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Particulate matter with an aerodynamic diameter no greater than 2.5 lm (PM2.5) concentration forecast-
ing is desirable for air pollution early warning. This study proposes an improved hybrid model, named
multi-feature clustering decomposition (MCD)–echo state network (ESN)–particle swarm optimization
(PSO), for multi-step PM2.5 concentration forecasting. The proposed model includes decomposition and
optimized forecasting components. In the decomposition component, an MCD method consisting of
rough sets attribute reduction (RSAR), k-means clustering (KC), and the empirical wavelet transform
(EWT) is proposed for feature selection and data classification. Within the MCD, the RSAR algorithm is
adopted to select significant air pollutant variables, which are then clustered by the KC algorithm. The
clustered results of the PM2.5 concentration series are decomposed into several sublayers by the EWT
algorithm. In the optimized forecasting component, an ESN-based predictor is built for each decomposed
sublayer to complete the multi-step forecasting computation. The PSO algorithm is utilized to optimize
the initial parameters of the ESN-based predictor. Real PM2.5 concentration data from four cities located
in different zones in China are utilized to verify the effectiveness of the proposed model. The experimen-
tal results indicate that the proposed forecasting model is suitable for the multi-step high-precision fore-
casting of PM2.5 concentrations and has better performance than the benchmark models.

� 2020 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

With the growth of urban industry in developing countries and
regions, air pollution has become a difficult issue that is attracting
attention all over the world. In recent years, hazy weather has
appeared in most regions of China, and air quality has become a
national strategic problem. Particulate matter with an aerody-
namic diameter no greater than 2.5 lm (PM2.5) contains a large
number of toxic and harmful substances [1]. PM2.5 is the most
common air pollutant and has a negative impact on human health
and air quality [2]. Previous studies have shown that PM2.5 pollu-
tion has a direct impact on the respiratory and cardiovascular sys-
tems, and is closely related to the incidence and mortality of lung
cancer [3]. In addition, PM2.5 has a bad influence on the weather
and climate. For example, PM2.5 may cause abnormal rainfall and
aggravate the greenhouse effect [4–7].
Given the serious negative impact of PM2.5 on people’s lives,
increasing attention is being paid to PM2.5 concentration forecast-
ing. PM2.5 concentration forecasting is considered to be an impor-
tant and effective method for alleviating the negative effect of
PM2.5 [8]. This method is also important for applications of urban
big data in the development of smart cities [9].

1.1. Related works

PM2.5 concentration forecasting methods can be divided into
four types: physical models, statistical models, artificial intelli-
gence models, and hybrid models.

Physical models focus on understanding the potentially com-
plex emissions, transport, and conversion processes of meteorologi-
cal and chemical factors [10]. The physical method yields accurate
prediction results. However, physical models require sufficient
emission information on air pollution [11] and their calculation
cost is high [12]. Statistical models overcome the disadvantage of
physical methods, as they require simple samples and have a fast
calculation speed [13]. However, statistical models do not
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Table 1
Main studies on PM2.5 concentration forecasting in the past four years.

Reference Feature
selection

Decomposition Predictor

[16] None CEEMD SVR optimized by GWO
[21] None None The CAMS
[22] None EMD LS-SVR
[23] PCA None LS-SVR optimized by CSO
[24] None None WRF-Chem
[25] None CEEMD SVR optimized by CPSOGA
[26] None VMD SVR optimized by GWO
[17] PSR WPD and CEEMD LS-SVR optimized by CPSO-GA
[20] GBRT WPD MLP optimized by LPBoost
[27] None WPD BPNN optimized by PSO
[28] None None NAQPMS
[18] None WT ANN and SVM
[19] None WD and VMD LSTM

PCA: principal component analysis; PSR: phase space reconstruction; GBRT:
gradient-boosted regression tree; CEEMD: complete ensemble empirical mode
decomposition; EMD: empirical mode decomposition; VMD: variational mode
decomposition; WPD: wavelet packet decomposition; WT: wavelet transform; WD:
wavelet decomposition; SVR: support vector regression; GWO: grey wolf
optimization; CAMS: Copernicus Atmosphere Monitoring Service; LS-SVR: least-
squares support vector regression; CSO: cuckoo search optimization; WRF-Chem:
weather research and forecasting model with chemistry; CPSO-GA: combined
particle swarm optimization with genetic algorithm; MLP: multi-layer perceptron;
LPBoost: linear programming boosting; BPNN: backpropagation neural network;
NAQPMS: Nested Air Quality Prediction Model System; ANN: artificial neural
network; SVM: support vector machine; LSTM: long-short term memory network.
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sufficiently consider the covariance among various influential fac-
tors, because they are generally based on limited samples. A single
artificial intelligence model can describe the rule of the nonlinear
system and has great advantages in dealing with big data [14].
However, the disadvantage of such a model lies in the calculation
costs of the neural network, which are greater than those of a sta-
tistical model. Moreover, the training process of the neural net-
work has a certain volatility, so its output may not be the
optimal result [15].

Considering the limitations of the above methods, hybrid mod-
els have been widely used in air pollution prediction. Hybrid mod-
els usually combine three parts: data preprocessing, feature
selection, and a predictor. Data preprocessing can sort out complex
data relationships in the original data and make it more stationary.
Feature selection can improve the input data structure and reduce
the difficulty of model training caused by a too-high dimension.
Hybrid models can integrate the advantages of each algorithm to
achieve better model performance. Many related works have
shown that hybrid models tend to have better predictive perfor-
mance [16–20]. Table 1 [16–28] lists some cutting-edge research
on hybrid PM2.5 concentration forecasting to better illustrate the
application of hybrid methods in PM2.5 concentration forecasting.

Feature selection is rarely used in the current hybrid PM2.5 con-
centration forecasting models listed in Table 1. However, if the
input of a PM2.5 concentration forecasting model includes many
features, such as PM2.5, PM10, sulfur dioxide (SO2), and ozone
(O3), it may cause difficulties in the PM2.5 concentration forecasting
model training and increase the training time. This also affects the
robustness of the PM2.5 concentration forecasting model [29]. At
the same time, complex input data may lead to overfitting of the
model and may reduce the accuracy of the model [30]. At present,
common feature selection algorithms include the principal compo-
nents analysis (PCA), phase space reconstruction (PSR), and
gradient-boosted regression tree (GBRT). However, these methods
may be unsuitable for air pollutant concentration sequences
because they assume a linear system, which may lead to problems
such as not achieving global optimal reduction. The rough sets
attribute reduction (RSAR) algorithm, which is based on fuzzy the-
ory, has the advantages of clear stop criteria and no parameters
[31]. RSAR can obtain the important attribute set of the target attri-
bute through the dependency between different attributes. The
RSAR algorithm is a hot research topic [32]. Clustering algorithms
are commonly used in data mining and analysis [33]. Various clus-
tering methods exist, such as k-means clustering (KC) [34], possi-
bilistic c-means (PCM) [35], cure clustering [36], and so forth.
Compared with others, the KC algorithm has the advantages of a
simple principle, fast computing speed, and excellent clustering
results; thus, the KC algorithm is the most widely used clustering
algorithm at present. Combining the RSAR algorithm and the KC
algorithm makes it possible to use RSAR to provide reasonable
clustering objects for the KC algorithm, which is a valuable
research point.

Decomposition mainly focuses on the wavelet theory method in
Table 1. The decomposition algorithm can divide the original data
into a series of more stable sublayers according to the different
time scales. Compared with empirical mode decomposition
(EMD), ensemble empirical mode decomposition (EEMD), and
complex empirical mode decomposition (CEMD), the empirical
wavelet transform (EWT) algorithm can adaptively divide the
Fourier spectrum and select the appropriate wavelet filter banks
[37]. The clustering method can also be employed for decomposi-
tion in PM2.5 concentration forecasting fields. The clustering algo-
rithm can classify the original data according to different air
pollutant scenarios. The influence of sample diversity on the model
training can be reduced by clustering. However, few studies use a
clustering algorithm with a decomposition algorithm in hybrid
PM2.5 concentration forecasting.

The predictors shown in Table 1 are commonly used physical
methods, machine learning, and artificial neural networks (ANNs).
Although the Copernicus Atmosphere Monitoring Service (CAMS),
weather research and forecasting model with chemistry (WRF-
Chem), and Nested Air Quality Prediction Model System (NAQPMS)
have accurate prediction results, they require complex data and an
understanding of a variety of physical and chemical relationships.
Therefore, these methods require a great deal of preparatory work
and a high level of professional knowledge. Support vector machi-
nes (SVMs), support vector regression (SVR), and least-squares
support vector regression (LS-SVR) are very demanding in their
choice of parameters, and cannot handle problems with large data.
Traditional neural networks such as the backpropagation neural
network (BPNN) and evolutionary neural network (ENN) need a
great deal of training to build complex neural relationships, and
are easy to overfit. The echo state network (ESN) has a unique
reservoir structure that consists of recurrently connected units.
As a result, the training process of the ESN is simple and effective,
which is suitable for nonlinear systems such as PM2.5 concentra-
tion data [38]. The ESN has been used in other fields such as wind
speed prediction [38]. Therefore, application of the ESN model in
hybrid PM2.5 concentration forecasting is very appropriate.

1.2. The innovation of this study

To summarize the references described above, the
decomposition-based clustering algorithm, nonlinear fuzzy theory
algorithm, and ESN are rarely studied in PM2.5 concentration fore-
casting. This study aims to apply these algorithms for hybrid PM2.5

concentration forecasting. The proposed hybrid PM2.5 prediction
model combines three methods: multi-feature clustering decom-
position (MCD), ESN, and particle swarm optimization (PSO). In
MCD, the RSAR algorithm is adopted to select significant air pollu-
tant concentrations. Then the KC algorithm is used to divide the
original PM2.5 concentration data into several groups according
to the results of the RSAR algorithm. The clustered results for the
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PM2.5 concentration series are automatically decomposed into
several sublayers by the EWT algorithm. An ESN-based predictor
is built for every decomposed sublayer in each clustered group to
complete the multi-step forecasting computation. The forecasted
results from every sublayer are then further integrated to form
the final predicting values. The PSO algorithm is utilized to
optimize the initial parameters of the ESN-based predictor.
The experimental results show that the proposed hybrid model
can accurately predict average hourly concentrations of PM2.5.
The details of the proposed model are explained in Section 2.
2. Methodology

2.1. Framework of the proposed model

The construction procedure of the hybrid MCD–ESN–PSO model
is as follows:

Part A: MCD
This part consists of the RSAR, KC, and EWT algorithms. The raw

air quality data are filtered by the RSAR algorithm, and the filtered
attribute data are clustered by the KC algorithm. The raw data are
divided into several clusters by this step. Then the clustered data of
each cluster are decomposed into sublayers by the EWT algorithm.
Finally, the sublayers are utilized to establish different ESN models.
Through the MCD method, the RSAR algorithm and KC algorithm
can act on the raw data together to achieve the clustering of fea-
tures. Through the decomposition processing of the EWT algo-
rithm, the original time series is finally decomposed into more
and better sublayers. The details of the RSAR, KC, and EWT algo-
rithms are introduced in Sections 2.2–2.4, respectively.

Part B: ESN
The ESN is a basic predictor, which forecasts the decomposed

PM2.5 concentration data. The ESN is composed of an input layer,
reserve pool, and output layer. The main idea of the ESN is to use
the reserve pool to simulate a complex dynamic space that can
change with the input. Referring to Ref. [38], the updated equation
and output state equation of the ESN can be expressed as Eqs. (1)
and (2):

x t þ 1ð Þ ¼ f ½W in � u t þ 1ð Þ þWback � x tð Þ� ð1Þ

y t þ 1ð Þ ¼ ffWout � u t þ 1ð Þ; x t þ 1ð Þ½ �g ð2Þ
where x is input data from reserve pool to output layer; y is output;
t is time; u is input data from input layer to reserve pool; f is the
function of ESN; Win represents the connection weights of x(t � 1)
to x(t); u (t + 1) is the input data; Wback represents the connection
weights of the input layer to the reserve pool; and Wout represents
the connection weights of y(t � 1) to x(t).

Part C: PSO
Unlike the traditional ESN model, the ESN model proposed in

this paper is combined with the PSO algorithm. In the ESN–PSO
algorithm, the relevant parameters of the ESN model, such as input
scaling, spectral radius, internal unit number, and connectivity, are
optimized by the PSO algorithm.

Finally, the forecasting results of each sublayer are combined
with the corresponding original sublayer. The prediction results
of each sublayer are added to obtain the final prediction results.

2.2. Rough sets attribute reduction

RSAR can be used to remove useless information while main-
taining the quality of the sorting of the existing information [31].
The obtained information is referred to as ‘‘reducts.” In an informa-
tion system, a set of objects are described by a set of attributes
[31]. A knowledge information system is defined as follows:
S ¼ U;V ;A; hð Þ ð3Þ
where U is a finite nonempty set of objects; V is a nonempty set of
values; A is a finite nonempty set of attributes; and h is an informa-
tion function that maps an object in U to exactly one value in V.

In this study, A is a set of all attributes such as A = {PM10, CO,
SO2, NO2, O3, PM2.5}, and V is their value. f is the dependency func-
tion that is used to obtain c, and c is the dependence of the set,
which is calculated in the process of RSAR.

The reduct should maintain the quality of sorting (c), defining a
condition attributes set C#A and an attribute set P#C#A. Some-
times, an information table may have more than one reduct; the
intersection of all the reducts is called a ‘‘core” of a decision-
making table and is expressed as core (P); this is the most impor-
tant attributes set for an information system.

2.3. k-means clustering

KC is a simple iterative clustering algorithm, using distance as a
similarity index [34]. Its final purpose is to find k clusters in a
group of given datasets. The center of each cluster is according to
the value of all clusters in which each cluster is described by the
clustering center. The process of the KC algorithm is as follows:

(1) Select the k object in the data space as the initial center;
each object represents a cluster center.

(2) Divide the data objects in the sample into the corresponding
classes according to the nearest clustering center, according to the
Euclidean distance between them and these cluster centers.

Distanceðxi; xjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD
d¼1

xi;d � xj;d
� �2

vuut ð4Þ

where xi is the ith sample in the jth cluster; xj is the center of the jth
cluster; and D represents the number of attributes of a data object.

(3) Update the clustering center: taking the mean values of all
objects in each cluster as the clustering center, calculating the
value of the objective function.

(4) Judge whether the values of the cluster centers and objective
functions are equal. If they are equal, output results; otherwise,
return to step (2).

2.4. Empirical wavelet transform

In this paper, the EWT algorithm is used for data preprocessing.
The EWT, proposed by Gilles [37], is a novel signal-processing tech-
nique that builds the wavelets adaptively. The EWT is based on the
theoretical framework of wavelet transform but overcomes the
shortage of EMD theory and the problem of signal aliasing. The
EWT adaptively divides the Fourier spectrum and selects the appro-
priate wavelet filter banks. The empirical scaling function and the
empiricalwavelets can be expressed as Eqs. (5) and (6), respectively:

/̂nðxÞ¼
1 if xj j � ð1�sÞxn

cos
p
2
b

1
2sxn

½ xj j�ð1�sÞxn�
� �� �

if ð1�sÞxn � xj j � ð1þsÞxn

0 otherwise

8>>><
>>>:

ð5Þ

ŵnðxÞ¼

1 if ð1þsÞxn � xj j � ð1�sÞxnþ1

cos
p
2
b

1
2sxnþ1

½ xj j� ð1�sÞxnþ1�
� �� �

if ð1�sÞxnþ1 � xj j � ð1þsÞxnþ1

sin
p
2
b

1
2sxn

½ xj j� ð1�sÞxn�
� �� �

if ð1�sÞxn � xj j � ð1þsÞxn

0 otherwise

8>>>>>>><
>>>>>>>:

ð6Þ
where n is divided interval; x is frequency; b is any function in the
interval [0,1] that satisfies the derivative of the order, s is frequency
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coefficient; b(x) = x4(35 � 84x + 70x2 � 20x3) and
s < minn xnþ1 �xnð Þ= xnþ1 þxnð Þ½ �.
2.5. Particle swarm optimization

The PSO algorithm consists of position z, speed v, and the adap-
tation function. Each particle in the algorithm represents a candi-
date solution in the solution space. The fitness function is set
according to the optimization goal. During the training of the
PSO, each particle in the algorithm updates its own position by
combining its current movement experience with the movement
experience of the neighboring particles. The solution is realized
by putting one’s own position close to the target position. The cal-
culation formula is as follows [27]:

v iðmþ 1Þ ¼ q� v iðmÞ þ c1 � r1ðpbest
i � ziÞ þ c2 � r2ðgbest

i � ziÞ ð7Þ
ziðmþ 1Þ ¼ ziðmÞ þ v iðmþ 1Þ ð8Þ

where m presents the number of iterations; vi(m) represents the
current velocity of the ith particle; c1 and c2 represent constants;
r1 and r2 represent random numbers between 0 and 1; p represents
the weight of the particles; p

i
best represents the individual optimal

value from the beginning to the current number of iterations; and
g
i
best represents the group optimal value from the beginning to

the current number of iterations.
Fig. 1. Locations of the air quality monitoring stations. (a) Beijing. Beijing is the capital
temperate semi-humid continental monsoon climate, hot and rainy in summer, cold and
12 �C and the average annual rainfall is more than 600 mm. (b) Changsha. Changsha i
monsoon climate, mild climate, abundant precipitation, hot and rainy at the same time
1361.6 mm. (c) Guangzhou. Guangzhou is located in the southeastern part of China, the
area. It belongs to the tropical monsoon climate with high temperature, rainfall, and low
the middle of the Yangtze River Delta. It is a subtropical monsoon marine climate, four
RSAR–KC, including the ESN, LSTM, ESN–PSO, and EWT–ESN–PSO model.
3. Case study

3.1. Study area

Related literature studies show that the distribution of PM2.5

concentrations ranges widely in China. It is mainly concentrated
in North China and Central China [39,40]. In order to ensure the
diversity of experimental data, the selected data should include
different working conditions such as serious PM2.5 pollution and
weak PM2.5 pollution. Beijing in the North China Plain, Guangzhou
in the Pearl River Delta, Changsha in Central China, and Suzhou in
the Yangtze River Delta are typical cities that are used to verify the
effectiveness of the proposed model. The selected samples are spa-
tially representative and contain PM2.5 concentration data under
different geographic and climatic environments, which can well
verify the effectiveness of the proposed model.

Monitoring stations record the average concentrations of six
kinds of air pollutants (PM2.5, PM10, NO2, SO2, O3, and CO). Fig. 1
shows the selected datasets and related introduction.

3.2. Data description and partitioning

Experimental data are collected from four cities: Beijing,
Guangzhou, Changsha, and Suzhou. As Shi et al. [41] have
indicated, the spatial representation of surface site observation is
often 0.5–16 km2, with the most frequent values being around
of China, located at the north end of the North China Plain. It has a typical warm
dry in winter, short in spring and autumn. The average annual temperature is 10–

s an important city in the middle reaches of the Yangtze River. It is a subtropical
. Its average annual temperature is 17.2 �C and the average annual precipitation is
northern edge of the Pearl River Delta, and the Pearl River passes through the urban
wind speed. (d) Suzhou. Suzhou is located in the southeast of Jiangsu Province and
distinct seasons, abundant rainfall throughout the year. Group A: models without
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3 km2. The data of a single monitoring station cannot represent the
air quality of the whole city. Therefore, each set of data is the mean
value of all air quality monitoring stations in the corresponding
city, so that the samples can represent the air quality of the whole
city. For convenience, these datasets are named D1 (Beijing), D2
(Guangzhou), D3 (Changsha), and D4 (Suzhou). The length of the
sample data is set to one year so that the data can cover a complete
set of four seasons. In this study, the sample data in 2016 are ran-
domly selected. All experimental data includes one-hour average
concentrations of PM2.5, PM10, NO2, SO2, O3, and CO collected from
1 January 2016 to 31 December 2016. All data are retrieved from
the website of the China National Environmental Monitoring
Center.y

Missing value filtering and outlier checking are implemented
before data partitioning. Through the sample set analysis, it is con-
cluded that there are 220 missing pieces of data in dataset D1.
Dataset D2 is missing 158 pieces of data, dataset D3 is missing
158 pieces of data, and dataset D4 is missing 157 pieces of data.
Since the number of missing samples is less than 2.5% of the total
sample set, direct elimination will not have a significant impact.
Through visual inspection of the outliers in Fig. 1, it is found that
the outliers are mostly concentrated from January to March and
from October to December. In order to ensure the training effect
of the model, outliers are regarded as normal and retained.

After removing the missing samples, D1 has 8540 samples, D2
has 8602 samples, D3 has 8602 samples, and D4 has 8603 samples.
The 4001st–4600th samples of each dataset (other data are utilized
for KC in group B) are used to train the models in group A (models
without RSAR–KC, including the ESN, long–short term memory
network (LSTM), ESN–PSO, and EWT–ESN–PSO model), which only
use PM2.5 concentrations. The 4601st–5000th samples are the test-
ing set; to ensure the prediction effect, the 4601st–4900th samples
are abandoned. All of the experimental data of each station is used
in the RSAR and KC to preprocess the data in group B (models with
RSAR–KC, including the RSAR–KC–ESN, the MCD–LSTM–PSO, and
the RSAR–KC–EWT–ESN–PSO model). To ensure the effectiveness
of error evaluating, each cluster is used to train an ESN model
and then reconstruct the predicted results for the 4901st–5000th
samples.

In order to study the influence of different sampling processes
on model accuracy, the 3001st–4000th (S1) sample points and
6001st–7000th (S2) sample points in D1 are used for comparison
experiments. Fig. 2 shows the distribution of datasets S1 and S2.
Fig. 2. PM2.5 concentration

y http://www.cnemc.cn/
In order to further verify the effectiveness of the model, an addi-
tional dataset named D4 (which contains 8603 samples) is used in
the experiments. The dataset D4 selects monthly data from the
spring, summer, autumn, and winter for testing; these data are
named T1 (1000th–1999th samples), T2 (3100th–4099th samples),
T3 (5000th–5999th samples), and T4 (6000th–6999th samples).
They are shown in Fig. 3. Table 2 shows the descriptive statistics
of the related PM2.5 concentrations.

3.3. Results and discussion

3.3.1. Results of RSAR
The RSAR and KC are used to preprocess the original data. The

attribute decision tables of each dataset are established according
to the international PM2.5 classification system. According to the
international PM2.5 concentration index classification standard,
PM2.5 concentration data are classified and discretized. Like the
method of classifying PM2.5 concentration levels, the concentrations
of the other five air pollutants are discretized according to the levels.
Table 3 shows the attribute reduction table for this study. By calcu-
lating the positive region values of the other five kinds of air pollu-
tant concentrations and PM2.5 concentrations, it can be
determined that the significance degrees of PM10, NO2, CO, O3, and
SO2 are 0.0825, 0.0948, 0.0531, 0.2189, and 0.1843, respectively.
O3 and SO2 have great significance and are judged to be the core
attributes of the established information decision system.

It should be noted that if the correlation between the reduction
attribute and the decision attribute is too strong, there is no dis-
tinction between the two. If the correlation between the reduction
attributes and decision attributes is too weak, there is no correla-
tion between them. The reduction attributes in both cases are
redundant. Therefore, in order to ensure the diversity of input sam-
ples, the selection of reduction attributes needs to comprehen-
sively consider the correlation and independence between the
reduction attributes and decision attributes. For this reason, this
paper uses covariance to evaluate the relationship between PM2.5

concentrations and other pollutant concentrations, as shown in
Table 4. The cov(PM2.5, PM10), cov(PM2.5, NO2), cov(PM2.5, CO),
and cov(PM2.5, SO2) are positive. The cov(PM2.5, O3) is negative.
However, the absolute value of cov(PM2.5, PM10), cov(PM2.5, NO2),
and cov(PM2.5, CO) is much larger than that of cov(PM2.5, SO2)
and cov(PM2.5, O3). In terms of ensuring the independence of input
attributes, the result of the RSAR algorithm can be verified to be
s series of S1 and S2.

http://www.cnemc.cn/


Fig. 3. PM2.5 concentrations series of T1–T4.

Table 2
Descriptive statistics of PM2.5 concentrations.

Dataset City Group PM2.5 concentration (lg�m�3) Skewness Kurtosis

Mean Minimum Maximum SD

D1 Beijing B 71.40 3.00 692.00 71.00 2.01 8.64
A 65.82 5.00 223.00 40.04 0.64 3.39
S1 52.92 4.00 190.00 34.52 1.26 4.85
S2 87.57 5.00 328.00 64.81 0.86 3.16

D2 Guangzhou B 34.48 2.00 234.00 20.72 1.92 11.09
A 22.58 9.00 68.00 10.03 1.53 5.90

D3 Changsha B 52.93 6.00 409.00 33.58 1.96 11.20
A 28.39 9.00 69.00 12.11 0.76 2.76

D4 Suzhou T1 52.48 6.00 128.00 24.21 0.27 2.88
T2 43.86 16.00 101.00 13.02 0.77 4.18
T3 34.77 3.00 124.00 20.24 0.68 3.30
T4 33.40 2.00 124.00 19.48 0.74 3.67

SD: standard deviation.

Table 3
Attribute reduction table.

Object U Condition attributes Decision attributes PM2.5

PM10 NO2 CO O3 SO2

1 4 5 4 5 6 5
2 6 6 5 6 6 6
3 5 4 6 6 5 6
4 1 2 6 1 1 2
5 1 1 6 2 2 1
. . . . . . . . . . . . . . . . . . . . .

U: a finite nonempty set of objects.

Table 4
Covariance table.

Covariance Value

cov(PM2.5, PM10) 4157.93
cov(PM2.5, NO2) 1247.56
cov(PM2.5, CO) 51375.21
cov(PM2.5, O3) –119.34
cov(PM2.5, SO2) 339.80
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effective. In order to avoid difficulty in model training caused by
dimensional disaster, these more relevant attributes are selected
as the core attributes, and other data with weak correlation
become the reduction attributes.

3.3.2. Results of KC
After the attribute reduction, the original dataset becomes an

N � 3 sample space; three-dimensional (3D) KC is used to divide
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it into several similar clusters. The sum of the squared errors (SSE)
[42] and the silhouette coefficient (SC) [43] are used to choose the
best value of k. Because the clustering results of the three datasets
are very similar, D1 is used as an example to show the results.

Fig. 4 shows different SSE and SC when choosing different k. The
k value ranges from 1 to 15, and the SSE value decreases with the
increase of the k value. When k = 3, the SC value is the largest, but
the SSE value is larger at the same time. Considering SSE and SC
together in Fig. 4, the final k value is 7. Finally, the data of station
D1 are divided into seven clusters.

When k = 7, the original data D1 are divided into seven groups;
the results are shown in Fig. 5. In this figure, (a) shows the results
for PM2.5, while the results for SO2 and O3 are presented separately
in (b) and (c). The results of the KC for PM2.5 shown in Fig. 5(a) are
the key part of this paper. Intuitively, the amplitude of cluster C1 is
between 0 and 200 lg�m�3, and it fluctuates gently. The amplitude
of C2 is between 0 and 55 lg�m�3, and fluctuates violently. How-
ever, the short period of C2 is obvious. The amplitude of C3 is
between 0 and 400 lg�m�3. The fluctuation of C3 is smooth but
the periodicity is not obvious. The amplitude of C4 is between 50
and 150 lg�m�3, and its periodicity and symmetry are good. The
amplitude of C5 is between 0 and 200 lg�m�3, but it fluctuates
more violently than that of C1. The amplitude of C6 is between
160 and 240 lg�m�3, fluctuates violently, and has strong symme-
try. The amplitude of C7 is between 0 and 100 lg�m�3, and the per-
iod is obvious but the symmetry is weak. Overall, compared with
the original data in Fig. 1, each kind of data becomes more stable
after clustering. The peaks and troughs of each type of data show
different intervals.

The above description is only a subjective analysis; in order to
draw a more convincing conclusion, descriptive statistics are used
to further analyze the clustering results of PM2.5 concentration
data. Table 5 shows the descriptive statistics of D1 for the different
clusters.

The mean values of the seven groups of data are 71.54, 24.00,
285.74, 91.47, 83.90, 177.00, and 34.85 lg�m�3, respectively. Com-
bined with the maximum and minimum values of each group of
data, the seven groups of data after clustering are concentrated
according to the value size, thereby reducing the fluctuation range
of the data within the group. This is consistent with the amplitude
distribution of each group of data in Fig. 5.

The standard deviation (SD) reflects the dispersion degree
among individuals in a group. The standard deviation values of
the seven groups of data after clustering are 37.02, 14.25, 47.30,
20.96, 32.70, 29.81, and 19.42 lg�m�3, respectively, which are all
smaller than the 71.00 lg�m�3 before clustering. The data of each
group after clustering are closer to their average values. This trend
is reflected in Fig. 5: The symmetry of the upper and lower fluctu-
ations of the data curves of each group is stronger.
Fig. 4. SSE and SC with different k values.
The skewness values of the seven groups of data after clustering
are 0.70, 0.72, 0.74, 0.21, 1.01, 0.22, and 0.88, respectively, which
are all smaller than the 2.01 before clustering. The wave peak sym-
metry of the data after clustering is stronger; that is, the cycle rule
is more obvious. The kurtosis values of the seven groups of data
after clustering are 3.23, 2.45, 2.50, 1.98, 4.00, 1.82, and 3.12,
respectively, which are all smaller than the 8.64 before clustering.
The extreme distribution of data in each group of data after cluster-
ing is reduced. In Fig. 5, the fluctuation of each group of data is
smooth, and there is no obvious outlier. In other words, Fig. 5
and Table 5 show that the clustered data have the above
advantages.

The MCD–ESNmodel is used to analyze the series length in each
cluster. In order to ensure the validity of the error evaluation, the
first 80% of the data in each cluster is selected for model training
and the last 20% is used for model prediction performance analysis.
Table 6 shows the error evaluation of each cluster.
Fig. 5. (a) Results of KC for PM2.5; (b) results of KC for PM2.5 and SO2; (c) results of
KC for PM2.5 and O3.



Table 6
Error evaluation of each cluster for D1 of MCD–ESN.

Cluster Number Step PM2.5 concentration R IA

MAPE (%) MAE (lg�m�3) RMSE (lg�m�3) SDE (lg�m�3)

C1 1527 Step-1 7.47 3.07 6.33 6.30 0.93 0.95
Step-2 14.11 6.09 9.23 8.94 0.78 0.89
Step-3 19.29 8.16 11.80 11.30 0.52 0.72

C2 260 Step-1 3.60 11.22 16.67 13.50 0.95 0.96
Step-2 4.30 14.75 17.30 14.17 0.90 0.92
Step-3 9.91 33.03 38.73 34.40 0.79 0.84

C3 2307 Step-1 6.38 1.75 2.61 2.61 0.93 0.96
Step-2 12.09 3.34 5.04 5.04 0.80 0.82
Step-3 20.55 5.26 7.47 7.43 0.48 0.51

C4 615 Step-1 3.51 5.30 13.41 13.41 0.94 0.97
Step-2 8.69 12.88 23.10 22.98 0.81 0.89
Step-3 10.17 15.54 26.13 26.10 0.67 0.78

C5 1297 Step-1 4.01 3.57 4.61 4.60 0.93 0.96
Step-2 7.67 6.66 8.68 8.66 0.84 0.92
Step-3 11.49 9.91 12.52 12.48 0.68 0.77

C6 1394 Step-1 4.43 5.54 12.27 11.85 0.92 0.96
Step-2 7.85 10.22 15.25 13.44 0.78 0.88
Step-3 10.06 13.60 17.15 13.58 0.62 0.74

C7 1140 Step-1 2.81 3.08 8.38 8.30 0.96 0.97
Step-2 5.30 5.85 12.46 12.30 0.90 0.94
Step-3 8.28 9.20 16.37 15.99 0.83 0.91

MAPE: mean absolute percentage error; MAE: mean absolute error; RMSE: root mean square error; SDE: standard deviation of error; R: Pearson’s correlation coefficient;
IA: index of agreement.

Table 5
Descriptive statistics of D1 for different clusters.

Cluster PM2.5 concentration (lg�m�3) Skewness Kurtosis

Mean Minimum Maximum SD

C1 71.54 12.00 184.00 37.02 0.70 3.23
C2 24.00 5.00 64.00 14.25 0.72 2.45
C3 285.74 211.00 395.00 47.30 0.74 2.50
C4 91.47 50.00 140.00 20.96 0.21 1.98
C5 83.90 15.00 194.00 32.70 1.01 4.00
C6 177.00 130.00 237.00 29.81 0.22 1.82
C7 34.85 8.00 103.00 19.42 0.88 3.12
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When the sample size is greater than 1000, the amount of data
has little effect on the prediction, as in C1, C3, C5, C6, and C7. How-
ever, when the number of samples is less than 1000, the prediction
effect of the model is greatly reduced; this shows that the predic-
tion effect of the ESN network is more sensitive to the number of
low samples, as in C2 and C4. When the number of samples is small
after clustering, the problem can be solved by increasing the num-
ber of samples in the original sequence. This will be a problem for
future research.

3.3.3. Forecasting accuracy and analysis
In this study, six other prediction models are provided as com-

parison models to investigate the prediction performance of the
proposed model. In addition, to investigate the multi-step predic-
tion performance of the proposed model, all the involved models
are conducted for the step-1 to step-3 predictions. The proposed
model must forget a certain amount of output results due to the
characteristics of the ESN algorithm [38]. Therefore, the prediction
accuracy fluctuates within a certain range. In this paper, this prob-
lem is solved by averaging the results of three repeated experi-
ments. This solution does not increase the computing time cost
by too much.

The mean absolute percentage error (MAPE), mean absolute
error (MAE), root mean square error (RMSE), standard deviation
of error (SDE), Pearson’s correlation coefficient (R), and index of
agreement (IA) are utilized to analyze the experimental results of
the prediction models; the index values of the above models for
D1, D2, and D3 are given in Table 7. As can be seen from Table 7,
the three datasets reflect the same model performance. In order
to keep the length of the paper within a reasonable range, only
D1 is selected for specific analysis. The PM2.5 concentration fore-
casting results for D1 are shown in Fig. 6. The R and IA results of
the six prediction models for S1, S2, and T1–T4 are given in Table 8.
The MAPE, MAE, RMSE, and SDE results of the six prediction mod-
els for S1 and S2 are given in Fig. 7. The MAPE, MAE, RMSE, and SDE
results of the six prediction models for T1 and T2 are given in Fig. 8.
The MAPE, MAE, RMSE and SDE results of the six prediction models
for T3 and T4 are given in Fig. 9. It should be noted that since the
values of R and IA do not belong to the same dimension as the
other four evaluation indicators, they are not shown in the form
of a graph.

In Tables 7 and 8 and Figs. 6–9, the proposed model has the
smallest error evaluation values, and thus achieves accurate pre-
diction in PM2.5 concentration forecasting. Compared with the
other six comparison prediction models, the proposed model has
better prediction accuracy from step-1 to step-3 predictions. This
shows that the methods used in the hybrid model interact
positively.

The prediction accuracy of the ESN–PSO model is better than
that of the ESNmodel. This phenomenon indicates that the optimal
parameters selected by the PSO algorithm can help to improve the
prediction accuracy of the ESN model. The prediction accuracy of



Table 7
Error evaluation for the PM2.5 concentrations of D1, D2, and D3.

Forecasting
model

Step PM2.5 concentration

R IAMAPE (%) MAE (lg�m�3) RMSE (lg�m�3) SDE (lg�m�3)

D1 D2 D3 D1 D2 D3 D1 D2 D3 D1 D2 D3 D1 D2 D3 D1 D2 D3

LSTM Step-1 14.56 8.34 9.42 8.92 1.96 5.22 15.59 2.47 6.80 15.56 2.47 6.68 0.84 0.87 0.86 0.86 0.89 0.88
Step-2 25.31 12.72 15.36 14.58 3.21 8.31 24.88 4.13 10.58 24.85 3.94 10.26 0.76 0.80 0.78 0.82 0.84 0.83
Step-3 35.37 16.91 20.32 21.41 4.28 10.64 33.63 4.60 14.25 32.59 5.03 13.58 0.58 0.73 0.66 0.67 0.73 0.72

ESN Step-1 13.48 7.35 6.35 8.61 1.80 3.65 14.14 2.29 4.84 13.77 2.28 4.78 0.85 0.88 0.87 0.88 0.90 0.89
Step-2 24.75 12.31 12.35 13.72 3.06 7.05 23.62 3.71 9.70 23.46 3.52 9.63 0.78 0.76 0.80 0.82 0.86 0.84
Step-3 34.82 16.55 19.20 20.59 3.97 10.57 32.57 5.04 13.76 32.36 4.88 12.83 0.63 0.72 0.69 0.75 0.82 0.78

ESN–PSO Step-1 10.72 6.98 5.95 6.54 1.69 3.44 11.96 2.21 4.66 11.95 2.20 4.61 0.88 0.91 0.90 0.89 0.94 0.93
Step-2 21.58 11.80 11.66 12.34 2.80 6.65 21.62 3.60 9.16 21.44 3.60 9.03 0.79 0.82 0.74 0.84 0.83 0.85
Step-3 33.20 15.04 17.67 18.72 3.65 9.55 30.22 4.47 12.81 29.80 4.38 12.56 0.66 0.75 0.65 0.77 0.79 0.80

EWT–ESN–PSO Step-1 4.88 1.97 0.69 2.88 0.60 0.36 5.04 0.74 0.47 4.97 0.74 0.46 0.92 0.93 0.94 0.96 0.95 0.94
Step-2 6.04 2.27 0.89 3.46 0.68 0.47 5.57 0.86 0.61 5.35 0.86 0.58 0.86 0.90 0.90 0.93 0.92 0.91
Step-3 8.42 2.85 1.70 4.43 0.88 0.88 6.65 1.14 1.07 6.12 1.11 1.01 0.79 0.87 0.78 0.89 0.90 0.89

RSAR–KC–ESN Step-1 9.78 4.54 3.66 6.94 0.97 1.99 10.38 1.19 2.44 10.29 1.16 2.43 0.89 0.90 0.91 0.92 0.94 0.93
Step-2 16.58 6.18 5.64 10.35 1.39 3.05 13.66 1.61 3.77 13.29 1.52 3.75 0.82 0.79 0.76 0.89 0.85 0.86
Step-3 23.63 8.19 8.28 14.08 1.84 4.38 17.77 2.14 5.44 17.76 1.95 5.32 0.71 0.72 0.68 0.84 0.83 0.81

MCD–LSTM–PSO Step-1 1.78 0.66 0.24 1.06 0.19 0.25 1.43 0.31 0.12 1.27 0.06 0.11 0.95 0.96 0.97 0.98 0.97 0.96
Step-2 5.34 3.04 0.68 2.67 0.75 0.37 3.45 0.73 0.24 2.01 0.31 0.23 0.92 0.93 0.94 0.96 0.94 0.94
Step-3 7.89 6.22 1.76 4.99 1.96 0.83 6.17 1.59 0.69 3.97 0.87 0.69 0.88 0.90 0.92 0.91 0.92 0.92

Proposed model Step-1 1.67 0.57 0.18 0.88 0.11 0.04 1.18 0.19 0.05 1.11 0.01 0.05 0.96 0.97 0.98 0.98 0.99 0.99
Step-2 4.47 2.05 0.48 2.42 0.42 0.12 2.97 0.61 0.15 1.80 0.19 0.14 0.95 0.96 0.95 0.97 0.97 0.97
Step-3 7.66 5.46 1.36 4.37 1.11 0.34 5.26 1.48 0.46 3.52 0.60 0.41 0.92 0.92 0.93 0.95 0.93 0.95
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the EWT–ESN–PSO model is better than that of the ESN–PSO
model, which shows that the model accuracy can be improved
by adding the EWT decomposition algorithm. The sequence
obtained by the EWT algorithm is more stable and less random.
Therefore, it is better to take the decomposed sublayers as the
model input to obtain the prediction results. The prediction accu-
racy of the RSAR–KC–ESN model is better than that of the ESN
model, which shows that the model accuracy can be improved
by adding the RSAR–KC algorithm. After clustering, there is a larger
difference between different groups of data and higher similarity
between the same groups of data, which can improve the predic-
tion accuracy of the original model to a certain extent.

Moreover, the accuracy of each prediction model decreases as
the number of steps increases in Table 7 and Figs. 6–9. With the
increase of the forecasting step, the error accumulation will
Table 8
R and IA for the PM2.5 concentrations of S1, S2, and T1–T4.

Forecasting model Step R (lg�m�3)

S1 S2 T1 T2 T3

LSTM Step-1 0.81 0.82 0.78 0.85 0.
Step-2 0.74 0.75 0.69 0.77 0.
Step-3 0.56 0.58 0.51 0.60 0.

ESN Step-1 0.83 0.83 0.79 0.86 0.
Step-2 0.76 0.77 0.71 0.79 0.
Step-3 0.58 0.60 0.53 0.63 0.

ESN–PSO Step-1 0.85 0.86 0.82 0.88 0.
Step-2 0.78 0.81 0.75 0.81 0.
Step-3 0.61 0.65 0.60 0.70 0.

EWT–ESN–PSO Step-1 0.90 0.91 0.87 0.92 0.
Step-2 0.84 0.87 0.81 0.86 0.
Step-3 0.67 0.76 0.73 0.78 0.

RSAR–KC–ESN Step-1 0.86 0.87 0.83 0.88 0.
Step-2 0.80 0.83 0.77 0.82 0.
Step-3 0.65 0.67 0.62 0.68 0.

MCD–LSTM–PSO Step-1 0.96 0.97 0.95 0.97 0.
Step-2 0.94 0.96 0.93 0.96 0.
Step-3 0.88 0.91 0.90 0.93 0.

Proposed model Step-1 0.98 0.98 0.96 0.99 0.
Step-2 0.96 0.97 0.94 0.97 0.
Step-3 0.92 0.93 0.91 0.94 0.
become increasingly serious, resulting in decline of the prediction
accuracy.

The city with the best air quality is Changsha (D3), followed by
Guangzhou (D2). The air quality of Beijing (D1) is relatively poor.
The forecasting accuracy in Table 7 and Fig. 6 is consistent with
this order. Moreover, the data in Fig. 7 show that samples with dif-
ferent pollution levels in the same area have no effect on model
accuracy. The PM2.5 concentrations of S1 are smaller than those
of S2, but the prediction accuracy of S2 is higher than that of S1.
Therefore, it can be concluded that the prediction accuracy of the
proposed model is better in cities with better air quality than in
cities with heavy pollution.

In the above analysis, Tables 7 and 8 and Figs. 6 and 7 verify the
validity of the data forecasts for different cities over the same time
period. In order to verify the validity of the prediction for the same
IA

T4 S1 S2 T1 T2 T3 T4

86 0.83 0.85 0.87 0.83 0.88 0.90 0.87
78 0.73 0.79 0.79 0.75 0.81 0.84 0.82
62 0.54 0.62 0.64 0.57 0.75 0.77 0.71
87 0.84 0.86 0.87 0.84 0.88 0.91 0.88
80 0.79 0.80 0.81 0.78 0.82 0.86 0.84
64 0.57 0.64 0.66 0.58 0.76 0.78 0.73
88 0.87 0.90 0.89 0.87 0.90 0.92 0.89
83 0.81 0.84 0.85 0.81 0.84 0.88 0.87
71 0.64 0.72 0.76 0.63 0.81 0.80 0.76
93 0.92 0.94 0.95 0.91 0.94 0.94 0.93
88 0.88 0.89 0.89 0.87 0.91 0.92 0.90
76 0.77 0.78 0.82 0.78 0.86 0.86 0.81
89 0.88 0.89 0.91 0.88 0.91 0.92 0.90
85 0.84 0.85 0.86 0.83 0.84 0.89 0.88
72 0.68 0.74 0.72 0.67 0.82 0.81 0.79
97 0.96 0.98 0.98 0.96 0.98 0.98 0.97
96 0.95 0.95 0.96 0.95 0.97 0.97 0.96
94 0.91 0.91 0.93 0.93 0.95 0.96 0.94
99 0.98 0.99 0.99 0.97 0.99 0.99 0.99
98 0.96 0.97 0.98 0.96 0.98 0.98 0.97
95 0.92 0.94 0.95 0.94 0.96 0.96 0.94



Fig. 7. Error evaluation for the PM2.5 concentrations of (a) S1 and (b) S2.

Fig. 6. Results of the various ahead-step predictions for the PM2.5 concentrations of D1. (a) Step-1; (b) step-2; (c) step-3.
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Fig. 9. Error evaluation for the PM2.5 concentrations of (a) T3 and (b) T4.

Table 9
Computation time of the comparison models in D1.

Forecasting model Step Computation time (s)

LSTM Step-1 18.00
Step-2 18.26
Step-3 18.15

ESN Step-1 0.06
Step-2 0.08
Step-3 0.07

EWT–ESN Step-1 1.05
Step-2 1.03
Step-3 1.03

Fig. 8. Error evaluation for the PM2.5 concentrations of (a) T1 and (b) T2.
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city over different time periods, the experiments shown in Figs. 8
and 9 were carried out. According to the data in Figs. 8 and 9,
the proposed model maintained a stable prediction effect with
the change of time period. In other words, the data in Figs. 8 and
9 verify the stability and validity of the proposed model over the
whole year.

In this study, the following computing is implemented in the
simulation environments: Intel i5-6500 CPU 3.2 GHz, RAM 8 GB.
Table 9 gives the computation time of the comparison models in
D1. Because both RSAR–KC and PSO are offline processing, the
computation time is not compare with them.

The computation speed of the ESN is much faster than that of
the LSTM, owing to the advantages of the ESN network itself.
Because of the existence of the reserve pool, it is only necessary
to train the output weight in the training process of the ESN net-
work, which greatly improves the computing speed.

After adding the EWT decomposition algorithm, the computa-
tional speed of the model decreases to a certain extent. Because
each decomposition layer needs to be trained and predicted, the
computational speed of the original model plays a vital role here,
which further reflects the superiority of the ESN.
The change in prediction steps has little effect on the calculation
speed of the model. This may be because the computational
capacity of the algorithm model is relatively large.
4. Conclusions

This study establishes an improved hybrid ESN forecasting
model to predict and analyze the hourly average concentrations
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of PM2.5 based on the MCD method and the PSO. The proposed
hybrid model is compared with several benchmark models to
prove its effectiveness. The attribute reduction results show that
the concentrations of SO2 and O3 play an important role in predict-
ing the concentrations of PM2.5. Moreover, research on the influ-
ence of relevant meteorological parameters will be carried out in
future studies. The clustering results show that PM2.5 concentra-
tion data become stationary and regular after the clustering pro-
cessing. These features are useful and conducive for ESN-based
deep training. The prediction results show that: ① The MCD
method can improve the accuracy of models; ② the proposed
hybrid model has better prediction accuracy than other relevant
deep learning or single models; ③ the proposed hybrid model
has achieved good experimental results with PM2.5 pollutant con-
centration data from four cities in China; and ④ the proposed
hybrid PM2.5 forecasting framework can also be applied in other
air pollution time series multi-step predictions. The forecasted
results can be embedded in relevant early warning systems for
urban air pollution management.

The main contributions of this study can be summarized as
follows:

(1) A novel PM2.5 concentrations multi-step prediction model is
developed based on the MCD, ESN, and PSO, which yields accurate
forecasting performance for hourly average PM2.5 concentrations.
The multi-step forecasting results can be used for the development
of PM2.5 pollution warning systems.

(2) A novel decompositionmethod in hybrid PM2.5 concentration
forecasting named MCD is developed. This method integrates the
feature extraction into decomposition. Multi-dimensional KC clus-
tering is carried out using the feature extraction results of the RSAR
algorithm, which not only guarantees the effectiveness of the clus-
tering results, but also considers the influence of multi-
dimensional features. The EWT algorithm-based KC algorithm is
then employed for data preprocessing. The clustering algorithm is
used to group the original PM2.5 concentrations according to differ-
ent PM2.5 concentration scenarios. Next, combined with the EWT
decomposition algorithm, raw PM2.5 concentrations data are distin-
guished according to different characteristics in the timescale.
Finally, the optimization function of the decomposition is realized.

(3) In the proposed hybrid PM2.5 concentration forecasting
model, the ESN is employed as a predictor. The sparse connection
of neurons in the reservoir of the ESN not only improves the con-
vergence of the neural network model, but also enhances the
model generalization. This characteristic can reduce the probabi-
lity of the overfitting problem in the process of model training.
Moreover, the ESN has good real-time performance in computing.
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