir H.
Alavi declare that they have no conflict of interest or financial con-
flicts to disclose.

The contents of this report reflect the views of the authors, who
are responsible for the facts and the accuracy of the data presented
herein. The contents do not necessarily reflect the official views or
policies of any member of the IRISE research consortium at the
time of publication. This report does not constitute a standard,
specification, or regulation.

References

[1] ASCE’s 2017 infrastructure report card: bridges [Internet]. Reston: American
Society of Civil Engineers; 2017 [cited 2017 Oct 11]. Available from: https://
www.infrastructurereportcard.org/cat-item/bridges/.

[2] Spencer BF Jr, Hoskere V, Narazaki Y. Advances in computer vision-based civil
infrastructure inspection and monitoring. Engineering 2019;5(2):199–222.

[3] Bao Y, Chen Z, Wei S, Xu Y, Tang Z, Li H. The state of the art of data science and
engineering in structural health monitoring. Engineering 2019;5(2):234–42.

[4] Fujino Y, Siringoringo DM, Ikeda Y, Nagayama T, Mizutani T, Fujino ZY, et al.
Research and implementations of structural monitoring for bridges and
buildings in Japan. Engineering 2019;5(6):1093–119.

[5] Ansari F. Sensing issues in civil structural health monitoring. New
York: Springer; 2005.

[6] Babanajad SK, Zhan Y, Taylor T, Ansari F. Virtual reference approach for
dynamic distributed sensing of damage in large structures. J Aerosp Eng
2017;30(2):1–12.

[7] Iyer S, Sinha SK. A robust approach for automatic detection and segmentation
of cracks in underground pipeline images. Image Vis Comput 2005;23
(10):921–33.
1795
[8] Salman M, Mathavan S, Kamal K, Rahman M. Pavement crack detection using
the Gabor filter. In: Proceedings of the 16th International IEEE Conference on
Intelligent Transportation Systems; 2013 Oct 6–9; Hague, the Netherlands;
2014.

[9] Talab AMA, Huang Z, Xi F, HaiMing L. Detection crack in image using Otsu
method and multiple filtering in image processing techniques. Optik 2016;127
(3):1030–3.

[10] Shan B, Zheng S, Ou J. A stereovision-based crack width detection approach for
concrete surface assessment. KSCE J Civ Eng 2016;20(2):803–12.

[11] Sinha SK, Fieguth PW. Automated detection of cracks in buried concrete pipe
images. Autom Construct 2006;15(1):58–72.

[12] Zou Q, Cao Y, Li Q, Mao Q, Wang S. CrackTree: automatic crack detection from
pavement images. Pattern Recognit Lett 2012;33(3):227–38.

[13] Fujita Y, Hamamoto Y. A robust automatic crack detection method from noisy
concrete surfaces. Mach Vis Appl 2011;22(2):245–54.

[14] Plehiers PP, Symoens SH, Amghizar I, Marin GB, Stevens CV, Van Geem KM.
Artificial intelligence in steam cracking modeling: a deep learning algorithm
for detailed effluent prediction. Engineering 2019;5(6):1027–40.

[15] Shang C, You F. Data analytics and machine learning for smart process
manufacturing: recent advances and perspectives in the big data era.
Engineering 2019;5(6):1010–6.

[16] Liu SW, Huang JH, Sung JC, Lee CC. Detection of cracks using neural networks
and computational mechanics. Comput Methods Appl Mech Eng 2002;191
(25–26):2831–45.

[17] Moon H, Kim J. Intelligent crack detecting algorithm on the concrete crack
image using neural network. In: Proceedings of the 28th International
Symposium on Automation and Robotics in Construction; 2011 Jun 29–Jul 2;
Seoul, Republic of Korea; 2011.

[18] O’Byrne M, Ghosh B, Schoefs F, Pakrashi V. Regionally enhanced multiphase
segmentation technique for damaged surfaces. Comput Aided Civ Infrastruct
Eng 2014;29(9):644–58.

[19] Prasanna P, Dana KJ, Gucunski N, Basily BB, La HM, Lim RS, et al. Automated
crack detection on concrete bridges. IEEE Trans Autom Sci Eng 2016;13
(2):591–9.

[20] Ciresan DC, Meier U, Masci J, Gambardella LM, Schmidhuber J. Flexible, high
performance convolutional neural networks for image classification. In:
Proceedings of the 22nd International Joint Conference on Artificial
Intelligence; 2011 Jul 16–22; Barcelona, Spain; 2011.

[21] Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep
convolutional neural networks. Adv Neural Inf Process Syst 2012;1:1097–105.

[22] Abdeljaber O, Avci O, Kiranyaz MS, Boashash B, Sodano H, Inman DJ. 1-D CNNs
for structural damage detection: verification on a structural health monitoring
benchmark data. Neurocomputing 2018;275:1308–17.

[23] De Oliveira MA, Monteiro AV, Filho JV. A new structural health monitoring
strategy based on PZT sensors and convolutional neural network. Sensors
2018;18(9):1–21.

[24] Khodabandehlou H, Pekcan G, Fadali MS, Pekcan G, Fadali MS. Vibration-based
structural condition assessment using convolution neural networks. Struct
Contr Health Monit 2018;26(2):e2308.

[25] Tabian I, Fu H, Khodaei ZS. A convolutional neural network for impact
detection and characterization of complex composite structures. Sensors
2019;19(22):4933.

[26] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521(7553):436–44.
[27] Azimi M, Pekcan G. Structural health monitoring using extremely compressed

data through deep learning. Comput-Aided Civ Infrastruct Eng
2020;35:597–614.

[28] Soukup D, Huber-Mörk R. Convolutional neural networks for steel surface
defect detection from photometric stereo images. In: Bebis G, Boyle R, Parvin B,
Koracin D, McMahan R, Jerald J, editors. Advances in visual
computing. Cham: Springer; 2014. p. 668–77.

[29] Cha YJ, Choi W, Büyüköztürk O. Deep learning-based crack damage detection
using convolutional neural networks: deep learning-based crack damage
detection using CNNs. Comput Aided Civ Infrastruct Eng 2017;32(5):
361–78.

[30] Da Silva WRL, de Lucena DS. Concrete cracks detection based on deep learning
image classification. Proceedings 2018;2(8):489.

[31] Matsugu M, Mori K, Mitari Y, Kaneda Y. Subject independent facial expression
recognition with robust face detection using a convolutional neural network.
Neural Netw 2003;16(5–6):555–9.

[32] Fukushima K. Neocognitron. Scholarpedia 2007;2(1):1717.
[33] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521:436–44.
[34] Scherer D, Muller A, Behnke S. Evaluation of pooling operations in

convolutional architectures for object recognition. In: Proceedings of the
20th International Conference on Artificial Neural Networks; 2010 Sep 15–18;
Thessaloniki, Greece; 2010.

[35] Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw
2015;61:85–117.

[36] Donahue J, Jia Y, Vinyals O, Hoffman J. DeCAF: a deep convolutional activation
feature for generic visual recognition. In: Proceedings of the 31st International
Conference on Machine Learning; 2014 Jun 21–26; Beijing, China; 2014.
p. 647–55.

[37] Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, LeCun Y. Overfeat:
integrated recognition, localization and detection using convolutional
networks. 2013. ArXiv:1312.6229.

[38] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput 1997;9
(8):1735–80.

http://refhub.elsevier.com/S2095-8099(20)30330-1/h0010
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0010
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0015
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0015
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0020
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0020
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0020
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0025
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0025
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0030
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0030
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0030
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0035
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0035
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0035
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0040
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0040
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0040
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0040
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0045
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0045
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0045
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0050
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0050
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0055
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0055
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0060
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0060
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0065
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0065
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0070
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0070
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0070
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0075
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0075
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0075
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0080
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0080
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0080
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0090
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0090
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0090
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0095
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0095
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0095
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0100
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0100
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0100
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0100
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0105
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0105
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0110
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0110
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0110
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0115
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0115
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0115
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0120
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0120
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0120
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0125
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0125
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0125
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0130
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0135
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0135
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0135
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0140
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0140
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0140
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0140
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0145
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0145
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0145
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0145
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0150
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0150
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0155
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0155
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0155
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0160
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0165
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0175
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0175
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0190
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0190


Q. Zhang, K. Barri, S.K. Babanajad et al. Engineering 7 (2021) 1786–1796
[39] Gers FA, Schmidhuber E. LSTM recurrent networks learn simple context-free
and context-sensitive languages. IEEE Trans Neural Netw 2001;12
(6):1333–40.

[40] Swapna G, Kp S, Vinayakumar R. Automated detection of diabetes using CNN
and CNN-LSTM network and heart rate signals. Procedia Comput Sci
2018;132:1253–62.

[41] Zhao J, Mao X, Chen L. Speech emotion recognition using deep 1D & 2D CNN
LSTM networks. Biomed Signal Process Control 2019;47:312–23.

[42] Greff K, Srivastava RK, Koutník J, Steunebrink BR, Schmidhuber J. LSTM: a
search space odyssey. IEEE Trans Neural Netw Learn Syst 2017;28
(10):2222–32.

[43] Wang J, Zhang J, Wang X. Bilateral LSTM: a two-dimensional long short-term
memory model with multiply memory units for short-term cycle time
forecasting in re-entrant manufacturing systems. IEEE Trans Ind Inf 2018;14
(2):748–58.

[44] Tsironi E, Barros P, Weber C, Wermter S. An analysis of convolutional long
short-term memory recurrent neural networks for gesture recognition.
Neurocomputing 2017;268:76–86.

[45] Oehmcke S, Zielinski O, Kramer O. Input quality aware convolutional LSTM
networks for virtual marine sensors. Neurocomputing 2018;275:2603–15.

[46] Zhou X, Hu B, Chen Q, Wang X. Recurrent convolutional neural network for
answer selection in community question answering. Neurocomputing
2018;274:8–18.

[47] Sainath TN, Vinyals O, Senior A, Sak H. Convolutional longshort-term memory
fully connected deep neural networks. In: Proceedings of the IEEE
1796
International Conference on Acoustics, Speech and Signal Processing; 2015
Apr 19–24; South Brisbance, QLD, Australia; 2015.

[48] Liu T, Bao J, Wang J, Zhang Y. A hybrid CNN–LSTM algorithm for online defect
recognition of CO2 welding. Sensors 2018;18(12):4369.

[49] Das A. Interpretation and processing of image in frequency domain. In: Guide
to signals and patterns in image processing. Berlin: Springer; 2015. p. 93–147.

[50] Chang SG, Yu B, Vetterli M. Adaptive wavelet thresholding for image denoising
and compression. IEEE Trans Image Process 2000;9(9):1532–46.

[51] Zhang M, Gunturk BK. Multiresolution bilateral filtering for image denoising.
IEEE Trans Image Process 2008;17(12):2324–33.

[52] Portilla J, Strela V, Wainwright MJ, Simoncelli EP. Image denoising using scale
mixtures of Gaussians in the wavelet domain. IEEE Trans Image Process
2003;12(11):1338–51.

[53] Gonzalez RC, Woods RE, Masters BR. Digital image processing. 3rd
edition. Upper Saddle River: Prentice Hall; 2008.

[54] Maguire M, Dorafshan S, Thomas R. SDNET2018: a concrete crack image
dataset for machine learning applications. Logan: Utah State University;
2018.

[55] Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow:
large-scale machine learning on heterogeneous distributed systems. 2016.
arXiv:1603.04467.

[56] Canny J. A computational approach to edge detection. IEEE Trans Pattern Anal
Mach Intell 1986;8(6):679–98.

[57] Sobel I, Feldman G. A 3 � 3 isotropic gradient operator for image processing. A
talk at the stanford Artificial Project. 1968:271–2.

http://refhub.elsevier.com/S2095-8099(20)30330-1/h0195
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0195
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0195
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0200
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0200
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0200
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0205
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0205
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0210
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0210
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0210
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0215
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0215
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0215
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0215
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0220
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0220
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0220
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0225
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0225
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0230
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0230
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0230
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0240
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0240
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0240
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0245
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0245
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0250
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0250
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0255
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0255
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0260
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0260
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0260
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0265
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0265
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0270
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0270
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0270
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0280
http://refhub.elsevier.com/S2095-8099(20)30330-1/h0280

	Real-Time Detection of Cracks on Concrete Bridge Decks Using Deep Learning in the Frequency Domain
	1 Introduction
	2 Methods
	2.1 Convolutional neural networks
	2.2 Long short-term memory

	3 Proposed method for the real-time detection of concrete cracks
	3.1 Database
	3.2 Preprocessing of data in the frequency domain
	3.3 The 1D-CNN-LSTM model architecture

	4 Crack-detection results
	4.1 Performance analysis
	4.2 Implementation of the 1D-CNN-LSTM model

	5 Comparative study
	6 Conclusions
	Ethical statement
	ack16
	Acknowledgments
	Compliance with ethics guidelines
	References


