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Abstract The application of spectral reflectance indices
(SRIs) as proxies to screen for yield potential (YP) and heat
stress (HS) is emerging in crop breeding programs. Thus, a
comparison of SRIs and their associations with grain yield
(GY) under YP and HS conditions is important. In this
study, we assessed the usefulness of 27 SRIs for indirect
selection for agronomic traits by evaluating an elite spring
wheat association mapping initiative (WAMI) population
comprising 287 elite lines under YP and HS conditions.
Genetic and phenotypic analysis identified 11 and 9 SRIs
in different developmental stages as efficient indirect
selection indices for yield in YP and HS conditions,
respectively. We identified enhanced vegetation index
(EVI) as the common SRI associated with GYunder YP at
booting, heading and late heading stages, whereas
photochemical reflectance index (PRI) and normalized
difference vegetation index (NDVI) were the common
SRIs under booting and heading stages in HS. Genome-
wide association study (GWAS) using 18704 single
nucleotide polymorphisms (SNPs) from Illumina iSelect
90K identified 280 and 43 marker-trait associations for
efficient SRIs at different developmental stages under YP
and HS, respectively. Common genomic regions for
multiple SRIs were identified in 14 regions in 9
chromosomes: 1B (60–62 cM), 3A (15, 85–90, 101–
105 cM), 3B (132–134 cM), 4A (47–51 cM), 4B (71–
75 cM), 5A (43–49, 56–60, 89–93 cM), 5B (124–125 cM),
6A (80–85 cM), and 6B (57–59, 71 cM). Among them,
SNPs in chromosome 5A (89–93 cM) and 6A (80–85 cM)
were co-located for yield and yield related traits. Overall,
this study highlights the utility of SRIs as proxies for GY
under YP and HS. High heritability estimates and
identification of marker-trait associations indicate that

SRIs are useful tools for understanding the genetic basis of
agronomic and physiological traits.
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1 Introduction

Bread wheat (Triticum aestivum L.) is one of the staple
food crops in the world providing 20% of the proteins and
calories to the world population; increasing grain yield
(GY) of spring wheat is therefore important for world food
security[1]. Short episodes of extreme heat are expected to
become more frequent, which could have adverse impacts
on yield[2]. Conventional breeding based on the selection
of yield per se has been very efficient in raising wheat
production under irrigated conditions in the past[3].
However, the estimation of GY requires the harvest of
the experimental plots, which is expensive and time-
consuming at a breeding scale[4]. The identification of
proxies for GY in early stages of crop growth can increase
the efficiency of selection and reduce the number of plots
harvested[5]. Use of morphological and physiological traits
as indirect selection criteria for GY is an alternative
breeding approach[6]. In recent years, spectroradiometry
has offered a quantum leap forward in the efficiency of
screening physiological traits that have been typically
laborious and time-consuming[7–9]. The prospect of future
genetic improvements using spectral reflectance to identify
and track physiological traits, offers crop breeding
programs new opportunities to increase yield potential
(YP) and to improve wheat to abiotic stresses such as heat
stress (HS)[10,11].
The spectral reflectance of a canopy is directly linked to

a plant’s biophysical and biochemical properties, which
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determine absorption and reflection patterns at specific
wavelengths[12]. Pigments in leaves absorb light strongly
in the visible spectrum (VIS, 380–740 nm) rather than the
near-infrared region (NIR, 740–2500 nm)[10], resulting in a
different reflection of radiation in the two regions. Spectral
reflectance indices (SRIs) represent the simplest way to
obtain information from spectral reflectance measurements
and were developed using simple mathematical formulae
such as ratios or differences between reflectances observed
at different wavelengths. The simple ratio (SR) index[13]

and the normalized difference vegetation index (NDVI)[14]

were the first SRIs to be described and are commonly used
to predict green biomass and green leaf area index. Some
SRIs use only reflectance at the VIS wavelentghs, such as
the photochemical reflectance index (PRI) which is used to
assess radiation-use efficiency[15]; or only NIR, such as the
water index (WI) that is related to water status of the
canopy[16,17]. SRIs have been widely used in assessing
different physiological conditions of the canopy such
as the estimation of total dry matter, leaf area index,
photosynthetic capacity, and pigment concentration[18–21].
GY has also been frequently estimated using SRIs
measured at different growth stages of the wheat crop
under irrigated and water-limited environments[22–26].
SRIs may be related to complex quantitative traits

controlled by multiple genetic factors. Recent studies
identified the genomic regions for several SRIs under fully
irrigated, rainfed, and drought-stressed environments in
bread wheat[27,28]. However, little is known about the
genomic regions associated with SRIs in spring wheat
under HS. In the present study, a spring wheat association
mapping initiative (WAMI) panel was phenotyped under
YP and HS conditions. The objectives of this study were to
(1) identify efficient SRIs as proxies for GYunder YP and
HS environments, and (2) identify the genomic regions
associated with SRIs for YP and HS through genome-wide
association study (GWAS).

2 Materials and methods

2.1 Germplasm, genotyping, and population structure

The WAMI panel consisting of 287 elite spring wheat lines
was assembled at the International Maize and Wheat
Improvement Center (CIMMYT) for dissecting the genetic
basis of complex traits. This is a collection of elite lines
assembled from the international nurseries that CIMMYT
distributes to developing countries through the Interna-
tional Wheat Improvement Network (IWIN). The material
was genotyped using the Illumina iSelect 90K single
nucleotide polymorphism (SNP) array. A total of 21871
assays showed three distinct clusters corresponding to the
AA, AB, and BB genotypes expected for a biallelic SNP.
Of the remaining assays with poorer cluster separation,

manual clustering was applied. Overall, 36133 of the
81587 functional SNPs visually revealed polymorphism
among the WAMI population. We were able to locate
28614 (35.1%) of the SNPs on the published genetic
map[29]. After removing SNPs with minor allele fre-
quency< 5% and missing value> 10%, 18704 SNPs were
used for GWAS. The population structure of the panel was
associated with pedigree of the lines. A detailed descrip-
tion of the population structure, linkage disequilibrium,
and minor allele frequency can be found in earlier studies
of the WAMI population[30–32].

2.2 Field experiment and agronomic practices

Field trials were conducted during the 2015–2016 crop
season under field conditions at Campo Experimental
Norman E. Borlaug (CENEB), Ciudad Obregon, Yaqui
Valley, Mexico (27°25′ N, 109°54′ W, 38masl). The
WAMI population was phenotyped in a randomized lattice
design with two replications under YP and HS. The YP
environment was simulated by planting in late November
and full irrigation (total water supply> 700 mm) was
provided. HS was applied by late sowing (late February)
with full irrigation (total water supply> 700 mm) to avoid
the effect of drought; a typical method for applying HS at
CENEB that has been demonstrated to be successful in
generating germplasm for HS environments such as
ME5[33]. Seeds were sown on raised beds 2 m long with
two rows (25 cm between rows) and 80 cm between the
beds. Appropriate fertilizers, pesticides, and insecticides
were applied according to normal practices prevalent in
this region.

2.3 Phenotypic traits measurement

A high-resolution spectroradiometer (FieldSpec® Hand-
Held 2, ASD Inc., Longmont, CO, USA) was used to
measure the spectral reflectance of each plot. The
HandHeld 2 is a hand-held spectro-radiometer that uses a
FieldSpec 4 VNIR spectrometer for accurate analysis in the
325–1075 nm spectral range. To collect one spectral
measurement, the sensor was located 50 cm over the
canopy pointing in nadir position. A 12.7 cm � 12.7 cm
calibrated white panel (99% Spectralon®, Labsphere Inc.,
North Sutton, NH, USA) was used for the estimation of the
incoming radiation and the spectral reflectance. An average
spectrum per plot was estimated using four measurements
collected at different locations across the plot and avoiding
the first 50 cm at each extreme of the plot. The spectral
measurements were conducted at 11:00–14:00 to avoid the
possibility of confounding effects from variations in solar
radiation. The spectral measurements were conducted at
booting (Zadok 50), heading (Zadok 60), and 7 days after
heading (heading plus 7 days, H7) stages in the YP
environment, while in HS they were conducted at booting
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(Zadok 50) and heading (Zadok 60) stages. Several SRIs
were derived from the collected data. The names, formulas
and references can be found in Table 1.
In addition to SRIs, the following agronomic traits were

measured: GY (g$m–2), thousand-grain weight (TGW, g),
grain number [GN, estimated as GY (g$m–2)/TGW (g) �
1000], days to heading (DTH, i.e., the number of days from
emergence when 50% of the spikes had emerged); days to
maturity (DTM, i.e., the number of days from emergence
to when the kernel became hard); plant height (PH, cm,

from the soil surface to the tip of the spike without awns).

2.4 Statistical analysis

The best linear unbiased prediction (BLUP) values for
agronomic traits and SRIs were calculated using META-
R[50]. Correlations between the traits were estimated using
SAS v9.1 (SAS Institute, Cary, CA, USA). Broad sense
heritability (H2) was estimated as:

Table 1 SRIs measured on the WAMI population under YP and HS environments in Ciudad Obregon, Mexico during the 2015–2016 growing

season

SRIs Equation

Vegetation indices

Simple ratio (SR) RNIR/RRED
[34]

Normalized difference vegetation index_670 (NDVI_670) (R780 – R670)/(R780 + R670)
[14]

Normalized difference vegetation index_670 (NDVI_705) (R750 – R705)/(R750 + R705)
[37]

Enhanced vegetation index (EVI) 2.5(RNIR – RRED)/(RNIR + 6RRED - 7.5RBLUE + 1)[38]

MERIS terrestrial chlorophyll index 1 (MTCI1) (R754 – R709)/(R709 – R681)
[39]

MERIS terrestrial chlorophyll index 2 (MTCI2) (RNIR – R748)/(R748 – RRED)
[39]

Optimized soil adjusted vegetation index (OSAVI) (RNIR – RRED)/(RNIR + RRED + 0.16)[42]

Transformed chlorophyll absorption in reflectance index (TCARI) 3((R700 – R670) – 0.2(R700 – R550) (R700/R670))
[43]

Water indices

Water index (WI) R970/R900
[45]

Normalized water index_1 (NWI_1) (R970 – R900)/(R970 + R900)
[23]

Normalized water index_2 (NWI_2) (R970 – R850)/(R970 + R850)
[23]

Normalized water index_3 (NWI_3) (R970 – R880)/(R970 + R880)
[47]

Normalized water index_4 (NWI_4) (R970 – R920)/(R970 + R920)
[47]

Red edge indices

Normalized phaeophytinization index (NPQI) (R415 – R435)/(R415 + R435)
[49]

Chlorophyll indices

Chlorophyll ratio (AB ratio) RARSa/RARSb[35]

Ratio analysis of reflectance spectra for chlorophyll a (RARSa) R675/R700
[36]

Ratio analysis of reflectance spectra for chlorophyll b (RARSb) (R675/R650 � R700)
[36]

Ratio analysis of reflectance spectra for carotenoids (RARSc) R760/R500
[36]

Pigment specific simple ratio a (PSSRa) R800/R680
[40]

Anthocyanin reflectance index 1 (ARI1) 1/R550 – 1/R700
[41]

Anthocyanin reflectance index 2 (ARI2) R800((1/R550) – (1/R700))
[41]

Carotenoid reflectance index 1 (CRI1) 1/R510 – 1/R550
[44]

Carotenoid reflectance index 2 (CRI2) 1/R510 – 1/R700
[44]

Caroenoide

Normalized difference pigment index (NDPI) (R680 –R430)/(R680 + R430)
[45]

Plant senescence reflectance index (PSRI) (R680 – R500)/R750
[46]

Structure insensitive pigment index 2 (SIPI2) (R800 – R445)/(R800 + R680)
[48]

Radiation use efficiency

Photochemical reflectance index (PRI) (R531 – R570)/(R531 + R570)
[15]

Note: SRIs, spectral reflectance indices; WAMI, wheat association mapping initiative; YP, yield potential; HS, heat stress; RNIR, average reflectance between 780 and
900 nm; RRED, average reflectance between 670 and 690 nm; RBLUE, average reflectance between 459 and 479 nm.
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H2 ¼ �2g

�2
g þ

�2
e

r

where �2
g and �2

e were genotype and error variance, and r
was the number of replications.
For the selection of efficient SRIs that could predict GY,

two steps of analysis were conducted: (1) to identify the
SRIs that were significantly correlated with GY (P< 0.01)
at different crop stages; (2) to remove redundant SRIs
based on correlations and only keeping those with relative
highest H2 in the same correlation cluster.

2.5 Marker trait associations (MTAs)

GWAS analysis was performed in TASSEL v5.0 software
using the generalized linear model and mixed linear
model[51]. Models were compared by fitting simple model,
familial relatedness matrix (K) as random factor, popula-
tion structure (Q1 – Q10) from STRUCTURE, principal
components (PC1 – PC10), (Q1 – Q10) + K, and (PC1 –
PC10)+ K, and coefficient of parentage as a random factor
in combination with the PC and Q matrix and observing
the Q-Q plots of P-values. Manhattan plots were created
using the ‘qqman’ package in R[52]. Once the MTAs were
identified, comparisons were made between the traits and
also with previously detected MTAs in the WAMI
population[30–32].

3 Results

3.1 Phenotypic variation and broad-sense heritability

Agronomic traits showed a substantial reduction in trait
values under HS compared to YP. GY, TGW, and GN
decreased by 31%, 17%, and 17%, respectively. The length
of the growth cycle also decreased under HS compared to
YP, where the average DTH and DTM were shortened by
14 and 38 days, respectively. PH reduced by 16 cm on
population average under HS (Table S1). Similar to the
results found with agronomic traits, the values of the SRIs
decreased in HS compared to YP, while the water indices
(WI, NWI_1, NWI_2, NWI_3, and NWI_4), TCARI
(transformed chlorophyll absorption in reflectance index),
AB ratio (Chlorophyll ratio), ARI1 (anthocyanin reflec-
tance index 1), ARI2, and NDPI (normalized difference
pigment index) increased under HS, compared to YP
(Table 2).
Under YP, the SRIs related to light use efficiency (e.g.,

PRI, SIPI2 (structure insensitive pigment index 2)) showed
an increasing trend from booting to late heading (H7),
whereas SRIs related to vegetation (SR, NDVI_670,
NDVI_705, and MTCI1 (MERIS terrestrial chlorophyll
index 1)) and water status (WI, NWI_1, NWI_2, NWI_3,
and NWI_4) showed a decreasing trend during the same
period. Under HS, the SRIs related to chlorophyll (RARSa

(ratio analysis of reflectance spectra for chlorophyll a),
RARSb, ARI1, and ARI2) and carotenoid (NDPI and PSRI
(plant senescence reflectance index)) content increased
from booting to the heading stage, and SRIs related to
vegetation (SR, NDVI_670, NDVI_705, EVI (enhanced
vegetation index), MTCI1, OSAVI (optimized soil
adjusted vegetation index), and TCARI) decreased during
the same period, while indices related to water status (WI,
NWI_1, and NWI_4) did not change much between the
two stages. Most of the SRIs had similar trends under YP
and HS, while TCARI, PRI, NWI_2, NWI_3, and RARSb
showed contrasting patterns between the two environ-
ments.
The highestH2 for most of the SRIs were observed at the

heading stage under YP. Under HS, moderate to high H2

was observed at both booting and heading stage (Table 2).

3.2 Correlations

Under YP, half of the studied SRIs showed significant
correlations with GYat booting and heading, whereas only
four SRIs showed good correlations at late heading
(P< 0.01, Table 2). EVI, OSAVI, and ARI1 were
correlated with GY across the three measured stages.
Under HS, eight and 19 SRIs were correlated significantly
with GY at booting and heading stage, respectively.
NDVI_705, MTCI1, WI, NWI_1, NWI_2, NWI_3,
NWI_4, and PRI were correlated with GY at both stages.
Significant correlations between the SRIs were observed

in both YP and HS environments (Table S2). Most of the
high correlations were observed in the same SRIs group
(e.g., NDVI_670, and NDVI_705; WI, NWI_1, NWI_2,
NWI_3, and NWI_4), while some strong correlations were
found between SRIs from different groups (e.g., SR with
RARSc; SIPI2 with NDVI_670; and PRI with NDQI).

3.3 Efficient SRIs for indirect selection of GY

According to the heritability estimates and correlations,
several efficient SRIs were identified as indirect indices for
GY at different growth stages: under YP, EVI was an
efficient selection index from booting until late heading
stage; NDPI, NPQI (normalized phaeophytinization
index), PRI, ARI2, MTCI4, and NWI_1 were efficient
SRIs at both booting and heading stages; NDVI_705 was
efficient at booting stage; CRI2 (carotenoid reflectance
index 2) was efficient from heading to late heading; while
ARI1 and OSAVI were more efficient after heading
(Fig. 1(a)). Under HS, NDVI_705 and PRI were efficient
in predicting GYat both booting and heading stages; while
NW1_2 was efficient only at the booting stage, and
RARSb, ARI2, AB ratio, PSSRa (pigment specific simple
ratio a), MTCI2, and WI were efficient at the heading stage
(Fig. 1(b)). NDVI_705 and PRI were common efficient
SRIs for YP and HS, while RARSb, AB ratio, PSSRa, and
WI were specific SRIs for HS.

Caiyun LIU et al. GWAS for yield potential and heat tolerance through SRIs 299



3.4 Marker-trait associations for agronomic traits and
efficient SRIs

For agronomic traits, significant SNPs associated with GY
were located on chromosome 6A under YP, and on 2B and
3A under HS. SNPs associated with TGW were on 2B
(YP) and 6A (HS), and with GN were on 1B (YP), 3A
(YP), 1D (HS), and 6D (HS). For DTH, significant SNPs
were on 1B, 2A, and 2B under YP, while under HS were
located on 5A and 6D. Significant markers associated with
DTM were on 2A, 3D, and 5D for YP, and on 1A, 2B, and
4B for HS. For PH, associated markers were on 3B and 3D

under YP, while on 5A and 6A under HS (Table S3).
For efficient SRIs, 280 SNPs located on chromosomes

1A, 1B, 2A, 2D, 3A, 3B, 4A, 4B, 5A, 5B, 6A, 6B, 6D, 7A,
and 7B were identified under YP (Table S3). The largest
number of associations were observed for NDPI at the
booting stage (83 MTAs, Fig. 2(a)), followed by ARI2 (51
MTAs). Under HS, 43 markers located on chromosomes
1A, 1B, 2A, 2B, 3A, 3B, 4A, 5A, 5D, 6A, 6B, 7A, 8B, and
7D were identified for SRIs. The largest number of
associations were observed for NWI_2 at the booting stage
(9 MTAs, Fig. 2(h)), followed by ARI2 at the heading
stage (6 MTAs).

Table 2 Mean values, broad sense heritability (H2), and correlation coefficients (r) of SRIs with GY of the WAMI population under YP and HS

environments in Ciudad Obregon, Mexico during the 2015–2016 growing season

SRIs

YP HS

Booting Heading Heading+ 7 days Booting Heading

Mean H2 r Mean H2 r Mean H2 r Mean H2 r Mean H2 r

SR 25.84 0.45 0.01 23.06 0.63 -0.11 16.86 0.11 -0.02 19.83 0.68 0.18 14.39 0.77 0.29**

NDVI_670 0.92 0.07 0.13 0.91 0.70 -0.11 0.89 0.47 0.06 0.90 0.71 0.18 0.87 0.78 0.30**

NDVI_705 0.74 0.32 0.25** 0.73 0.54 0.09 0.70 0.34 0.19 0.66 0.69 0.26** 0.65 0.74 0.39**

EVI 0.66 0.26 0.23** 0.68 0.58 0.15** 0.61 0.34 0.23** 0.65 0.77 0.14 0.58 0.64 0.21

MTCI1 3.67 0.52 0.18 3.55 0.54 0.04 2.91 0.02 0.09 2.56 0.67 0.24** 2.36 0.73 0.38**

MTCI2 0.23 0.52 0.36** 0.27 0.45 0.26** 0.28 0.21 0.21 0.19 0.72 0.08 0.25 0.73 0.22**

OSAVI 0.70 0.07 0.28** 0.71 0.54 0.22** 0.68 0.40 0.30** 0.70 0.77 0.14 0.67 0.63 0.21

TCARI 0.08 0.50 -0.08 0.08 0.54 -0.03 0.10 0.04 0.07 0.13 0.84 -0.08 0.10 0.48 -0.19

WI 0.86 0.21 -0.23** 0.84 0.48 -0.22** 0.80 0.04 -0.13 0.88 0.54 -0.30** 0.88 0.63 -0.42**

NWI_1 -0.08 0.22 -0.23** -0.09 0.49 -0.22** -0.09 0.01 -0.12 -0.07 0.54 -0.30** -0.07 0.63 -0.42**

NWI_2 -0.07 0.07 -0.22** -0.08 0.46 -0.24** -0.08 0.03 -0.08 -0.06 0.63 -0.34** -0.05 0.58 -0.43**

NWI_3 -0.07 0.09 -0.23** -0.09 0.48 -0.24** -0.09 0.06 -0.07 -0.07 0.52 -0.30** -0.06 0.57 -0.42**

NWI_4 -0.07 0.22 -0.22** -0.08 0.50 -0.21 -0.08 0.08 -0.08 -0.06 0.55 -0.30** -0.06 0.62 -0.41**

AB ratio 0.02 0.45 0.02 0.03 0.68 0.20 0.06 0.01 0.08 0.03 0.69 -0.16 0.04 0.52 -0.28**

PSSRa 25.42 0.45 0.21 22.87 0.62 0.30** 17.11 0.11 0.17 20.10 0.68 -0.01 14.67 0.78 -0.07

RARSa 0.45 0.43 0.06 0.49 0.85 -0.09 0.52 0.22 -0.09 0.39 0.87 0.11 0.51 0.87 0.22**

RARSb 20.59 0.58 -0.05 18.30 0.59 -0.15 16.23 0.03 -0.06 13.02 0.75 0.15 13.63 0.43 0.22**

RARSc 21.51 0.51 0.02 19.77 0.74 -0.11 15.77 0.18 -0.01 16.85 0.63 0.16 13.91 0.76 0.29**

ARI1 -0.81 0.38 -0.35** -0.43 0.71 -0.22** 0.34 0.56 -0.23** -0.34 0.80 -0.18 0.34 0.75 -0.21

ARI2 -0.41 0.50 -0.39** -0.24 0.76 -0.26** 0.17 0.49 -0.18 -0.19 0.78 -0.18 0.16 0.76 -0.22**

CRI1 19.26 0.55 -0.16 14.70 0.80 -0.24** 13.39 0.41 -0.21 14.96 0.65 0.05 10.86 0.66 0.12

CRI2 18.45 0.59 -0.18 14.26 0.83 -0.25** 13.70 0.47 -0.23** 14.63 0.68 0.01 11.20 0.66 0.06

NPQI -0.07 0.56 0.33** -0.04 0.56 0.32** -0.02 0.02 0.09 -0.09 0.62 0.02 -0.06 0.45 0.03

NDPI -0.01 0.51 -0.42** 0.01 0.82 -0.30** 0.10 0.12 -0.02 0.02 0.82 -0.15 0.04 0.78 -0.21

PSRI -0.005 0.04 -0.21 -0.005 0.86 -0.21 0.03 0.01 0.07 -0.01 0.83 -0.13 -0.001 0.81 -0.21

SIPI2 0.92 0.21 0.07 0.91 0.74 -0.15 0.90 0.49 0.01 0.90 0.67 0.15 0.88 0.76 0.27**

PRI 0.01 0.24 0.32** 0.01 0.53 0.24** 0.03 0.04 0.08 0.01 0.83 0.29** 0.001 0.80 0.30**

Note: SRIs, spectral reflectance indices; GY, grain yield; WAMI, wheat association mapping initiative; YP, yield potential; HS, heat stress; SR, simple ratio; NDVI,
normalized difference vegetation index; EVI, enhanced vegetation index; MTCI, MERIS terrestrial chlorophyll index; OSAVI, optimized soil adjusted vegetation
index; TCARI, transformed chlorophyll absorption in reflectance index; WI, water index; NWI, normalized water index; AB ratio, chlorophyll ratio; PSSR, pigment
specific simple ratio; RARS, ratio analysis of reflectance spectra for chlorophyll; ARI, anthocyanin reflectance index; CRI, carotenoid reflectance index; NPQI,
normalized phaeophytinization index; NDPI, normalized difference pigment index; PSRI, plant senescence reflectance index; SIPI, structure insensitive pigment index;
PRI, photochemical reflectance index; **, significant at P< 0.01.

300 Front. Agr. Sci. Eng. 2019, 6(3): 296–308



3.5 Common genomic regions and markers for multiple
traits

Most of the significant markers associated with efficient
SRIs were clustered on 12 chromosomes: 1B, 2A, 3B, 4A,
4B, 5A, 5B, 6A, 6B, 7A, 7D, and especially 3A. Fourteen
genomic regions on 1B (60–62 cM), 3A (15, 85–90, 101–
105 cM), 3B (132–134 cM), 4A (47–51 cM), 4B (71–
75 cM), 5A (43–49, 56–60, 89–93 cM), 5B (124–125 cM),
6A (80–85 cM), and 6B (57–59, 71 cM) were associated
with multiple SRIs (Fig. 3). For example, the locus on 3A
at 88–90 cM was associated with NDPI, ARI2 and PRI
under YP. Among the markers in this region, 35 markers
were common between NDPI and ARI2, three markers
were common between NDPI and PRI, and one SNP
(Kukri_c25564_185) was associated with NDPI, ARI2 and
PRI (Table 3). The locus on 3A at 101–105 cM (612–
618 Mb on physical map) was associated with NDPI,
ARI2, and CRI2 under YP. Among the markers in this
region, wsnp_Ex_c26887_36107413 was associated with
ARI2 and CRI2, and BS00056089_51 was associated with
NDPI, ARI2, and CRI2. Three markers on 4B at 71 cM
(c. 548 Mb on the physical map) was associated with EVI
and OSAVI. Four markers on 6B at 71 cM (c. 526 Mb on
the physical map) was associated with NDVI_705 and AB
ratio (Table 3).
On chromosome 6A, a region at 80–85 cM was

associated with GY and PRI under YP, and with TGW,
PH, and NWI_2 under HS. At the Vrn-1 locus on 5A at 89–
93 cM, DTH, PH, ARI2 and PRI under HS were co-located
(Fig. 3).

3.6 Comparison with the previously identified marker-trait
associations on the WAMI population

The WAMI population has been widely used for associa-
tion mapping studies. In the present study, the locus in
chromosome 1B at 70 cM for GN was previously reported
for peduncle length[31] and spike ethylene[53] (Table S4).
The other locus in chromosome 1B at 148 cM for PH was
earlier reported for harvest index and TGW[31,54]. The
locus in 2A (143 cM) for EVI was co-located QTL for
TGW[54]. The locus on 3B (61 cM) for PH was earlier
identified for SPAD at the grain-filling stage[31]. On 4B, the
locus at 66 cM for DTM has been reported for GY[54], and
the locus at 71 cM for EVI and OSAVI was reported for
spike dry weight[53]. On 5A, the locus at 60 cM for PRI
was previously reported for TGW[54], while the locus at
90 cM was reported for DTH and flowering time[1,30,31]

and was identified as the Vrn-1 locus. On 6A, the locus at
80 cM for TGW was reported to co-located with QTL for
PH[31], and the locus at 85 cM for GY was reported for GY,
biomass, TGW, and SPAD at grain-filling[31,54]. The locus
on 7A (35 cM) for NPQI was previously identified for
GY[54].

4 Discussion

Identification of indirect selection indices for GY in target
environments is important in wheat breeding programs
with large sets of germplasm and genotypes. An efficient
indirect index should be significantly correlated with GY,

Fig. 1 Common and different spectral reflectance indices (SRIs) showed significant correlations with grain yield (GY) when measured
at booting, heading, and heading plus 7 days stages under yield potential (YP) (a) and heat stress (HS) (b) environments in Cd. Obregon,
Mexico during the 2015–2016 season. NDPI, normalized difference pigment index; PRI, photochemical reflectance index; NPQI,
normalized phaeophytinization index; MTCI, MERIS terrestrial chlorophyll index; NWI, normalized water index; ARI, anthocyanin
reflectance index; EVI, enhanced vegetation index; NDVI, normalized difference vegetation index; CRI, carotenoid reflectance index;
OSAVI, optimized soil adjusted vegetation index; RARS, ratio analysis of reflectance spectra for chlorophyll; AB ratio, chlorophyll ratio;
WI, water index; PSSR, pigment specific simple ratio.
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showing high heritability and genetic variability[55]. In the
case of physiological traits, the phenological stage at which
the measurements are taken also may affect the ability to
predict GY. In the current study, most SRIs were associated
with GY at booting and heading stages under YP, but high
heritability estimates of SRIs was observed at the heading
stage. Under HS, significant correlations and high herit-
ability of SRIs were observed at both booting and heading

stages. These results suggest that the heading stage could
be the most optimum stage to conduct the measurement of
SRIs for early selection/prediction of GY under both
conditions. Similar observations were also reported in
irrigated spring wheat[23,56] and durum wheat[57,58]. In
addition, we also identified several efficient SRIs at
booting and late heading stages, which could be used for
phenotyping large populations.

Fig. 2 Manhattan plots for spectral reflectance indices (SRIs) of wheat association mapping initiative (WAMI) population at booting,
heading, and heading plus 7 days under yield potential (YP) ((a)–(f)) and heat stress (HS) ((g)–(j)) environments. NDPI, normalized
difference pigment index; EVI, enhanced vegetation index; CRI, carotenoid reflectance index; ARI, anthocyanin reflectance index;
NDVI, normalized difference vegetation index; NWI, normalized water index; AB ratio, chlorophyll ratio.
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In the present study, common efficient SRIs such as
NDVI_705, PRI, and ARI2 were identified for both YP
and HS conditions, highlighting their values as proxies for
GY. The water indices (WI and NWI) also showed
significant correlations with GY under YP and HS
conditions. The water-based indices estimate water content
of the canopy, and the higher associations between these
indices and GY indicated that canopy water content plays a
vital role in the productivity of a given genotype. Similar
results were observed by Prasad et al.[56] under rain-fed
conditions. Further, the simple ratio index (WI) and
normalized indices (NWI_1, NWI_2, NWI_3, and
NWI_4) of water status showed similar predictive ability
for GY in this study, confirming the findings in previous
studies of spring wheat[12,23,56].

To the best of our knowledge, this is the first study to
report genomic regions associated with SRIs under HS.
Recently, Gizaw et al.[27,28] identified the genomic regions
for SRIs through GWAS in fully irrigated, rainfed, and
drought-stressed environments in wheat. They reported
that under irrigation, QTLs for NDVI were located on
chromosome 3A, 3B, 4A, 5A, 5B, 7A, and 7B in winter
wheat, and on 2B, 3B, 4B, 4D, 5B, and 7A in spring wheat.
In contrast, in this study, we identified QTLs for
NDVI_705 on 1B, 3A, and 5A, which were far away
from the QTLs reported by Gizaw et al.[27,28]. The QTLs
for NWI_1 under irrigation were reported on 6A, 6B[28],
and 2A, 5A, 5B[27] in winter and spring wheat,
respectively; while QTLs for NWI_1 were located at a
different locus on 5B in this study. Previously QTLs for

Fig. 3 Genomic regions associated with agronomic traits and spectral reflectance indices (SRIs) in the wheat association mapping
initiative (WAMI) population at booting (purple), heading (green), and heading plus 7 days (blue) under yield potential (YP) and at
booting (orange) and heading (red) stages under heat stress (HS) environments. NDVI, normalized difference vegetation index;
ARI, anthocyanin reflectance index; GN, grain number; RARS, ratio analysis of reflectance spectra for chlorophyll; PH, plant height;
MTCI, MERIS terrestrial chlorophyll index; DTH, days to heading; GY, grain yield; TGW, thousand-grain weight; DTM, days to
maturity; NDPI, normalized difference pigment index; PRI, photochemical reflectance index; CRI, carotenoid reflectance index;
PSSR, pigment specific simple ratio; OSAVI, optimized soil adjusted vegetation index; EVI, enhanced vegetation index; NWI, normalized
water index; NPQI, normalized phaeophytinization index; AB ratio, chlorophyll ratio; WI, water index.
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Table 3 Significant (P< 0.0001) markers associated with multiple spectral reflectance indices of the WAMI population at booting (YPB), heading

(YPH), and 7 days after heading (YPH7) under YP, and at booting (HSB), heading (HSH) under HS in Ciudad Obregon, Mexico during the 2015–

2016 growing season

Marker Chromosome Position/cM Associated traits

BS00075119_51 3A 15 NDVI_705 (YPB), MTCI2 (YPB)

BobWhite_c9468_453 3A 88 NDPI (YPB, YPH), ARI2 (YPB, YPH)

BobWhite_c9468_478 3A 88 NDPI (YPB, YPH), ARI2 (YPB, YPH)

BS00070511_51 3A 88 NDPI (YPB), ARI2 (YPB)

IAAV1334 3A 88 NDPI (YPB), ARI2 (YPB)

TA001068-0306-w 3A 88 NDPI (YPB, YPH), ARI2 (YPB, YPH)

wsnp_BE406587A_Ta_2_1 3A 88 NDPI (YPB, YPH), ARI2 (YPB, YPH)

wsnp_Ex_c22766_31972202 3A 88 NDPI (YPB, YPH), ARI2 (YPB, YPH)

wsnp_Ex_c24293_33532428 3A 88 NDPI (YPB, YPH), ARI2 (YPB, YPH)

wsnp_Ex_c9468_15697512 3A 88 NDPI (YPB, YPH), ARI2 (YPB, YPH)

BS00040798_51 3A 89 NDPI (YPB, YPH), ARI2 (YPB)

BS00048031_51 3A 89 NDPI (YPB), ARI2 (YPB)

Excalibur_c29205_537 3A 89 NDPI (YPB, YPH), ARI2 (YPB, YPH)

Excalibur_c7181_813 3A 89 NDPI (YPB, YPH), ARI2 (YPB)

Excalibur_c854_1459 3A 89 NDPI (YPB, YPH), ARI2 (YPB)

Excalibur_rep_c76510_255 3A 89 NDPI (YPB, YPH), ARI2 (YPB, YPH)

Kukri_c101770_328 3A 89 NDPI (YPB, YPH), ARI2 (YPH)

Kukri_c82097_197 3A 89 NDPI (YPB, YPH), ARI2 (YPB)

RAC875_c10669_714 3A 89 NDPI (YPB), ARI2 (YPB)

wsnp_CAP11_c318_261649 3A 89 NDPI (YPB), ARI2 (YPB)

wsnp_Ex_c2331_4369782 3A 89 NDPI (YPB), ARI2 (YPB)

wsnp_Ex_c25668_34932560 3A 89 NDPI (YPB), ARI2 (YPB)

wsnp_Ex_rep_c66865_65262277 3A 89 NDPI (YPB), ARI2 (YPB)

wsnp_Ex_rep_c66865_65262612 3A 89 NDPI (YPB), ARI2 (YPB)

wsnp_Ex_rep_c66865_65263145 3A 89 NDPI (YPB), ARI2 (YPB)

wsnp_Ra_c10669_17515792 3A 89 NDPI (YPB), ARI2 (YPB)

wsnp_Ra_c29280_38672141 3A 89 NDPI (YPB, YPH), ARI2 (YPH)

wsnp_RFL_Contig4814_5829093 3A 89 NDPI (YPB, YPH), ARI2 (YPB)

BobWhite_c43681_334 3A 90 NDPI (YPB), ARI2 (YPB)

BS00110405_51 3A 90 NDPI (YPB), ARI2 (YPB)

GENE-3343_183 3A 90 NDPI (YPB), ARI2 (YPB)

IAAV8924 3A 90 NDPI (YPB), PRI (YPB)

Kukri_c25564_185 3A 90 NDPI (YPB), PRI (YPB), ARI2 (YPB)

RAC875_c842_1516 3A 90 NDPI (YPB), ARI2 (YPB)

RAC875_rep_c117959_132 3A 90 NDPI (YPB), PRI (YPB)

RFL_Contig1034_2351 3A 90 NDPI (YPB), ARI2 (YPB)

wsnp_Ex_c35073_43285821 3A 90 NDPI (YPB), PRI (YPB)

wsnp_JD_c2743_3678590 3A 90 NDPI (YPB), ARI2 (YPB)

wsnp_JD_c3034_4017676 3A 90 NDPI (YPB), ARI2 (YPB)

wsnp_Ku_c3286_6111360 3A 90 NDPI (YPB), ARI2 (YPB)

BS00000445_51 3A 101 CRI2 (YPH, YPH7)

BS00001478_51 3A 101 CRI2 (YPH, YPH7)
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PRI were reported on 2A, 3A, 4A, 6B, and 7A in winter
wheat under irrigation[28], while in this study, QTLs for
PRI were identified on 3B, 4B, 5A, and 6A. Also, the
marker wsnp_Ex_c8884_14841846 (3A, 105 cM) acco-
ciated with CRI2 under YP in this study was reported to
associate with PRI under drought, rainfed, and irrigation
conditions[28]. The markers wsnp_Ex_c22727_31934296
and wsnp_Ex_c7729_13177883 (5A, 89–91 cM) for DTH
in this study were previously reported associated with SR
and NDVI[28]. Among the SRIs, NDVI is the most used
and consistent index for in-season selection and yield
prediction[25,26]. The QTLs for NDVI_705 on 1B (60–62
cM) under YP and on 2B (27 cM) and 6B (71 cM) under
HS were very close to the reported loci in durum wheat
under drought stress[59]. The locus for NDVI_705 on 7B
(152 cM) under HS was about 10 cM away from a NDVI
QTL detected in a bi-parental population under heat[60].
Our study identified several genomic regions for SRIs
under YP and HS, while few common loci for both
environments were observed. These observations again
confirmed that different stresses on crops at the same time,
or at different times during the same growing season,
may produce different metabolic and physiological
responses[61].
The WAMI population was widely used for GWAS

studies, and some loci identified in our analysis were
located closely to previously reported QTLs for GY and
yield components in the same population. For example, the
locus on chromosome 1B for NDVI and ARI2 was 2 cM
away from the adaptation to density locus (at 64 cM)[32];
the locus on 2A for EVI was co-located with that for
TGW[54]; the locus on 4B for EVI and OSAVI was
reported for spike dry weight[53]; the locus on 5A for PRI
was previously reported for TGW[54]; the locus on
chromosome 6A for PRI and NWI_2 was previously
reported to be associated with GY, biomass, PH, and
chlorophyll content under irrigated YP conditions[31]; and
the locus on 7A for NPQI was previously identified for
GY[54]. Also, the locus for ARI2 and PRI was co-located
with DTH and PH on the Vrn-1 locus on 5A, verifying the
common sense assumption that major developmental
genes modulate key physiological processes.
BLAST results of the significant markers associated

with multiple SRIs indicated that most of the candidate
genes were related to transportation, metabolism, senes-
cence, and abiotic and biotic resistance in plants
(Table S3). For example, a transmembrane protein
gene (TraesCS5A01G052100.1) was associated with
NDVI_705 and PRI. The senescence-associated family
protein (DUF581) gene (TraesCS3A01G289000.1)

(Continued)

Marker Chromosome Position/cM Associated traits

BS00061179_51 3A 101 CRI2 (YPH, YPH7)

BS00080879_51 3A 101 CRI2 (YPH, YPH7)

Excalibur_c39248_485 3A 101 CRI2 (YPH, YPH7)

wsnp_Ex_c26887_36107413 3A 103 CRI2 (YPH, YPH7), ARI2 (YPH)

BobWhite_c13704_244 3A 104 CRI2 (YPH, YPH7)

BS00056089_51 3A 104 NDPI (YPH), ARI2 (YPH), CRI2 (YPH7)

RAC875_rep_c109433_782 3A 104 CRI2 (YPH, YPH7)

BS00061173_51 3A 105 CRI2 (YPH, YPH7)

wsnp_Ex_c9483_15722127 3A 105 CRI2 (YPH, YPH7)

RAC875_rep_c72275_185 3B 132 NDPI (YPB), PRI (YPH)

Excalibur_c82684_66 4B 71 EVI (YPH7), OSAVI (YPH7)

RAC875_c103110_275 4B 71 EVI (YPH7), OSAVI (YPH7)

RAC875_c24550_1150 4B 71 EVI (YPH7), OSAVI (YPH7)

IACX3657 5A 43 NDVI_705 (YPB), PRI (YPB)

RAC875_c13931_205 5A 89 ARI2 (HSH), PRI (HSH)

RAC875_rep_c112818_870 5B 125 CRI2 (YPH), MTCI2 (YPH)

BobWhite_c13091_385 6B 71 NDVI_705 (HSH), AB ratio (HSH)

Ex_c100170_579 6B 71 NDVI_705 (HSH), AB ratio (HSH)

Excalibur_rep_c70364_129 6B 71 NDVI_705 (HSH), AB ratio (HSH)

IAAV1816 6B 71 NDVI_705 (HSH), AB ratio (HSH)

Note: WAMI, wheat association mapping initiative; NDVI, normalized difference vegetation index; MTCI, MERIS terrestrial chlorophyll index; NDPI, normalized
difference pigment index; ARI, anthocyanin reflectance index; PRI, photochemical reflectance index; CRI, carotenoid reflectance index; EVI, enhanced vegetation
index; OSAVI, optimized soil adjusted vegetation index; AB ratio, chlorophyll ratio.
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associated with NDPI and ARI2, was a FCS-Like Zinc
finger gene regulated by sugars, cellular energy level, and
abiotic stress[62]. A gene coding ABC transporter B family
protein (TraesCS3A01G285200.1) was also associated
with NDPI and ARI2, and this protein is a powerful
transporter driving the exchange of compounds across
biological membranes[63]. A blue copper protein gene
(TraesCS4B01G271800.1) associated with EVI and
OSAVI, can shuttle electrons from a protein acting as an
electron donor to another acting as an electron acceptor in
photosynthesis[64]. A Myb transcription factor gene
(TraesCS3A01G367600.1) associated with NDPI, ARI2,
and CRI2 was involved in controlling various processes,
such as responses to biotic and abiotic stresses, develop-
ment, differentiation, metabolism, and defense in
plants[65]. A candidate gene (TraesCS3A01G009200.1)
associated with NDVI_705 andMCI2 was characterized as
a disease resistance gene encoding the NBS-LRR-like
resistance protein[66].
Although our measurements cover phenological stages

that are highly relevant for adaptation to stress conditions,
further measurements of SRIs after anthesis would be
needed to fully understand their relationships with yield.
Nevertheless, our results have great potential value since
the SRIs reported here were analyzed in elite populations
under HS and in terms of their genomic regions for the first
time. Further research supporting these findings in similar
environments using different germplasm will help to
reinforce our results. Analysis of the same genomic
regions under different severity of HS will provide useful
data for breeders and physiologists to help underpin the
genomic bases of the traits. Additionally, the exploration of
these traits under drought conditions, or combined heat and
drought conditions would enable the identification of
commonalities between different stresses.

5 Conclusions

Spectral reflectance indices are valuable tools to screen
agronomic and physiological traits in large populations. In
this study, we identified EVI as the SRI that was correlated
with GY under YP condition at the booting, heading, and
heading plus 7 days stages. PRI and NDVI were efficient
under HS at booting and heading stages. Several SRIs
showed high heritability estimates and marker-trait
associations were identified for them. This information
can be further used in developing molecular markers for
selecting high yielding lines under YP and HS conditions.

Supplementary materials The online version of this article at
https://doi.org/10.15302/J-FASE-2019269 contains supplementary materials
(Tables S1–S4).
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