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Congenital heart disease (CHD) is the leading cause of infant death. An artificial intelligence (AI)-based
CHD diagnosis network (CHDNet) is an echocardiogram video-based binary classification model that
judges whether echocardiogram videos contain heart defects. Existing CHDNets have shown perfor-
mances comparable to or even better than medical experts, but their unreliability on cases outside of
the training set has become the main bottleneck for their deployment. This is a common problem for
most AI-based diagnostic approaches. Here, to overcome this challenge, we present two essential mech-
anisms—Bayesian inference and dynamic neural feedback—to respectively measure and improve the
diagnostic reliability of AI. The former easily makes the neural network output its reliability instead of
a single prediction result, while the latter is a computational neural feedback cell that allows the neural
network to feed knowledge from the output layer back to the shallow layers and enables the neural net-
work to selectively activate relevant neurons. To evaluate the effectiveness of these two mechanisms, we
trained CHDNets on 4151 echocardiogram videos containing three common CHD defects and tested them
on an internal test set of 1037 echocardiogram videos and an external set of 692 videos that were newly
collected from other cardiovascular imaging devices. Each echocardiogram video corresponds to a unique
patient and a unique visit. We demonstrate on various neural network architectures how the reliability
obtained by Bayesian inference interprets and quantifies the significant performance difference between
internal and external test sets of neural networks, and how the devised feedback cell helps the neural net-
works to maintain high accuracy and reliability, despite the input being corrupted by noise or when using
an external test set.

� 2023 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The incidence of congenital heart disease (CHD) is about 9/1000
live-born children. Among all subtypes of CHD, ventricular septal
defect (VSD), atrial septal defect (ASD), and patent ductus arterio-
sus (PDA) are the most common [1,2]. ASD refers to the abnormal
development of the atrial septum during the embryonic period,
resulting in a defect of the septum between the left and right
atriums. Depending on the location of the defect, it can be further
classified as secondary ASD, primum ASD, sinus venosus ASD, or
other rarer forms of ASD, among which secondary ASD is the most
common type. VSD, which refers to abnormal traffic between the
left and right ventricles of the heart, is the most common congen-
ital heart malformation, accounting for almost 50% of all CHD.
According to its anatomical site, VSD can be further divided into
perimembrane, subcristal, intracristal, subarterial, and muscle
defects. Perimembranous VSD is the most common type, account-
ing for about 60% of all VSDs. PDA refers to persistent opening of
the duct connecting the descending department of the aorta and
the pulmonary artery. In the fetal period, the fetal circulation sys-
tem depends on the duct’s existence, but the duct should close nat-
urally after birth. If the duct remains open, the condition is known
as PDA. The incidence of isolated PDA in term-born infants is about
1/2000 live births, accounting for 5%–10% of all CHD.
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Early identification and diagnosis of CHD is the key to reducing
the natural mortality of the disease. A transthoracic echocardio-
gram is considered to be the first choice for the detection and diag-
nosis of CHD, because it is a non-invasive imaging modality [3–5].
Echocardiograms are the main basis for the formulation of surgical
or interventional therapy and the evaluation of efficacy. Recent
echocardiogram-based diagnosis approaches using deep learning
[6–10] have been developed and have achieved unprecedented
performance on the data collected, even exceeding an expert level;
however, when they are applied to cases for which they have not
been trained, the diagnostic results may suffer in accuracy. A feasi-
ble way to identify such cases is to measure the reliability of the
diagnostic results.

Reliability is the ability of a diagnostic model to identify in-
distribution (IND) and out-of-distribution (OOD) test samples as
either low uncertainty (high confidence) or high uncertainty (low
confidence) on the premise of giving correct diagnostic results.
Measuring the reliability of diagnostic results and pursuing high
diagnostic accuracy should be equally important goals. In clinical
practice, doctors’ willingness to use machine learning-based diag-
nosis approaches depends on their trust that those approaches can
accurately and reliably diagnose CHD. This is a valid concern that
applies to any diagnosis approach. Therefore, reliability measure-
ment for CHD diagnosis approaches is becoming increasingly
important. Recently, research efforts to construct prediction sets
with coverage guarantees under various assumptions are emerging
[11–13]. Most of these approaches provide theoretical coverage
guarantees when the data distribution from which the predictions
are built matches the data distribution from which the predictive
model was generated. Conformal prediction, one of the best-
known of these methods, can guarantee to cover new observations
with high probability [12,14]. As a generalization in another direc-
tion, the method [11] provides risk-controlling prediction sets,
which have low prediction risk with high probability over the ran-
domness in the data.

Unlike conformal prediction, Bayesian probability theory pro-
vides math-based tools for reasoning about model uncertainty,
but these tools often require prohibitive computational overhead.
The recently reported Bayesian neural networks [15], Bayesian
approximation [16], and variational inference [17,18] are examples
of Bayesian inference approaches that can measure the reliability
of a model’s output and thus provide an objective assessment of
whether the model’s output should be adopted. In this study, we
use the approximate method of Bayesian inference, which only
requires the commonly used dropout method to model uncertainty
and has the advantage of being fast and easy to implement. Intu-
itively, the diagnostic reliability on internal test sets should be
higher than that on external test sets, so the reliability is helpful
in identifying cases outside of the training data.

Measuring the reliability of diagnostic results is significant but
insufficient, as improving both reliability and robustness on exter-
nal test sets is more meaningful and requires deep learning-based
diagnosis approaches. Thanks to long-term natural evolution, the
human visual system exhibits incredibly high reliability and
robustness, and its anti-interference ability is extremely strong.
Neural feedback—a complex basic mechanism in the human visual
cortex—can selectively activate relevant neurons and suppress
nonrelevant distractive noises or patterns, which is useful in deal-
ing with input images with distractors or cluttered backgrounds
[19–21]. Recently, a feedback mechanism has been explored and
applied to various vision tasks [22–29]. In cognitive theory, feed-
back connections linking visual areas of the cortex can transmit
response signals from higher order to lower order areas [22,23].
This has recently inspired scholars [24,25] to design advanced deep
architectures containing a feedback module. The feedback mecha-
nism in these architectures transmits the information from the
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deep layers of the network back to the previous layer to guide
the extraction of low-level coding information, enabling a top–
down approach. The feedback network method [30] is the work
most relevant to the present study, as it transmits deep features
with semantic information into intermediate representations of
input images to enable feedback in deep networks. However, it
only passes on deeper information and does not update shallow
representations. Therefore, there is an urgent need for a dynamic
neural feedback cell that can be widely used in deep neural
networks.

In this work, we propose a computational dynamic neural feed-
back cell that can feed knowledge from the output layer back to the
shallow layers, allowing diagnosis models to change their features
in shallow layers during feedforward inference. For three common
congenital heart defects (VSD, PDA, and ASD), we demonstrate on
various representative deep architectures that the feedback cell
can significantly improve the architectures’ reliability, robustness,
and accuracy in distinguishing between normal hearts and com-
mon CHD defects, even if the input is severely damaged by noise
or comes from an external set. Considering the high transferability
of the proposed feedback cell, it is possible for this cell to improve
other diagnostic models in terms of reliability, robustness, and
accuracy.
2. Methods

2.1. Training and test data acquisition

Deep learning-based diagnosis approaches [9,10,31–34] often
require adequate data and accurate annotations for training. The
research progress of CHD diagnosis is hindered by the lack of
large-scale real-world echocardiograms with well-annotated heart
defect types according to the intraoperative final diagnosis. In our
work, data for a total of 5880 infants, including 1213 with ASD,
1078 with VSD, 970 with PDA, and 2619 healthy controls (Fig. 1;
Tables S1 and S2 in Appendix A), were acquired from 1 January
2015 to 30 June 2021 from a grade-A tertiary children’s hospital.
Every patient included had an echocardiogram video and still
images, which are sufficient for training CHD diagnosis networks
(CHDNets). We used a Philips iE 33 as the instrument, and the fre-
quency of the sensor ranged from 3 to 8 MHz, or from 1 to 5 MHz.
Two-dimensional (2D) imaging combined with color Doppler flow
mapping displayed the location, size, and flow direction of the
defect. According to the anatomy of these three CHDs, the atrial
septum, ventricular septum, and left pulmonary artery were
observed to determine whether they had defects. Two standard
2D views together with color Doppler flowmapping (a dual model)
were acquired, with a parasternal short-axis view (PSSAX) of the
aorta for patients with VSD and PDA, and a subxiphoid long-axis
view (SXLAX) of two atria for patients with ASD. The diagnosis
results of all the patients were confirmed by either at least two
senior echocardiographists or an intraoperative final diagnosis.
All datasets originated from patient studies approved by the Ethics
Committee of the Children’s Hospital of Fudan University (approval
number: 258), and the study was conducted according to the
Declaration of Helsinki. We received informed consent from the
patients’ parents or guardians and ensured that patient informa-
tion would not be disclosed.
2.2. Data labeling and quality control

We downloaded all echocardiograms in Digital Imaging and
Communications in Medicine (DICOM) format, and keyframes in
each echocardiogram video were manually selected by experi-
enced echocardiographists. The process of data annotation was as



Fig. 1. Flowchart of data acquisition for the training and evaluation of the CHDNet.
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follows. Each echocardiogram was evaluated by means of a three-
level assessment system. First-level assessment was conducted by
a medical student with a bachelor’s degree or higher in quality
control training. Second-level assessment was performed by two
junior echocardiographists, and third-level assessment was per-
formed by two experienced echocardiographists with more than
ten years of clinical experience. This three-level assessment system
ensured that each echocardiogram had the correct diagnostic label
and heart defect location. After completing the data labeling, 100
objects in the acquired data were randomly selected and checked
by a third experienced echocardiographist with more than 20 years
of clinical experience to minimize the impact of human error on
the computational modeling process. Finally, 881 cases of ASD,
772 cases of VSD, and 688 cases of PDA were randomly selected
for model training. The training also included their corresponding
healthy control groups, with 584, 644, and 582 individuals,
respectively.

2.3. Keyframe-based echocardiogram video diagnosis

The diagnostic procedure followed by the experienced echocar-
diographists involved selecting keyframes with the clearest view of
the heart defect if present from the echocardiogram video, and
then making diagnosis decisions according to the selected key-
frames (Fig. 2(a)). The diagnosis decisions included whether the
patient was healthy, what kind of congenital heart defect the
patient had, and where the heart defect was located. This diagnos-
tic procedure inspired us to design a keyframe-based CHD diagno-
sis model (Fig. 2(b), left). In the diagnosis model, the trained
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classification model is used first to determine whether the video
contains heart defects (video frames can be combined into a batch
form for parallel computation), and then potential video frames
containing heart defects are selected by comparing the feature dis-
tances. Finally, a faster region-based convolutional neural network
(faster-RCNN) is used to detect the position of the heart defect on
the selected video frames. The diagnostic results are demonstrated
in Figs. 2(c)–(e) and analyzed in the Results section.

This diagnostic procedure was a reasonable choice because,
from the model aspect, the faster-RCNN is larger than the classifi-
cation model in terms of network parameters and computational
complexity. Besides, from an echocardiogram video containing
congenital heart defects, only a small number of video frames con-
tain heart defects and are used for the analysis. Therefore, consid-
ering both the model and the data, the method of first identifying
and then detecting heart defects is a good choice for CHD diagnosis
based on an echocardiogram video, as it makes a tradeoff between
diagnostic accuracy and efficiency.
2.4. CHDNet training and evaluation

Based on the above analysis and the acquired echocardiogram
data, we chose three representative neural network architectures
to implement the CHDNet: ① MobileNetV3-Small [35], a typical
classification network on the ImageNet database with a low
resource use; ② ResNet18 [36], a classification network on the
ImageNet database with well-known deep residual connection;
and ③ a deeper version of ResNet18, ResNet34 [36]. After being



Fig. 2. Diagnosis of three common infantile congenital heart defects based on 2D keyframes. (a) The diagnosis process of experienced echocardiographists; 2D keyframes
with a clear heart defect are selected from the echocardiogram video for diagnosis. (b) Overview of the proposed pipeline for CHD diagnosis. Pairs (xi; yi) of 2D keyframes and
corresponding annotations based on an intraoperative final diagnosis are used to train the CHDNet to predict yi from xi . The trained CHDNet f h �ð Þ can then be used to diagnose
previously unseen echocardiogram videos xi , yielding di; byi

� �
for the feature distance and diagnostic result, where xs denotes the support set containing abnormal cases of

heart defects. f s is the meta-representation of the support set xs. f q is the feature representation of input video frames. (c) Statistics of the feature distance between the
support set and the echocardiogram video to be diagnosed for VSD and ASD. (d) Receiver operating characteristic (ROC) curves of three representative neural network
architectures for diagnosing three common congenital heart defects. (e) Visualization of the classification feature of CHDNet (ResNet18) on the internal and external test sets
of VSD. Intn: internal; Extn: external.
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trained, the CHDNet models were applied to previously unseen
internal and external test sets (Fig. 2(b), right).

For the experiment in diagnosing three common congenital
heart defects, MobileNetV3-Small, ResNet18, and ResNet34 were
adopted to train on a 2D keyframe of the echocardiogram videos
in the training set. The training set was compiled from keyframes
(containing representative normal and abnormal frames) selected
by experienced echocardiographists from echocardiographic
videos. For all other experiments, ResNet18 was adopted to imple-
ment the CHDNet. All the experiments were implemented in
Python using Pytorch. Source code for training and evaluation is
available at https://drive.google.com/file/d/17plnqZVyBGADlYRX-
MulZRu4te-zkbDBu/view?usp=sharing. All CHDNet models
employed the same training setting—that is, network hyper-
parameters, training data, and data preprocessing. Each CHDNet
model was trained three times by setting a different initial seed
for the network parameters. During model training, we divided a
small portion of the training set into a validation set. The model
with the highest accuracy on the validation set was used as the
final model.

2.5. Automatic selection of keyframes based on the trained CHDNet

An echocardiogram video often contains a large number of
frames (> 50). It is important to select keyframes that clearly show
the heart defects and recommend them to echocardiographists for
further diagnosis. To this end, we first obtained the support proto-

type feature f ds ; d 2 VSD;PDA;ASDf g of each heart defect by aver-
aging the classification features of all abnormal cases in the
training set (Fig. 1(b), right), which can be formulated as follows:

f ds ¼
1
S

XS

k¼1f h xs kð Þð Þ;d 2 VSD;PDA;ASDf g ð1Þ

where xs ¼ xs kð Þjk ¼ 1;2; :::; Sf g denotes the support set containing
S abnormal echocardiograms of heart defects. f h �ð Þ denotes the
trained CHDNet model with parameters h. The support prototype

feature f ds is the meta-representation for each heart defect.
Then, we computed the Euclidean distance between the support

prototype feature and the classification feature of each frame of an
echocardiogram video to be diagnosed. Finally, those frames with a
minimal distance to the support prototype feature were selected as
keyframes.

Lkeyframe xið Þ ¼ argmin
xi

f ds � f h xið Þ
��� ������ ���

2
; i ¼ 1;2; � � � ; Tf g ð2Þ

where T denotes the number of frames in an echocardiogram video.
Typically, 3–4 frames were selected as the keyframes.

2.6. Keyframes-based heart defect detection

It is not enough to just show whether the current echocardio-
gram video contains a heart defect; it is also necessary to tell
echocardiographists the specific location and size of the heart
defect. Therefore, two experienced echocardiographists were
invited to accurately mark the location and size of each heart
defect in an echocardiogram using a bounding box (Tables S3
and S4 in Appendix A), which was then used to train the faster-
RCNN model [37]—a classic detection network for heart defect
detection. Finally, the trained faster-RCNN model was applied to
the selected keyframes instead of to all frames in an echocardio-
gram video for diagnosis, thereby significantly reducing the diag-
nosis time.

The processing flow of the detection network was as follows.
ResNet50 [36] was selected as the feature extractor. Afterwards,
based on the learned representations from layer 1 to layer 4 of
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ResNet50, we used feature pyramid networks [38] to compute
multiscale feature representations in order to deal with the prob-
lem of heart defects with different sizes in the echocardiograms.
Then, a region proposal network based on the multiscale represen-
tations was used to produce regions of interests (RoI) to determine
whether each predefined anchor was a heart defect or not, as well
as to optimize the sizes and positions of these anchors. In our
study, we set predefined anchors to have three aspect ratios,
{1:2, 1:1, 2:1}, and five scales, {162;322;642;1282;2562}. This set-
ting fully considered the actual size and contours of the heart
defects in the echocardiograms. In the second stage, we used the
RoI pooling operation to extract features based on the proposed
regions. A class predictor was used to predict the region type and
to further optimize the location and size of each bounding box.
Finally, we used the non-maximum suppression (NMS) [39] algo-
rithm to remove redundant prediction bounding boxes with a con-
fidence lower than 0.3.

2.7. Reliability measurement

Conventional classification networks are trained using a cross
entropy function, which can be described as follows. Pairs

xdi ; y
d
i

� �� �N

i¼1; d 2 VSD;PDA;ASDf g of input images and output
labels are used to train the CHDNet by minimizing the binary cross
entropy function Lce hð Þ.

Lce hð Þ ¼ � 1
N

XN

i¼1yi log p xið Þð Þ þ 1� yið Þ log 1� p xið Þð Þ ð3Þ

where N is the total number of training samples.

p xið Þ ¼ Softmax byi ¼ 1jxi
� � ¼ exp f 1h xið Þð ÞP1

j¼0 exp f j
h
xið Þð Þ is the predicted probabil-

ity of the sample xi being abnormal, byi denotes the diagnostic result.
Bayesian neural networks are suggested to provide a probabilis-

tic interpretation for deep networks, but their feedforward infer-
ence suffers from expensive computation [40–42]. To overcome
this issue, Gal and Ghahramani [16] proposed the use of a dropout
technique to approximate Bayesian inference. Their work demon-
strates that the posterior distribution of a model prediction can
be obtained by means of Monte Carlo sampling using the dropout
method. We follow their method here and allow the CHDNet to
have the ability to output the uncertainty of the result—that is,
the ability to approximate Bayesian inference. Instead of Lce hð Þ,
we choose Luce h;rð Þ as the loss function in order to optimize the
model parameters h and an additional variance r.

Luce h;rð Þ ¼ 1
N

XN

i¼1 � log p yi ¼ 1jf h xið Þ;rð Þ

¼ 1
N

XN

i¼1 � log Softmax yi ¼ 1jf h xið Þ;rð Þ

¼ 1
N

XN

i¼1
1
r2 Lce hð Þ þ log

P1
j¼0 exp

1
ri

2 f
j
h xið Þ

� �
P1

j¼0 exp f jh xið Þ
	 
	 
 1

r2

¼ 1
N

XN

i¼1
1
r2 Lce hð Þ þ logr

ð4Þ

where an explicit simplifying assumption
�P1

j¼0exp f jh xið Þ
	 
� 1

r2 �
1
r
X1

j¼0exp
1
r2

i

f jh xið Þ
� �

is utilized in the final transition [16].

In network optimization, directly optimizing r is difficult due to
numerical instability. Instead, we decided to optimize logr. Then,
Eq. (4) is formulated as follows:

Luce h; zð Þ ¼ ezLe hð Þ þ z ð5Þ
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with

z ¼ logr ð6Þ
where the variance r is used to measure the aleatoric uncertainty.

Epistemic uncertainty can be measured by computing the vari-
ance of the results of multiple models. Thanks to the advantages of
thedropout technique, it is necessary to independently trainM diag-
nosismodels on the samedataset by settingdifferent initial seeds for
model initialization. Therefore, we can sample multiple different
networks by keeping the dropout open during the test time.

byi ¼ E Pj y ¼ 1jf h xi;rið Þð �; j ¼ 1;2; � � � ;M� ð7Þ
where E denotes the mathematical expectation. byi denotes the
expected model output. Pj is prediction probability of the jth model.

ui ¼ 1
M

XM
j¼1

Pj y ¼ cjf h xið Þ;rið Þ � byi

� �2 ð8Þ

where ui denotes the epistemic uncertainty of the model output.
The epistemic uncertainty ui is an effective and objective metric
for assessing the blind spot of the trained CHDNet. Its characteris-
tics are shown in Fig. 3.

2.8. Dynamic feedback cell for improving model robustness

The main idea of the dynamic feedback cell is to obtain an
attention map by using the feature-category transformation matrix
Wclf 2 RCout�C in the classification layer, and to then use the atten-

tion map to update the intermediate layer feature Fi�1
in in the clas-

sification model in order to obtain more robust classification
features. The whole feedback process is shown in Algorithm 1.

Algorithm 1 Dynamic feedback cell
Input:
 Input Fi�1in 2 RH�W�Cin and output Fi�1out 2 RH�W�Cout

features of a middle module (contains several
convolutional layers) in a classification model,

matrix Wclf 2 RCout�C in classification layer, max
iterations T: Cin and Cout denote feature channels. C
denotes the number of categories.
Output:
 Feedback feature Fi�1fb
Target:
 Updating the input feature Fi�1in

1
 for i = 1 to T do	 


2
 Fclsfb ¼ Softmax Fi�1out �Wclf
3
 Fclsfb  Fclsfb � � � ; k½ �% slice, where k indexes the
abnormal channel and use it as the attention map	 

4
 Ffusefb ¼ Fclsfb � Fi�1in � Fi�1in	 


5
 Fi�1fb ¼ Conv1�1 Ffusefb
6
 Fi�1in  Fi�1fb

7
 end
The architecture of the dynamic neural feedback cell is illus-
trated in Fig. 4(a). For a shallow layer in the deep neural network,

the input and output are denoted as Fi�1
in and Fi�1

out , respectively. The
feedback cell begins with a classification layer:

Fcls
fb ¼ Softmax Fi�1

out �Wclf

	 

ð9Þ

where Fcls
fb is the output of the classification layer and indicates the

contribution of the feature Fi�1
out of the shallow layer to the classifica-

tion results.
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Then, Fcls
fb and Fi�1

in are integrated by two sequential operations:
point-wise multiplication (�) and channel-wise concatenation (�).

Ffuse
fb ¼ Fcls

fb � Fi�1
in

	 

� Fi�1

in ð10Þ

where Ffuse
fb is the fusion result and has twice the number of feature

channels as Fi�1
in . To let F fuse

fb pass into the original network without
any modification to the network, we use a convolutional layer with

a kernel size of 1 � 1 (Conv1�1) to compress the channel of F fuse
fb ,

resulting in the same number of channels as Fi�1
in .

Fi�1
fb ¼ Conv1�1 Ffuse

fb

	 

ð11Þ

where Fi�1
fb is the output of the feedback cell and can be regarded as

the clean version of Fi�1
in . Irrelevant background noise and patterns

in Fi�1
in are suppressed and do not exist in Fi�1

fb .
FromEqs. (9)–(11),wefind that thekey ideaof the feedbackcell is

to make full use of the transformation matrix in the classification
layer, because the matrix can project the high-dimensional feature
vector extractedby thenetworkon the input into the category space.
This projection process is a dimensionality reduction process, which
retains the feature information that is related to the classification
and ignores feature information that is not related to the classifica-
tion. Therefore, we propose the application of this transformation
matrix to update the features of the middle layer of the network,
thereby helping the network to better filter out features irrelevant
to the classification—that is, to obtain a ‘‘clean feature.”

2.9. Evaluation metrics

In this work, commonly used classification evaluation metrics
were employed, including specificity, sensitively, accuracy,
F1-score, and area under the curve (AUC). To evaluate the
performance of the detection model, we counted the number of
true positives (Dtp), false positives (Dfp), and false negatives (Dfn)
in each type of heart defect. It should be noted that we determined
whether a detection was accurate or not according to the degree of
coincidence between the prediction box and the bounding box
annotated by the doctors. Based on these statistics, we calculated
two evaluation metrics—namely, recall and precision—using the
following equations:

Drecall ¼ Dtp

Dtp þ Dfn
ð12Þ

Dprecision ¼ Dtp

Dtp þ Dfp
ð13Þ

where Drecall and Dprecision are used to evaluate the detection
performance.

2.10. Noise robustness evaluation

To test the robustness of the CHDNet model, we added Gaussian
noise with a variance rnoise from 0.01 to 0.05 to the input echocar-
diogram. The noise input is defined as follows:

xnoise ¼ xi þ N 0;r2
noise

� � ð14Þ
where xi denotes the input echocardiogram and N 0;r2

noise

� �
denotes

the Gaussian distribution with 0 as the mean and rnoise as the
variance.

2.11. Data availability

Since the entire data set is very large, we only uploaded part of
the data to Google Drive. Despite that, this part of the data can still



Fig. 3. Reliability of the CHDNet with Bayesian inference. (a) The output of the CHDNet (ResNet18) is modified to a vector byi; ri
� �

, i ¼ 1;2; � � � ;Mf g, where r is the variance of
each output. (b) M distributions are ensembled to obtain the epistemic uncertainty ui for input xi . (c) Prediction correctness versus (vs) prediction probability (left), and
prediction correctness vs uncertainty (right). (d) From left to right, statistics of uncertainty on the internal and external test sets of ASD, PDA, and VSD.
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help us to understand how CHDNet model was developed and vali-
dated. The data is available at https://drive.google.com/file/d/16Z-
uZw6JuIqKHUTvYDt2z_0xgq8Ua7e1J/view?usp=sharing.

2.12. Code availability

The Pytorch code of CHDNet (ResNet18) for diagnosing three
common congenital heart defects and faster-RCNN for detecting
the position and size of heart defects are freely available at
https://drive.google.com/file/d/17plnqZVyBGADlYRXMulZRu4te-z-
kbDBu/view?usp=sharing.
3. Results

3.1. Evaluation of representative neural network architectures for
diagnosing three common congenital heart defects

Fig. 2 shows the diagnostic performance of three CHDNet mod-
els on the internal and external test sets for three common congen-
ital heart defects (VSD, ASD, and PDA). The receiver operating
characteristic (ROC) curves show that these three models consis-
tently achieve high diagnostic performance on the internal test
set, even reaching 100% AUC on VSD and ASD (Fig. 2(d)). On the
external test set, the models’ performance drops significantly; for
example, the AUC of CHDNet (ResNet18) drops from 100% on the
internal test set of PDA to 57.8% on the external test set (Tables
S5–S7 in Appendix A). These results suggest that the data from dif-
ferent acquisition devices will partially cause the CHDNet model to
fail, which is a common problem of most machine learning-based
diagnosis approaches. Fig. 2(e) shows the visualization results of
the learned classification features of heart defects when using the
t-SNE algorithm to reduce the dimensionality. It is clear that the
cases from the internal test set are better separated, while cases
from the external test set are worse separated. The results of the
CHDNets based on the two other architectures (MobileNetV3-
Small and ResNet34) are shown in Fig. S1 in Appendix A. This obser-
vation is consistent with the diagnosis result mentioned above.

We next ask whether a CHDNet trained on a 2D keyframe can
be applied to echocardiogram video-based CHD diagnosis. To
achieve this, all abnormal cases of a certain congenital heart defect
in the training set are used as the support set. Therefore, ASD, VSD,
and PDA each correspond to a support set. The average classifica-
tion feature of a support set is regarded as a support prototype fea-
ture that is a meta-representation of a CHD abnormal
echocardiogram. The feature distance between the support proto-
type feature and the frame features of the echocardiogram video
to be diagnosed can help us select the frames most likely to be
abnormal. Fig. 2(c) shows statistics of the feature distance of 12
cases (six healthy and six abnormal) randomly selected from the
external test sets of VSD and ASD. The support prototype features
of VSD and ASD are closer to the features of patients and farther
from those of healthy individuals. With selected abnormal key-
frames, we can further use a detection model to detect the spatial
position and size of the heart defect (Fig. S2(a) in Appendix A). The
detection precision and recall on the internal set of ASD are respec-
tively 0.955 and 0.907, and those on the external set are respec-
tively 0.962 and 0.752 (Fig. S2(b)). The prediction box is highly
coincident with the doctor’s annotation (Figs. S2(c) and S3 in
Appendix A). Similar results are observed in the other types of
heart defects (VSD and PDA).

3.2. Bayesian inference for measuring the reliability of CHD diagnosis

We have shown the diagnostic performance of CHDNet models
on the internal and external sets of three common congenital heart
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defects and the models’ relationship with different echocardio-
gram modalities. Nevertheless, as for any diagnosis approach, the
problem of measuring the reliability of diagnosis results must be
solved, because echocardiographists are often unwilling to use a
diagnosis model with unknown reliability. To this end, following
Monte Carlo sampling [16] we embedded Bayesian inference into
the CHDNet models and obtained the uncertainty of the diagnosis
(Figs. 3(a) and (b)). We first drew the relationship between the pre-
diction accuracy and the prediction probability (after Softmax) of
the CHD cases (Fig. 3(c), left). For wrong prediction cases, the
model still gives its prediction results with a relatively high
probability—that is, with high confidence in its own predictions.
Therefore, the prediction probability cannot well measure the reli-
ability of diagnosis.

We next asked whether there was a close relationship between
the variance r of the model output and the prediction correctness
of the test samples (Fig. S4 in Appendix A). Intuitively, a small vari-
ance indicates high confidence, while a large variance signifies low
confidence in the CHD diagnosis. We observed that the variance r
could not help us to intuitively understand which prediction of a
case was reliable or unreliable. Therefore, we visualized the uncer-
tainty of the cases (Fig. 3(c), right). The uncertainty of the cases
with incorrect predictions is clearly higher than that of the cases
with correct predictions. This finding suggests that uncertainty
can be a candidate metric to reflect the confidence of the prediction
results. Fig. 3(d) shows the uncertainty of the internal and external
test sets of VSD, ASD, and PDA. The uncertainty of the external test
set is higher than that of the internal test set, which indirectly sug-
gests that the diagnosis of cases in the external test set is more dif-
ficult than that of cases in the internal test set.
3.3. Dynamic neural feedback for improving the reliability and
robustness of CHD diagnosis

Bayesian inference can obtain the uncertainty of the CHDNet
models as a measure of the reliability, but this is insufficient.
Improving both the reliability and the robustness of the CHDNet
models is essential, which is true for any diagnosis approach based
on machine learning. CHDNet models are often trained on a speci-
fic imaging device with specific parameter settings. When a trained
CHDNet is applied to unseen cases acquired from different devices
or different parameter settings, its diagnostic performance may be
greatly affected, showing low reliability and robustness. Neverthe-
less, our human visual system exhibits incredibly high reliability
and robustness, and its anti-interference ability is extremely
strong. Inspired by the neural feedback mechanism in the human
visual cortex, we propose a computational dynamic neural feed-
back cell that feeds the deep knowledge of the classification layer
(which can distinguish different categories) back to the shallow
layers, so as to eliminate the noise or patterns that are irrelevant
to the diagnosis task (Fig. 4(a)). The proposed feedback cell can
be applied to existing deep neural networks and to different layers
of a deep network.

To test the ability of the proposed feedback cell to selectively
activate relevant neurons, different degrees of Gaussian noise
(rnoise = 0.01–0.05) were added to the input images during the test.
With an increase in the noise, the diagnostic accuracy on the inter-
nal and external test sets gradually decreased except on the exter-
nal set of PDA without feedback. (Fig. 4(b)), indicating that the
carefully trained CHDNet still showed low robustness. This obser-
vation can be explained using the network features (Fig. 5(a)). The
feedback cell helps the CHDNet model to suppress background
noise that is irrelevant to the goal of CHD diagnosis, resulting in
clean representations. After the CHDNet model was embedded
with the feedback cell, it showed better robustness and higher



Fig. 4. Dynamic neural feedback mechanism. (a) Schematic of the feedback cell, which updates the intermediate layer feature Fi�1
in in the classification model to obtain more

robust classification features by using the feature-category transformation matrix Wclf in the classification layer. (b) From top to bottom are the accuracy, recall, and AUC of
the CHDNet with or without the feedback cell under the interference of different noise levels (rnoise = 0.01–0.05). From left to right are the diagnostic performance of the
internal and external test sets of PDA, VSD, and ASD.
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Fig. 5. Characterization of the feedback cell. (a) Comparison of network features before and after the feedback cell is included in the model. Spatial regions that are not
relevant for the diagnosis are suppressed by the feedback cell. (b) ROC curve with rnoise = 0.01–0.05. Comparison of the CHDNet (ResNet18) model with and without the
feedback cell on the internal and external test sets of VSD. (c) Confusion matrix of the CHDNet model with and without the feedback cell under Gaussian noise rnoise = 0.02–
0.04.
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Table 1
Comparison of classification accuracy between our method and LassoNet [43].

Method PDA VSD ASD

Internal test set External test set Internal test set External test set Internal test set External test set

ResNet18 1.000 0.321 1.000 0.583 0.997 0.921
ResNet18 + feedback cell 1.000 0.638 1.000 0.782 1.000 0.945
LassoNet (decoder networks) [43] 0.972 0.548 0.981 0.674 0.974 0.933
LassoNet (tree-based classifiers) [43] 0.978 0.565 0.983 0.685 0.976 0.935
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diagnostic performance in terms of accuracy, recall, and AUC on all
congenital heart defects (Figs. 4(b), 5(b), and 5(c)).

3.4. Comparison with another method

We compared our feedback cell with a recent method—
LassoNet [43]—that can improve the model prediction accuracy
on an external dataset or after adding noise. Lemhadri et al. [43]
proposed the LassoNet method by modifying the loss function with
constraints to make neural networks with feature sparsity. This
method can help the network to select a subset of the features,
resulting in a sparse network. We used the published office code
and slightly modified it to adapt it to our task. A comparison of
our method with LassoNet is shown in Table 1 [43]. The LassoNet
using decoder networks and tree-based classifiers shows slightly
lower performance on the internal dataset but better performance
than the Resnet18 model without the feedback cell on the external
dataset. Overall, we find that ResNet18 with the feedback cell
achieves better performance on the internal and external test sets.

3.5. Comparison with human experts

An echocardiogram is the most important and cost-effective
test for cardiovascular disease screening and evaluation. At pre-
sent, the echocardiograms in most hospitals in China are checked
and reported by professional echocardiographists, but the level of
echocardiographists in different hospitals varies greatly. In addi-
tion, cardiologists, neonatal physicians, and intensive care unit
physicians are often required to perform an initial echocardio-
graphic evaluation when an echocardiographists is not available
in time. Especially in critically ill infants and children, the presence
and type of CHD can influence the choice of further drug and fluid
therapy. Therefore, rapid and accurate echocardiogram interpreta-
tion is very important for these doctors. In clinical work, we have
often found that some doctors can perform a cardiogram but can-
not give a good diagnosis.

We invited 23 doctors, including eight echocardiographists and
15 clinicians (cardiovascular specialist doctors from different hos-
pitals, neonatologists, and pediatric intensive care doctors), to
evaluate echocardiographic images from internal (n = 50) and
external (n = 115) test sets, respectively. The doctors gave only a
diagnostic result, while the CHDNet performed positioning and
preliminary measurements along with a diagnosis. Finally, the
accuracy of each evaluation was compared and analyzed.
Table S8 in Appendix A shows the comparison result. In the inter-
pretation of the internal test sets, our model has the absolute
advantage. In the interpretation of the external test set, our model
does not prevail in accuracy compared with experienced echocar-
diographists and cardiologists at the Children’s Hospital of Fudan
University. However, the accuracy of our model—especially for
the ASD and VSD prediction models—is significantly higher than
that of sonographers and cardiologists with relatively poor medical
skills and physicians in our hospital’s neonatology department and
intensive care unit.

The CHDNet model with the feedback cell has been used by car-
diologists and clinicians for more than one year, helping sonogra-
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phers with relatively backward medical standards to improve
their work efficiency and professional capabilities, and helping
medical staff outside the field of ultrasound imaging to better carry
out clinical work.
4. Discussion

For three common CHDs, we have demonstrated the diagnostic
performance of CHDNet implemented with three representative
neural network architectures (MobileNetV3-Small [35], ResNet18
[36], and ResNet34 [36]) based on acquired echocardiogram data.
We have observed a significant difference in diagnostic perfor-
mance on the internal and external test sets. Moreover, we have
conducted an ablation study to discuss the impact of different
echocardiogram modalities on CHDNet performance, showing that
the color modality is better than the gray modality and that com-
bining both modalities is the best choice. All these results suggest
that existing advanced deep models have enough regression power
to implement CHD diagnosis. Nevertheless, the most urgent task in
developing a CHD diagnosis model is to resolve clinical relevance,
rather than just pursuing a high diagnostic performance on inter-
nal tests. What sets our work apart is that we make the CHDNet
output its diagnostic reliability by embedding Bayesian inference,
which allows echocardiographists to identify diagnostic cases in
which results might not be correct. We have shown that the vari-
ance of distribution of CHDNet output is not accurate in measuring
the reliability of the diagnosis, whereas the uncertainty of ensem-
ble distribution of the CHDNet output can well measure it.

The connections of feedback are more contained than those of
feedforward in the human visual cortex [44,45]. This fact is con-
trary to the current popular deep neural networks that basically
only contain feedforward inference during evaluation and whose
connection parameters remain unchanged even when the inputs
are varied. The powerful ability of feedback inference is little stud-
ied in existing works on machine learning. In this work, we pro-
pose a computational dynamic neural feedback cell to improve
the reliability, robustness, and accuracy of CHD diagnosis. This
feedback cell can be easily embedded into existing deep neural
networks and improves them significantly without adding major
computational complexity. When the input echocardiogram is seri-
ously disturbed by noise, the CHDNet with a feedback cell signifi-
cantly outperforms the CHDNet without a feedback cell, as shown
by the evaluation results for three common congenital heart
defects.

To further understand the ability of the feedback cell, we visu-
alized the features of a neural layer in the CHDNet model before
and after the feedback cell. The visualized feature map shows that
the feedback cell grants the CHDNet model the ability to selectively
activate relevant neurons and suppress nonrelevant distractive
noises or patterns for the task of CHD diagnosis. It should be noted
that the feedback cell is significantly different from a recurrent
neural network (RNN), gated recurrent unit (GRU), or long short-
term memory (LSTM). These recurrent cells use the information
of the previous moment, whereas the feedback cell uses the trans-
formation matrix of the classification layer to update the interme-
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diate layer features. The purpose of RNN, GRU, and LSTM is to
exploit the relevance of words in the sequence, whereas the pur-
pose of the feedback cell is to remove background noise that is
irrelevant to the classification goal.

However, CHDNet models with Bayesian inference and dynamic
neural feedback cannot be directly applied to clinical diagnosis. A
great deal of work is still necessary, including data fairness, ethical
compliance, clinical trials, and so forth. Bayesian inference enables
the CHDNet to output the reliability of the diagnosis, which has
been evaluated on the acquired large-scale real-world internal
and external tests of three common congenital heart defects.
Nevertheless, before clinical practice, there is still a need for a
comprehensive and wide evaluation on external test sets, including
different races, different ages, and diverse routine ultrasound
imaging equipment.

The effectiveness of the proposed dynamic neural feedback
mechanism has been evaluated on both a non-enhanced and an
enhanced CHDNet model through anti-noise experiments. This
evaluation is not enough for clinical practice, because a clinical
echocardiogram includes not only noise but also blur, jitter,
intra- and inter-patient variations, and so forth. Therefore, further
evaluation with clinical trials is necessary.

Taken together, our results show that CHDNet can—in combina-
tion with Bayesian inference and dynamic neural feedback—
achieve better accuracy, higher reliability, and stronger robustness
in diagnosing three common congenital heart defects. The two
technologies introduced in this work can be easily embedded in
existing deep neural network-based diagnosis approaches, improv-
ing their performance and reliability. We predict that the current
explosion of echocardiogram data richness and the ability of
CHDNet to dynamically adapt to various CHD cases with neural
feedback will release the great clinical potential of CHDNet and
make such learning approaches prevalent in the clinic.
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