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a b s t r a c t

Plant pathogens continuously impair agricultural yields and food security. Therefore, the dynamic char-
acterization of early pathogen progression is crucial for disease monitoring and presymptomatic diagno-
sis. Hyperspectral imaging (HSI) has great potential for tracking the dynamics of initial infected sites for
presymptomatic diagnosis; however, no related studies have extracted fingerprint spectral signatures
(FSSs) that can capture diseased lesions on leaves during the early infection stage in vivo or investigated
the detection mechanism of HSI relating to the host biochemical responses. The FSSs denote unique and
representative spectral signatures that characterize a specific plant disease. In this study, the FSSs of spot
blotch on barley leaves inoculated with Bipolaris sorokiniana were discovered to characterize symptom
development for presymptomatic diagnosis based on time-series HSI data analysis. The early spectral
and biochemical responses of barley leaves to spot blotch progression were also investigated. The full-
spectrum FSSs were physically interpretable and could capture the unique characteristics of chlorotic
and necrotic tissues along with lesion progression, enabling the in situ visualization of the spatiotemporal
dynamics of early plant–pathogen interactions at the pixel level. Presymptomatic diagnosis of spot blotch
was achieved 24 h after inoculation—12 h earlier than the traditional polymerase chain reaction (PCR)
assay or biochemical measurements. To uncover the mechanism of HSI presymptomatic diagnosis, quan-
titative relationships between the mean spectral responses of leaves and their biochemical indicators
(chlorophylls, carotenoids, malondialdehyde (MDA), ascorbic acid (AsA), and reduced glutathione
(GSH)) were developed, achieving determination coefficient of prediction set (Rp

2) > 0.84 for regression
models. The overall results demonstrated that, based on the association between HSI and in vivo plant-
trait alterations, the extracted FSSs successfully tracked the spatiotemporal dynamics of bipolaris spot
blotch progression for presymptomatic diagnosis. Tests of this methodology on other plant diseases
demonstrated its remarkable generalization potential for the early control of plant diseases.

� 2022 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Plant pathogens impair the yield and quality of agricultural pro-
duction. The fungal pathogen Bipolaris sorokiniana (B. sorokiniana;
teleomorph: Cochliobolus sativus) invades a number of host plants,

including wheat (Triticum aestivum), barley (Hordeum vulgare), rice
(Oryza sativa), and maize (Zea mays) [1,2]. B. sorokiniana is preva-
lent in the warm, humid regions of Asia, Africa, America, and
Europe [3,4]. The diseases caused by this fungus include foliar spot
blotch, root rot, and black point on grains [1], leading to yield
losses of 2%–30% and up to 100% in South Asia and to losses of
10%–20% in Scotland, Canada, and Brazil [5–7]. Among these dis-
eases, leaf spot blotch is considered to be highly important in cer-
eal crops such as wheat and barley [2,3,8,9], affecting nearly
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1.2 � 107 hm2 in South Asia’s intensive cropping systems [1]. Leaf
spot blotch is characterized by dark brown necrotic lesions sur-
rounded by chlorotic halos, leading to photosynthesis reduction,
cell death, and accelerated leaf senescence [1,2]. Because of its high
contagiosity, which is facilitated by wind and rain transmission [3],
and the potential progression into spikes resulting in grain shrivel-
ing and embryo discoloration [3,4], early diagnosis of spot blotch—
even at the presymptomatic (i.e., without visible symptoms)
stage—plays a vital role in preventing large-scale disease outbreaks
and ensuring global food security.

For the early diagnosis of foliar disease, visual monitoring by
experts remains the most common method in field crops and
horticulture [10]. However, visual monitoring is labor-intensive,
time-consuming, subjective, and prone to errors, as early plant–
pathogen interaction sites are sometimes invisible [10], especially
when fungi colonize host tissue intercellularly under low light
intensity [1]. The conventional polymerase chain reaction (PCR)
assay is considered to be the most sensitive diagnostic approach;
however, this assay is tedious and destructive, and its detection
accuracy is affected by sampling and uneven pathogen distribution
inside leaves, particularly at presymptomatic stages [11].
Therefore, a rapid and in situ approach is essential for accurately
detecting spot blotch during the early infection stage.

Innovative optical sensing, such as hyperspectral imaging
(HSI) [12,13], chlorophyll fluorescence imaging [14], and red–
green–blue (RGB) imaging [15], is promising for the fast and
non-invasive detection of early foliar diseases. HSI, also known as
imaging spectroscopy, simultaneously acquires spectral and spatial
information over hundreds of contiguous narrow spectral wave-
lengths to return an information-rich hyperspectral image [12].
HSI has been proven to be efficient in characterizing the subtle
changes induced by early plant–pathogen interactions [10,16].
During B. sorokiniana invasion and plant early resistance, multiple
processes occur, including the succession of necrotic and chlorotic
tissues, appearance of fungal hyphae and conidia, oxidative dam-
age burst with increased production of reactive oxygen species
(ROS), accumulation of malondialdehyde (MDA) due to lipid peroxi-
dation induced by elevated ROS, and enhanced antioxidant
defense involving antioxidants such as ascorbic acid (AsA) and
reduced glutathione (GSH) [1,10,17,18]. These physiological and
biochemical alterations in plants are bound to change the optical
reflectance properties of the early-infected tissues during the
presymptomatic stage [10,19,20]. However, such minor spectral
alterations pose great challenges for the accurate identification of
infected but asymptomatic leaf samples [21,22], and advanced
analysis methods must be combined.

Recently, many studies have validated the feasibility of HSI for
early disease diagnosis in plant leaves or canopies from presymp-
tomatic to symptomatic stages. Shuaibu et al. [23] employed an
unsupervised band selection method to process hyperspectral
images in order to distinguish various degrees of Marssonina
blotch infection on apple leaves from asymptomatic to severe
infection stages in indoor and outdoor settings. Arens et al. [24]
classified healthy and asymptomatic sugar beet leaves inoculated
with Cercospora beticola 4 days after inoculation (dai) based on
HSI and conducted early metabolic profile analysis during plant–
pathogen interaction. Gao et al. [25] validated the potential of
HSI coupled with salient wavelength selection methods for the
early detection of grapevine leafroll disease during asymptomatic
and symptomatic stages. Healthy and powdery mildew disease-
infected squash leaves were discriminated successfully at different
disease development stages (asymptomatic, early, medium, and
late) based on HSI and artificial intelligence algorithms [26]. In a
similar HSI study on target spots and bacterial spots in tomato
leaves by Abdulridha et al. [27], several disease developmental
stages were identified manually, with disease detection accom-

plished at different stages. Although early foliar disease diagnosis
was achieved in the above HSI studies, the spatiotemporal dynam-
ics of plant–pathogen interaction sites—which play a vital role in
monitoring the pattern of disease onset and progression—and the
precise location of the presymptomatic lesions were not
characterized.

To track the spatiotemporal dynamics of infected regions during
initial pathogen infestation, some researchers have employed the
pixel-wise visualization analysis of hyperspectral images, taking
full advantage of HSI by considering the spatial resolution, which
is conducive for early and robust disease monitoring. Using HSI
and support vector machine (SVM) classifiers, Thomas et al. [28]
visualized the spatial distribution of powdery mildew develop-
ment in different barley cultivars as soon as the first symptoms
were visible to the human eye at 12 dai. However, due to the
mandatory manual annotation of visible diseased training pixels
for supervised SVM training, presymptomatic infections were not
detected in that study. In contrast, unsupervised learning can
discover invisible diseased pixels. Thomas et al. [13] reported the
earlier visualization of powdery mildew on barley leaves at 4 dai—
2 days before symptoms became visible on RGB images—through
principal component analysis (PCA) of measured reflection and
transmission hyperspectral images. However, PCA is a linear com-
bination of the original spectral bands, and cannot be used to solve
the mixed problem of the pixel spectrum. Kuska et al. [29] adopted
microscopic HSI combined with the simplex volume maximization
(SiVM) method and likelihood ratio (LLRs) calculation to interpret
and visualize the stages of pathogenesis from 3 to 14 dai with
Blumeria graminis on excised barley leaves, which was feasible
when symptoms became visible on the RGB images at 4 dai. These
researchers further improved the monitoring results for visualizing
the plant–pathogen interactions at 2 dai, based on SiVM and clus-
tering analysis, 3 days earlier than the visual inspection of corre-
sponding RGB images [30]. However, pathogen inoculation on
excised leaves might not represent the pathogenesis on in vivo
leaves [29,30]. In addition, as SiVM represents the pixel spectrum
as a combination of a few extreme signatures, the spectral mixing
problem was solved for the subsequent LLRs calculation [29] or
clustering analysis [30], but unique fingerprint spectral signatures
(FSSs) characterizing the lesions were not extracted. FSSs are
unique and representative spectral signatures that characterize a
specific plant disease. In a study of the early in situ monitoring of
Magnaporthe oryzae-infected barley leaves using HSI, the lesions
were visualized as early as 24 hours after inoculation (hai) by
means of spectral unmixing analysis [31]. However, the spectral
unmixing analysis was conducted separately on hyperspectral
images acquired at 0, 24, 48, and 72 hai. The extracted endmem-
bers differed among all measurement times, and no robust and
representative FSSs that could capture the diseased lesions across
different times were extracted.

Important advances have been made in the characterization of
early spatiotemporal dynamics at the leaf scale for presymp-
tomatic disease diagnosis [13,29–31]. However, no representative
and robust FSSs with definite physical interpretations have been
extracted to capture lesions across different infection time points
on in vivo leaves, which could result in reduced robustness and
applicability of spectral diagnosis. Moreover, the detection mecha-
nism of HSI via an association with the early host biochemical
responses to pathogen infestation has not been investigated in
the abovementioned literature, which might lead to poor physical
interpretation. In addition, the timeliness of these visualization
results was compared with that of the visual inspection, which
was inaccurate and hysteretic considering the invisible symptoms
in the initial phase and the subjectivity of human observation.

In the present study, leaf-scale hyperspectral images of in vivo
barley leaves under spot blotch stress were regularly scanned (at
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0, 24, 36, 48, 60, and 72 hai), and the FSSs of lesions were extracted
for presymptomatic disease diagnosis. The specific objectives of
this study were to ① explore the early time-series spectral
responses of in vivo barley leaves to spot blotch progression and
establish a rapid, non-destructive, in situ diagnosis methodology
for presymptomatic disease based on HSI; ② extract representa-
tive, robust, and interpretable FSSs to capture lesions across the
early stage of pathogen infection and monitor the spatiotemporal
dynamic alterations of early lesion progression in situ at the pixel
level for the presymptomatic diagnosis of spot blotch; and③ reveal
the mechanism of HSI presymptomatic diagnosis of spot blotch by
establishing the mathematical relationships between the spectral
characteristics and the host biochemical indicators.

2. Materials and methods

2.1. Plant cultivation and sample preparation

Barley plants (Hordeum vulgare L.) were selected as the experi-
mental samples. Seeds were grown in a greenhouse with a
12 h/12 h (day/night) photoperiod at 25 �C, 60% relative humidity
for 8 d. Spot blotch pathogen B. sorokiniana was grown at 25 �C in
potato glucose agar medium for 1 week. The conidial suspension
(7.0 � 105 spores∙mL�1) was taken and sprayed onto the primary
barley leaves (with an approximate length of 10 cm at the eighth
day); then, the leaves were covered with transparent covers to
maintain the pathogenic environment at a temperature of 25 �C
and high humidity of 90%. Two sets of samples (with one leaf per
sample) were prepared. The first sample set consisted of 18
infected and five healthy barley leaves, cultivated alive throughout
the whole data collection process. To track the infection progres-
sion, hyperspectral images of in vivo infected and healthy leaves
were acquired at 0, 24, 36, 48, 60, and 72 hai, respectively, result-
ing in 138 images altogether. Another sample set went through the
same pathogen inoculation treatment, but these samples were
excised from the plant to be used for the destructive measurement
of leaf biochemical indicators at the same time points as the first
sample set. A total of 250 samples were collected and divided
equally into two sets: One set was for pigment measurement,
including chlorophyll a (Chl-a), chlorophyll b (Chl-b), and carote-
noids (Car); the other set was for the measurement of oxidative-
and antioxidative-related compounds (MDA, AsA, and GSH). Detailed
information for the prepared samples is presented in Table 1. Photo-
synthetic pigments (chlorophylls and Car) were selected since they
are sensitive to pathogen infection associated with the occurrence
of necrotic or chlorotic lesions [11]. MDA was included because it
is frequently taken as an indicator of peroxidation of membrane
lipids due to the excessive ROS produced under disease stress
[17,18]. AsA and GSH, which act as important antioxidants in the
defense against ROS attack [17], were also studied.

2.2. Acquisition of hyperspectral images

To acquire hyperspectral images, a line-scanning HSI system
(380–1030 nm) was used, consisting of an ImSpector V10E imaging

spectrometer (Spectral Imaging Ltd., Finland) with a high spectral
resolution (2.8 nm), a C8484-05G charge-coupled device (CCD)
camera (Hamamatsu Photonics K.K., Japan) with 1.37 megapixels,
an IRCP0076 conveyor belt (Isuzu Optics Corp., China), and two
150 W line 9596ER tungsten halogen lamps (Illumination Tech-
nologies Inc., USA). Leaf samples were put on a blackboard with
low reflectivity, with the leaf base and tip fixed with tape to reduce
the influence of surface unevenness. Samples were immediately
put back into the moistened chamber after each HSI scan with
uniform acquisition parameters. The image resolution was set to
1024 � 472, the exposure time was 0.06 s, the distance between
samples and the lens was 270 mm, and the moving speed of the
conveyor belt was 3.0 mm∙s�1. All raw hyperspectral images were
corrected with white and dark reference images [32] before further
analysis.

2.3. Measurement of leaf biochemical indicators

Healthy and infected barley leaf samples collected at 0, 24, 36,
48, 60, and 72 hai were weighed and put into liquid nitrogen for
rapid cooling to prepare for downstream chemical measurements.
The contents of the six biochemical indicators were measured
using a microplate spectrophotometer (Epoch 2; Biotek, USA). To
measure Chl-a, Chl-b, and Car, the sample was extracted with
95% ethanol at 4 �C without light, followed by absorbance mea-
surement at 665, 649, and 470 nm for concentration calculation
[33]. Because AsA can reduce ferric ions (Fe3+) to ferrous ions
(Fe2+), a solution of Fe3+ was added to the sample, and bipyridine
was added to the resulting Fe2+ to form a red chelate. The absor-
bance was then measured at 525 nm to determine AsA concentra-
tion [34]. To calculate GSH concentration, GSH was reacted with 2-
nitrobenzoic acid (DTNB) to form yellow 2-nitro-5-
mercaptobenzoic acid, and the absorbance at 412 nm was
measured [34]. To calculate MDA concentration, MDA was reacted
with thiobarbituric acid (TBA) under acid conditions to form a red–
brown trimethyl complex (3,5,5-trimethyloxazole-2,4-dione), and
the absorbance at 532 nm was measured [35].

2.4. Quantification of fungal infection degree in barley leaves via real-
time PCR

2.4.1. Design of specific primers
The ratio of fungus to plant DNA (fungus/plant DNA ratio, FPDR)

was used to monitor the degree of fungal infection in barley leaves.
It was determined by means of the 2–DCt method [36], where DCt is
the difference between the raw cycle threshold values (Ct) of the B.
sorokiniana tef-1a gene and the barley Ubiquitin gene [37,38].
Specific primers were designed based on B. sorokiniana tef-1a. This
gene was partially amplified with the primers EF728 and EF986
(Table S1 in Appendix A) using the following profile: 94 �C for
3 min, followed by 35 cycles of 94 �C for 30 s, 52 �C for 30 s, and
72 �C for 30 s, with a final extension at 72 �C for 10 min. The ampli-
fied product was then sequenced. The specific primer set BM-F/
BM-R (Table S1) was designed to amplify a region of 136 bp.

Table 1
Sample set for the measurement of the biochemical indicators of barley leaves over the infection time.

Time (hai) Chl-a, Chl-b, and Car MDA, AsA, and GSH

Infected group Healthy group Infected group Healthy group

0 — 15 — 15
24 16 5 16 5
36 18 5 18 5
48 18 5 18 5
60 17 5 18 5
72 16 5 15 5
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2.4.2. Genomic extraction and real-time PCR
B. sorokiniana-inoculated leaves were harvested at 0, 12, 24, 36,

48, 60, and 72 hai. The disease area was collected and ground in
liquid nitrogen for DNA extraction using a Plant DNeasy Kit
(Qiagen, Germany). For real-time PCR, 50 ng of total DNA was
amplified in a total volume of 20 lL containing 10 lL of 2� SYBR
Premix Ex Taq (Takara Bio Inc., Japan) and 1 lL of 10 lmol∙L�1

BM-F/BM-R primers (or HvUbiq-F/R for the barley Ubiquitin gene)
on a Mastercycler ep realplex Thermal Cycler (Eppendorf, USA). A
melting curve analysis was added to ensure that only one single
product was obtained. Each reaction was performed in triplicate.

2.5. Data analysis

The systematic framework diagram of this study is shown in
Fig. 1. After sample preparation and the acquisition of hyperspec-
tral images, the biochemical indicators and FPDR were measured
and taken for statistical analysis. Next, hypercube pixel-wise visu-
alization algorithms were conducted, in which the spectral unmix-
ing analysis achieved accurate infection identification and
extracted the FSSs of the lesions. The application of FSSs on the
time-series hyperspectral images realized lesion tracking on

in vivo leaves, enabling the presymptomatic diagnosis of spot
blotch. Finally, the quantitative relationships between the spectral
features of the leaves and their biochemical indicators under spot
blotch stress were established to reveal the mechanism of HSI
presymptomatic diagnosis.

2.5.1. Lesion visualization on two dimensional (2D) hyperspectral
images

To identify the diseased sites of spot blotch and intuitively visu-
alize the infection processes, several pixel-wise methods including
k-means clustering, fuzzy clustering, and the spectral unmixing
method, were adopted. k-means is an iteratively updated unsuper-
vised clustering algorithm [39]; herein, the given number of clus-
ters was set as 4. For fuzzy clustering analysis, the fuzzy c-means
algorithm (FCM) was chosen, which calculated a weight to each
pixel, representing its membership degree relative to different cate-
gories [40]. The number of categories of FCM was also set as 4. The
spectral unmixing method, which originates from the field of
remote sensing, is one of the most important methods of spectral
information mining; it was used to solve the problem of extracting
specific component information from the mixed spectrum. Spectral
unmixing included decomposing a mixed spectrum into several

Fig. 1. The systematic framework diagram of this study. 2D: two dimensional; R2: determination coefficient; RMSE: root mean square error; EM: endmember; S: the
abundance value of each pixel spectrum. Different letters (a, b, c, d, and e) are used to represent significance at p < 0.05.

F. Zhu, Z. Su, A. Sanaeifar et al. Engineering 22 (2023) 171–184

174



component spectra (endmembers, EMs) and estimating the spatial
distributions (abundances) of each EM. The index of abundance
represented the proportion of each EM in a single pixel [41]. Vertex
component analysis (VCA), as an unsupervised approach, was
applied to extract the EMs based on the convex geometry theory
and to calculate the abundances for each pixel spectrum by means
of non-negative constrained least squares [42].

2.5.2. Data compression, modeling, and characteristic wavelengths
selection on one dimensional (1D) spectra

For each leaf sample, the mean spectrumwas extracted to study
the averaged spectral response of the barley to spot blotch infec-
tion. To visualize the overall distribution of spectral characteristics,
data dimensionality reduction was executed using PCA, which
yielded the orthogonal principal components (PCs) through the
conversion of original variables while preserving most of the infor-
mation [43].

To establish the effective mathematical relationship between
the spectral responses and the biochemical indicators, the Monte
Carlo partial least squares (MCPLS) method was first used to elimi-
nate abnormal samples for each indicator [44]. After random sam-
ple partitioning into calibration and prediction sets with a 2:1
ratio, partial least squares (PLS) regression for full-spectrum mod-
eling was conducted with a total of 392 wavelengths of 450–
950 nm. PLS is a classical multivariate modeling method, which
transforms the original spectra linearly to obtain orthogonal latent
variables (LVs). In addition, to identify the most representative and
interpretable wavelengths while minimizing the redundancy
among adjacent spectral bands, characteristic wavelengths were
selected by four variable selection methods, including iterative
random frog (RF), competitive adaptive reweighted sampling
(CARS), successive projections algorithm (SPA), and stepwise
regression [45]. Simplified models were then constructed by
means of multiple linear regression (MLR).

2.5.3. Software and model evaluation
The hyperspectral images were masked to remove the back-

ground using ENVI software (ITT Visual Information Solutions,
USA). The analysis of variance (ANOVA), spectral smoothing,
regression analysis, characteristic wavelengths selection, and
lesion visualization were all conducted using the MATLAB software
(The Math Works, Inc., USA). The performances of the regression
models were evaluated by means of the determination coefficient
(R2), root mean square error (RMSE), and residual predictive devi-
ation (RPD) of the calibration and prediction sets. Models with
good performance should have high R2 and RPD values and low
RMSE values. The leaf lesion visualization performance was evalu-
ated by comparisons with RGB images and by mutual comparison
among different infection time points.

3. Results

3.1. Degree of pathogen infestation according to real-time PCR over
time

The FPDR index is widely used to evaluate the degree of fungal
pathogen infection in plants. The time-series FPDR measurement
results (Fig. 2) revealed an early steady state within 24 hai, without
significant differences among the samples at 0, 12, and 24 hai. Sub-
sequently, the pathogen biomass increased significantly at 36 hai,
which was the first time point that manifested significant growth
in the degree of infection. Following a moderate increase at 60
hai, a final remarkable increase at 72 hai occurred. In addition,
the pathogen showed a trend of unlimited proliferation in the

leaves without plant control, which aggravated the diseased
lesions and killed the host plant.

3.2. Responses of leaf biochemical indicators to spot blotch infection
over time

A correlation analysis between the biochemical indicators and
the PCR data (Fig. 3) revealed that Chl-a, Chl-b, Car, GSH, and
MDA were significantly correlated with the PCR data, indicating
that the fungal infection caused substantial changes in the bio-
chemical indicators of the barley leaves. To display the detailed
changes in these indicators for all samples over the infection time,
an ANOVA was conducted, as shown in Fig. 4 and Table S2 in
Appendix A. The fungal infection induced significant differences
between the healthy and infected barley leaves for all indicators,
and these significant changes became more apparent over the
infection time. Table S2 shows the significant effect of infection
time on these six indicators, with p values below 0.01. The most
sensitive indicators were Chl-a and Chl-b, which showed a signifi-
cant difference between the healthy and infected samples from 36
hai. This significant difference later appeared in Car, AsA, GSH, and
MDA at 60, 60, 48, and 48 hai, respectively.

3.3. Responses of leaf spectral characteristics to spot blotch infection
over time

Responses of the spectral characteristics of barley leaves to spot
blotch infection over time are shown in Fig. 5. The spectra of typ-
ical infected pixels at 0, 24, 36, 48, 60, and 72 hai are shown in
Fig. 5(b). The mean spectra with standard deviation of the infected
and healthy groups at different time points (24, 36, 48, 60, and 72
hai) were calculated, as shown in Fig. 5(d). An ANOVA between the
healthy and infected groups at different time points (Fig. 5(d))
revealed that the first significant spectral difference between the
two groups appeared at 36 hai at 545–680 nm, when the fungal
biomass showed a significant increment (Fig. 2). The higher reflec-
tance in this spectral range of the infected leaves was mainly due
to the weakened absorption of red light by the reduced chlorophyll
in the barley leaves under spot blotch stress, which was validated
by the reduced Chl-a and Chl-b contents in the infected leaves from
36 hai (Fig. 4). In accordance with the increased significant differ-
ences between the healthy and infected groups in the biochemical
indicators over the infection time, the spectral differences between
the two groups also gradually increased (Figs. 5 (b) and (d)), which
was associated with the typical spot blotch pathogenesis on in vivo

Fig. 2. Fungal colonization curve plotted with means± standard deviation (SD) of
three replicates using real-time PCR on barley leaves over infection time. Different
letters (a, b, c, and d) are used to represent significance at p < 0.05.
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barley leaves. The significant spectral difference became more
prominent at 72 hai, spanning the spectral range of 455–735 nm
(Fig. 5(d)). As the disease progressed, the standard deviation of
the mean spectra of the infected samples displayed an increasing
trend, indicating increased heterogeneity in the internal structure
and composition of the leaves as their intercellular space was pen-
etrated by the fungus [46]. This spatial heterogeneity in the
infected tissue is depicted in Fig. 5(c), which shows the spectra
of a certain line in the infected area at 72 hai. The apparent spectral
differences between the healthy and infected samples at different
time points are also shown in Fig. S1 in Appendix A, which displays
the distribution of the first three PCs after PCA on the extracted
mean spectra.

The above spectral observations confirmed the usefulness and
convenience of the averaged spectral profiles of HSI for reflecting
the general physiological and biochemical alterations in plants
during pathogenesis [10,16,20]. However, due to the use of mean
values, the advantages of imaging spectroscopy were not fully
exploited [13,21]. Pathogen-induced stress usually manifests as
small and scattered areas around the initial infection sites on
leaves. Therefore, it was necessary to integrate the image informa-
tion of HSI in order to consider the spatial heterogeneity of infected
leaves in the subsequent analysis.

3.4. Lesion visualization by k-means clustering and FCM

Lesion visualization by means of clustering analysis on a barley
leaf infected with spot blotch is shown in Fig. 6. The leaf hyper-
spectral image at 60 hai was selected to compare the performances
of the different pixel-wise analysis methods. Clustering algorithms
have been demonstrated to distinguish infection information from
high-dimensional data [47]. The results of k-means clustering are

shown in Fig. 6(b). k-means clustering was able to identify the
chlorotic regions colored in light blue near the leaf tip; however,
the important dark brown lesions could not be identified. The leaf
edges were grouped into a new category (marked in blue), which
did not align with the actual spatial distribution characteristics
of the leaf spectra. As k-means clustering functions as an unsuper-
vised hard clustering algorithm, one pixel could only be assigned to
one category, which could not satisfy the monitoring of complex
and mixed signal features on the plant–pathogen interaction sites.

The calculated representative spectra of the four categories and
their corresponding membership degree maps from the FCM anal-
ysis are shown in Figs. 6(c) and (d), respectively. The representative
spectra of category 1 (C1) represent the chlorotic region, and the
C1 membership map shows the distribution of chlorotic regions
on the leaf. Category 4 (C4), which has a low spectral reflectance,
represents the leaf edge. For C2 and C3, although some infected
regions can be detected in their membership degree maps, some
healthy tissues have been misclassified as infected. Thus, FCM
was also unable to identify necrotic lesions, which might be due
to its inability to consider any information about spatial context
and sensitivity to image noise [48].

3.5. Lesion visualization and FSSs extraction by means of VCA

As the above clustering methods failed to effectively identify
spot blotch lesions, the spectral unmixing method of VCA was
employed (Fig. 7). Three representative spectra (EMs) were
extracted from the hyperspectral image, and their corresponding
abundance maps were generated, as shown in Figs. 7(b) and (c),
respectively. It should be noted that the extracted EMs can be
assigned to different categories associated with prior knowledge,
relative to the data. In Fig. 7(b), the EM1 spectral profile appears

Fig. 3. Correlation analysis of biochemical indicators and PCR data of barley leaves under spot blotch stress. r: correlation coefficient.
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as an obvious reflection peak from 450 to 650 nm, especially in the
visible green light region, with an abrupt increase in reflectance at
the red-edge inflection position in the 680–750 nm region and high
reflectance in the near-infrared region, indicating strong chloro-
phyll absorption and healthy internal scattering within mesophyll
tissues [20,29,49]. The abundance map of EM1 in Fig. 7(c) aligns
with the distribution of healthy leaf tissues in Fig. 7(a) (the RGB
image), confirming that the EM1 can be attributed to the FSS of
healthy leaf tissue.

The abundance map of EM2 in Fig. 7(c) highlights the chlorotic
regions in the infected leaf in the RGB image (Fig. 7(a)). The EM2
spectral profile (Fig. 7(b)) loses the typical reflection peak in the
visible green light region, which is replaced by a relatively flat
reflex plateau with high reflectance (low absorbance). The red-
edge effect is also significantly weakened, indicating considerable
destruction of the chlorophylls in the mesophyll. The reflectance

intensity of the EM2 spectral profile in the near-infrared region
declines moderately compared with that of EM1, indicating that
the dense and organic structure of the chlorotic mesophyll tissue
has been damaged to some extent [20,49]. Hence, EM2 is attribu-
ted to the FSS of the slightly infected tissues with signs of chlorosis.
Compared with the membership degree map 1 obtained via FCM in
Fig. 6(d), the spatial differentiation for the chlorotic region based
on the VCA method is more accurate.

The abundance map of EM3 accurately captures the location of
dark brown necrotic lesions, as shown in Fig. 7(c); even the small
granular lesions are clearly discernable. The EM3 spectral profile
(Fig. 7(b)) displays an intriguing and unique FSS of necrotic
lesions. Compared with the FSS of healthy (EM1) and chlorotic
(EM2) tissues, a slow ascent process with a small slope appears
from 450 to 550 nm. It is notable that the typical healthy leaf
reflection peak in the range of 550–650 nm is almost cut flat with

Fig. 4. Responses of biochemical indicators of barley leaves to spot blotch infection over time. Different letters (a, b, c, and d) are used to represent significance at p < 0.05.
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very low reflectance, due to the strong light absorption by the
darkened lesion tissues (shown in the RGB image of Fig. 7(a)),
and the serious degradation of the pigments (referring to the
declined pigment concentrations at later infection times in
Fig. 4). The typical red-edge spectral feature of healthy tissues is
replaced with arc-shaped reflection lines from 680 to 950 nm,
with obviously reduced curvature in the EM3 spectral profile
(Fig. 7(b)), which is a typical trait of necrotic lesions. The substan-

tially reduced reflectance in the near-infrared range of 780–
950 nm indicates the complete destruction of the dense ordered
structure inside these lesion tissues [20,49]. To validate the struc-
tural properties of the three types of mesophyll tissues (healthy,
slightly infected with chlorosis, and heavily infected with necro-
sis) reflected by the FSSs in the near-infrared range, microscopic
images of the transverse sections of these leaf tissues are shown
in Fig. 8.

Fig. 5. Responses of the spectral characteristics of barley leaves to spot blotch infection over time. No.: number.

Fig. 6. Lesion visualization by means of clustering analysis on a barley leaf infected with spot blotch. (a) RGB image; (b) results of k-means clustering; (c) calculated spectral
signatures of four categories and (d) their corresponding membership degree maps using FCM. C1–4: category 1–4.
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The healthy tissue in Fig. 8(a) shows the typical leaf structure of
barley, with compactly arranged layers of epidermis, palisade, and
spongy mesophyll cells. The structure of the slightly infected
chlorotic tissue in Fig. 8(b) maintains its overall integrity, with
intact epidermal layers and stomata cells. However, the local physi-
cal structure within the mesophyll has collapsed with the rupture
of spongy cells due to the cell-to-cell spreading of invasion hyphae

via the penetration of the barriers among cells. The partial destruc-
tion of the internal structure in the chlorotic region of the barley
leaf corresponds to the moderately declined reflectance of the
EM2 spectral profile in the near-infrared region (Fig. 7 (b)). In the
severely infected necrotic tissue shown in Fig. 8(c), the cells are
collapsed or deformed through all layers of the leaf. The upper epi-
dermal layer is completely destroyed where a cavity has formed,
which might be due to the encroachment of conidiophores that
escaped during leaf staining. The lower epidermis has been loos-
ened, with damage to the stomata. The palisade and spongy meso-
phyll cells are occupied by penetrated hyphae, with an increase in
electrolyte leakage and fungal toxin infiltration [1]. The complete
structural destruction in the necrotic lesion on the barley leaf cor-
responds to the evidently reduced reflectance of the EM3 spectral
profile in the near-infrared region in Fig. 7(b). The structural prop-
erties of the three types of mesophyll tissues in the above micro-
scopic observations are highly consistent with those reflected by
the FSSs responses in the near-infrared range. Thus, the FSSs
extracted by the spectral unmixing analysis of VCA can achieve
definite physical interpretation of the original HSI data. Moreover,
the increased spatial heterogeneity in the leaf structure due to the
fungal invasion, as observed from the microscopic images, vali-
dates the enlarged variance of the mean spectra along with disease
progression (Fig. 5).

3.6. Visualization of lesion spatiotemporal dynamics via the extracted
FSSs for presymptomatic diagnosis

Lesion visualizations based on calculations of the spatial distri-
butions of FSSs at 24, 36, 48, and 60 hai are shown in Fig. 9. The
occurrence and progression of spot blotch on barley leaves can
be tracked through the abundance maps, with healthy, chlorotic
lesion, and necrotic lesion regions clearly separated (the two broad
yellow strips in the middle of the leaves in Fig. 9(b) are caused by
the tape that was used to keep the leaf flattened during HSI scan-
ning). Fig. 9 shows that, with a prolongation of the infection time
from 24 to 60 hai, the continuous and subtle changing pattern of
disease symptoms can be conspicuously visualized with the grad-
ual diminution of the healthy region and the increment of chlorotic
and necrotic lesion regions. Evidently, as early as 24 hai, tiny
lesions invisible to the naked eye are captured by the hybrid of
HSI and FSSs, as shown in Figs. 9(c) and (d).

The proportion of necrotic lesion area was calculated and plot-
ted against the infection time, as shown in Fig. 10. Necrotic lesion

Fig. 7. Lesion visualization by VCA on a barley leaf infected with spot blotch. (a) RGB image; (b) EM1–3 spectral profiles denoting the FSS of healthy, chlorotic lesion, and
necrotic lesion tissues, respectively; (c) abundance maps of EM1–3.

Fig. 8. Microscopic images of stained sections corresponding to (a) healthy tissue,
(b) slightly infected chlorotic lesion tissue, and (c) heavily infected necrotic lesion
tissue of barley leaves under spot blotch stress.
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spots appear at 24 hai, followed by exponential expansion over the
infection time. Moreover, the areas of necrotic lesions tracked by
our method at 0 hai and 24 hai are significantly different
(p = 0.008). However, neither traditional PCR (Fig. 2) nor a bio-
chemical analysis (Fig. 4) detected significant differences in the
diagnosis of leaf disease symptoms at 24 hai, indicating that our
proposed method achieves the ultra-early diagnosis and location
of spot blotch lesions.

3.7. Relationship between spectral responses and biochemical
indicators under spot blotch stress

To reveal the mechanism of the HSI presymptomatic diagnosis
of spot blotch, quantitative relationships between the averaged
spectral responses and their corresponding biochemical indicators
were explored. The performances of the full-spectrum PLS regres-
sion models are presented in Table 2. All models achieved good
prediction results (Rp

2 > 0.720), especially for chlorophylls and
Car, with Rp

2 > 0.870, indicating that the spectral characteristics
of HSI can quantitatively determine the biochemical properties of
barley leaves under pathogen stress. Improved quantification
results were achieved using the MLR models based on the charac-

teristic wavelengths selected by CARS or RF, as shown in Table S3
in Appendix A. The optimal characteristic wavelengths were iden-
tified (Fig. S2 in Appendix A) for assignment analysis (Table S4 in
Appendix A) according to the literature [32,49–51], and the six
final MLR models were then constructed, with Rp

2 > 0.84 (scatter
plots shown in Fig. S3 in Appendix A).

3.8. Test of VCA on other plant diseases

To test the generalization and transferability of the VCA method
to other plant–pathogen systems, eggplant leaf infected with early
blight disease and cucumber leaf infected with angular leaf spot
disease were taken for analysis. The lesion visualization results
are shown in Figs. 11 and 12, respectively. It can be seen that the
disease on the eggplant leaf is in the early infection stage, while
the cucumber leaf disease is in the medium infection stage.
Through the VCA spectral unmixing analysis, each pixel spectrum
on the eggplant leaf was decomposed into three EMs representing
the FSSs of the leaf vein, healthy, and lesion tissues, respectively,
while each pixel spectrum on the cucumber leaf was decomposed
into three EMs representing the FSSs of healthy, slight-chlorotic
lesion, and yellowish-brown lesion tissues, respectively. The
infected lesion regions in the EM3 abundance map of the eggplant
leaf, as well as those in the EM2 and EM3 abundance maps of the
cucumber leaf, were more pronounced than those in the corre-
sponding RGB images. The application of these FSSs to hyperspec-
tral images of early-infected presymptomatic eggplant and
cucumber leaves could achieve similar detection results as the
ultra-early diagnosis of spot blotch on barley leaves.

4. Discussion

4.1. Fungal infestation and biochemical responses of barley leaves

The developmental process of B. sorokiniana infection in barley
leaves displays an increasing trend in the FPDR (Fig. 2). According
to the literature [2–4], initial infection with B. sorokiniana starts
with conidia germination on the leaf (within 4 hai), formation of
the appressorium (8 hai), and penetration of hyphae into the leaf
cuticle (12 hai), followed by the spread of hyphae from initially
infected cells to adjacent cells at 24 hai. The initial fungal coloniza-
tion process explains the slow increase in the FPDR from 0 to 24
hai. Thereafter, the fungus invades the plant tissue via rapid divi-
sion of infection hyphae to ramify along the intercellular spaces
of the mesophyll tissue and produce conidiophores [3]. Under opti-
mal conditions, the hyphae produce conidiophores that merge out
through the leaf stomata and produce a new generation of conidia
within 48 hai [2]. Thus, after approximately 60 hai, intensive inva-
sion and colonization within the leaf tissue are to be expected due
to the succession of conidia, ultimately explaining the moderate
and rapid increase in the FPDR before and after 60 hai, respectively
(Fig. 2).

Under the stress of fungal infestation, the early biochemical
responses of the barley leaves to spot blotch disease were revealed
by changes in the biochemical indicators (Fig. 4). The invasion of B.
sorokiniana led to the destruction of the mesophyll structure
through hyphae spreading and the collapse of mesophyll cells
through fungal toxin secretion [1]. Under disease stress, the intra-
cellular oxidative metabolism of the leaves was enhanced, produc-
ing high levels of ROS, which further induced a series of
biochemical changes at the cellular level [18,52]. The ROS incre-
ment and fungal toxin infiltration resulted in damage to the photo-
synthetic machinery and inhibition of photosynthesis [1,17], which
manifested as the continuous decomposition of photosynthetic
pigments, including Chl-a, Chl-b, and Car, over the infection time

Fig. 9. Lesion visualization by the extracted FSSs over time for the presymptomatic
diagnosis of spot blotch on barley leaves. (a) RGB; (b) healthy region; (c) chlorotic
lesion region; (d) necrotic lesion region.

Fig. 10. Box plot of the proportion of necrotic lesions on the area of the barley
leaves over the infection time. Different letters (a, b, c, d, and e) are used to
represent significance at p < 0.05.
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(Fig. 4). Previous studies also validated the significant decreases in
chlorophylls and Car in diseased leaves at the early stage [11,46].
The retarded reduction of Car in infected leaves compared with
the sensitive decline in chlorophylls (a significant difference
appeared at 60 vs 36 hai) might be due to the photo-protection
function of Car from oxidative damage [17].

Excessive ROS accumulation within cells led to the peroxidation
of membrane lipids, resulting in an increase in MDA concentrations
[17,18], as shown in Fig. 4. MDA content has been frequently taken

as an indicator of lipid peroxidation and stress-induced cellular
damage, positively correlating with both spot blotch severity and
lesion size in wheat [53]. The moderate and sharp increase in
MDA content in the infected leaves before and after 60 hai, respec-
tively, matched with the increasing pattern of FPDR in the PCR
assay (Fig. 2), indicating advanced pathogen infestation after 60
hai. To defend against the damage caused by the high levels of
ROS, a series of antioxidant cycles were enhanced in the barley
leaves to scavenge excessive ROS, which manifested as the steadily
increased synthesis of AsA and GSH as non-enzymatic antioxidants
[17] in the infected group (Fig. 4). The earliest time point of bio-
chemical significant difference at 36 hai aligned with that of the
PCR assay, indicating the importance of exploring the early meta-
bolic responses of barley leaves to pathogen invasion.

4.2. Visualization of lesion spatiotemporal dynamics by the extracted
FSSs for presymptomatic diagnosis

To exploit the high-resolution spectral and spatial information,
the hyperspectral images were analyzed in a pixel-wise manner to
visualize the plant–pathogen interactions during the early stage of
infection. Based on a comparison of the visualization results ana-
lyzed by k-means clustering, FCM, and VCA, k-means clustering
failed to divide the boundary between healthy and infected areas,
and the FCM method improved the visualization quality of the
chlorotic region but could not identify the necrotic lesions of the
spot blotch. Only the VCA method successfully identified the
infected regions and distinguished slightly infected chlorotic
lesions from heavily infected necrotic lesions. Using FSSs extracted
by means of VCA on the time-series hyperspectral images (Figs. 9
and 10) made in situ visualization of the onset and development
of pathogen infection possible, enabling the presymptomatic diag-
nosis of spot blotch on in vivo barley leaves at 24 hai—significantly
earlier than the traditional PCR detection method and biochemical
measurements at 36 hai, as shown in Figs. 2 and 4, respectively.
This result can be attributed to the fine and scattered spatial
heterogeneity in the structure and the biochemical properties of
the leaf tissues in the initial stage of fungal infection [46], which
could not be captured by traditional physiological and biochemical
measurements, because the wet chemical analysis was based on
the averaged responses of bulk leaf tissue. A previous study
reported that PCR assay was very sensitive and accurate for con-
firming visual screening but was unreliable at the presymptomatic
stage due to uneven pathogen distribution inside plants [11]. In
contrast, the spectral reflectance signature corresponded to the
subtle changes in the biochemical information and structural prop-
erties of the infected leaf tissue [10,16,20], and the high-resolution
image dynamically reflected the heterogeneous spatial morphol-
ogy at the pixel level when the mixed problem of the pixel spec-
trum was tackled with appropriate HSI unmixing analysis. This
finding also highlights the importance of the spatial resolution of
a proximal HSI sensing system in the detection and identification
of leaf diseases, considering the mixed spectral signals from early

Table 2
Results of full-spectrum PLS models for quantifying the biochemical indicators of barley leaves under spot blotch stress.

Biochemical indicator LV R 2
c RMSEC RPDc R 2

p RMSEP RPDp

Chl-a (mg∙g�1) 6 0.939 0.054 3.568 0.879 0.077 2.972
Chl-b (mg∙g�1) 12 0.947 0.016 3.677 0.883 0.024 3.173
Car (mg∙g�1) 13 0.918 0.008 3.320 0.874 0.010 2.904
AsA (mg∙g�1) 10 0.863 0.034 2.782 0.729 0.055 1.889
GSH (lg∙g�1) 9 0.847 3.769 2.653 0.841 4.098 2.635
MDA (lg∙g�1) 11 0.888 0.068 3.179 0.754 0.101 2.001

LV: latent variable; R 2
c : determination coefficient of the calibration set; RMSEC: root mean square error of the calibration set; RPDc: residual predictive deviation of the

calibration set; R 2
p : determination coefficient of the prediction set; RMSEP: root mean square error of the prediction set; RPDp: residual predictive deviation of the prediction set.

Fig. 11. Lesion visualization by means of VCA on an eggplant leaf infected with
early blight disease. (a) RGB image; (b) EM1–3 spectral profiles denoting the FSSs of
leaf vein, healthy, and lesion tissues, respectively; (c) abundance maps of EM1–3.

Fig. 12. Lesion visualization by means of VCA on a cucumber leaf infected with
angular leaf spot disease. (a) RGB image; (b) EM1–3 spectral profiles denoting the
FSSs of healthy, slight-chlorotic lesion, and yellowish-brown lesion tissues, respec-
tively; (c) abundance maps of EM1–3.
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plant–pathogen interaction sites with small and subtle pathogene-
sis [21]. The effect of the spatial resolution of HSI on sensor sensi-
tivity was confirmed in a small-scale analysis of disease symptoms
of sugar beet [21].

In addition to the visualization of spatial heterogeneity of the
plant–pathogen interaction sites, another advantage of HSI over
traditional measurements lies in its capability to characterize the
pathogenesis in the time dimension [10], due to its ability to per-
form repeated non-destructive monitoring over time, as displayed
in Fig. 9. Similarly, the spatiotemporal heterogeneity of plant–
pathogen interactions has been visualized in previous HSI studies
on barley leaves, achieving presymptomatic detection at 4 dai
[13], 4 dai [29], 2 dai [30], and 24 hai [31], respectively. However,
the timelines of these diagnostic results were compared with those
of visual inspection, without referring to PCR validation. It is nota-
ble that the presymptomatic diagnosis of spot blotch was ascer-
tained using a PCR assay in this study. Spectral unmixing
analysis has also been employed previously, but it was executed
separately on hyperspectral images acquired at different infection
times [31], and no FSSs that could capture the diseased lesions
across different times were extracted. In this study, we improved
the spectral unmixing results in extracting the FSSs, which gave
three advantages: First, the extracted FSSs uniquely captured the
characteristics of spot blotch lesions on in vivo leaves and were
applicable to the time-series hyperspectral images across the early
stages of disease infection. Second, in contrast to the selection of a
few optimal discrete wavelengths for early disease diagnosis
[23,25], the FSSs extracted herein spanned the continuous full-
wavelength range. Since the biochemical and structural changes
induced by the pathogens were complex and comprehensive, with
multiple processes taking place, only full-spectrum FSSs could fully
represent the spectral responses of the leaf tissues to disease. Also,
compared with the few single bands provided in the previous litera-
ture, the full-spectrum FSSs were more robust to system noises.
Third, the FSSs had definite physical interpretations corresponding
to the biochemical and structural alterations of chlorotic and
necrotic tissues, and the structural properties were also validated
by microscopic observations of the infected leaf tissues (Fig. 8).
Thus, the full-spectrum FSSs extracted in this study were represen-
tative, robust, and interpretable, and their time-series application
permitted the in situ tracking of the spatiotemporal dynamics of
plant–pathogen interactions for presymptomatic diagnosis. More-
over, in response to Mahlein et al.’s [10] call for acquired hyper-
spectral images to be linked to biological processes during plant–
pathogen interactions, the diagnosis mechanism of HSI in associa-
tion with the plant’s biochemical responses, which had not yet
been examined in the literature, required further investigation.

4.3. The mechanism of HSI presymptomatic diagnosis

Both the full-spectrum and the selected optimal characteristic
wavelengths achieved good regression performance. Moreover,
their correlations with the absorption of the chemical functional
groups in the six biochemical components verified the spectro-
scopic quantification mechanism of these response indicators
under spot blotch stress. Previous spectroscopic studies have also
quantified the biochemical indicators of plants under stress.
Yendrek et al. [54] established PLS prediction models of leaf chloro-
phyll, nitrogen, and sucrose contents using hyperspectral reflec-
tance in order to assess the differences in biochemical responses
to elevated O3 across maize lines. The quantitative characterization
of multiple biochemical indicators of tea seedlings, including pig-
ments, moisture, and AsA under lead-containing aerosol particles
stress, was carried out using spectroscopy [34].

The strong mathematical associations between the spectral
responses and the host biochemical indicators indicated that the

complex and comprehensive spatiotemporal dynamic changes in
the biochemical and structural information of early-infected tis-
sues [46] could be reflected in the continuous full-spectrum FSSs,
explaining the effectiveness of the extracted FSSs for characterizing
lesions over time. In addition, the biochemical information and
structural characterization reflected by the spectral responses
[20,49] are at the pixel level, considering the high spatial resolu-
tion of HSI. This revelation of the detection mechanism of FSSs
makes HSI presymptomatic disease diagnosis better founded. Fur-
thermore, the test of the VCA method on two other kinds of plant
diseases demonstrated the remarkable generalization potential of
the proposed combination of HSI technology and the VCA method
for the early diagnosis of plant foliar diseases. In future work, these
results will be evaluated at different scales (e.g., microscopic scale,
canopy scale) to achieve improved scale-independent FSSs. Addi-
tional optical sensors (e.g., chlorophyll fluorescence) will be incor-
porated to enhance the capture of the characteristics of the lesions
and link to additional biochemical indicators. This will provide
state-of-the-art insights into and technologies for plant disease
diagnosis and facilitate the accurate screening of plant resistance.

5. Conclusions

In this study, time-series hyperspectral images of in vivo barley
leaves under spot blotch stress were acquired to characterize dis-
ease onset and development for rapid and in situ presymptomatic
diagnosis at the pixel level. The early physiological and biochemi-
cal responses of barley leaves to disease stress were examined
using traditional approaches, including PCR analysis of fungal col-
onization and determination of biochemical indicators (Chl-a, Chl-
b, Car, AsA, GSH, and MDA). Both methods revealed significant dif-
ferences between healthy and infected samples from 36 hai. For
the in situ visualization of the plant–pathogen interactions, the
spectral unmixing VCA method performed the best, extracting rep-
resentative FSSs with abundance maps corresponding to the spatial
distribution of healthy, slightly infected chlorotic, and severely
infected necrotic mesophyll tissues. The structural properties of
the three types of mesophyll tissues reflected by the FSSs in the
near-infrared range were also validated using microscopic obser-
vations, which demonstrated the definite physical interpretation
of the original HSI data by the extracted FSSs. The employment
of FSSs on the repeatedly measured in vivo leaf samples made it
possible to intuitively monitor the spatiotemporal dynamic hetero-
geneity at the early plant–pathogen interaction sites at the pixel
level, demonstrating the applicability and robustness of the FSSs.
This method enabled the presymptomatic diagnosis of spot blotch
on barley leaves at 24 hai—12 h earlier than the traditional PCR or
biochemical measurements. Finally, the mathematical relation-
ships between the spectral responses and the biochemical indica-
tors were established via regression models coupled with the
identification and interpretation of optimal characteristic wave-
lengths. The quantification of these indicators achieved good mod-
eling performances, with Rp

2 higher than 0.84 (Fig. S3), revealing
the mechanism of presymptomatic diagnosis based on HSI and
FSSs. The overall results demonstrated that, based on the associa-
tion between HSI and in vivo plant-trait alterations, the extracted
FSSs permitted the characterization of bipolaris spot blotch pro-
gression for presymptomatic diagnosis. Furthermore, the method-
ology was recognized to have remarkable generalization potential
for the early control of plant diseases.

Acknowledgments

This research work was supported by the Key Research and
Development Project of Zhejiang Province, China (2022C02044),

F. Zhu, Z. Su, A. Sanaeifar et al. Engineering 22 (2023) 171–184

182



National Natural Science Foundation of China (32171889 and
32071895), the Natural Science Foundation of Zhejiang Province,
China (LQ22C130004), and the National Key Research and Devel-
opment Program of China (2018YFD0700501).

Authors’ contribution

Fengle Zhu, Zhenzhu Su, Xiaoli Li, and Yong He conceived the
study. Xiaoli Li acquired the funding. Zhenzhu Su, Ruiqing Zhou,
Anand Babu Perumal, and Mostafa Gouda collected the experimen-
tal data. Alireza Sanaeifar, Ruiqing Zhou, Fengle Zhu, and Anand
Babu Perumal contributed to the algorithm development and data
analysis. Fengle Zhu, Zhenzhu Su, Alireza Sanaeifar, and Ruiqing
Zhou contributed to the result interpretation. Fengle Zhu and
Zhenzhu Su wrote the manuscript. Fengle Zhu, Alireza Sanaeifar,
and Xiaoli Li contributed to the editing of the manuscript.

Compliance with ethics guidelines

Fengle Zhu, Zhenzhu Su, Alireza Sanaeifar, Anand Babu Perumal,
Mostafa Gouda, Ruiqing Zhou, Xiaoli Li, and Yong He declare that
they have no conflict of interest or financial conflicts to disclose.

Appendix A. Supplementary material

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.eng.2022.10.006.

References

[1] Kumar J, Schäfer P, Hückelhoven R, Langen G, Baltruschat H, Stein E, et al.
Bipolaris sorokiniana, a cereal pathogen of global concern: cytological and
molecular approaches towards better control double dagger. Mol Plant Pathol
2002;3(4):185–95.

[2] Novakazi F, Afanasenko O, Lashina N, Platz GJ, Snowdon R, Loskutov I, et al.
Genome-wide association studies in a barley (Hordeum vulgare) diversity set
reveal a limited number of loci for resistance to spot blotch (Bipolaris
sorokiniana). Plant Breed 2020;139(3):521–35.

[3] Acharya K, Duta AK, Pradhan P. Bipolaris sorokiniana (Sacc.) Shoem.: the most
destructive wheat fungal pathogen in the warmer areas. Aust J Crop Sci 2011;5
(9):1064–71.

[4] Gupta PK, Chand R, Vasistha NK, Pandey SP, Kumar U, Mishra VK, et al. Spot
blotch disease of wheat: the current status of research on genetics and
breeding. Plant Pathol 2018;67(3):508–31.

[5] Murray TD, Parry DW, Cattlin ND. A color handbook of diseases of small grain
cereal crops. Ames: Iowa State University Press; 1998.

[6] Pandey SP, Kumar S, Kumar U, Chand R, Joshi AK. Sources of inoculum and
reappearance of spot blotch of wheat in rice–wheat cropping systems in
eastern India. Eur J Plant Pathol 2005;111(1):47–55.

[7] Sharma RC, Duveiller E. Advancement toward new spot blotch resistant
wheats in South Asia. Crop Sci 2007;47(3):961–8.

[8] Kumar D, Chand R, Prasad LC, Joshi AK. A new technique for monoconidial
culture of the most aggressive isolate in a given population of Bipolaris
sorokiniana, cause of foliar spot blotch in wheat and barley. World J Microbiol
Biotechnol 2007;23(11):1647–51.

[9] Al-Sadi AM. Bipolaris sorokiniana-induced black point, common root rot, and
spot blotch diseases of wheat: a review. Front Cell Infect Microbiol
2021;11:584899.

[10] Mahlein AK, Kuska MT, Behmann J, Polder G, Walter A. Hyperspectral sensors
and imaging technologies in phytopathology: state of the art. Annu Rev
Phytopathol 2018;56(1):535–58.

[11] Martinelli F, Scalenghe R, Davino S, Panno S, Scuderi G, Ruisi P, et al. Advanced
methods of plant disease detection. A review. Agron Sustain Dev 2015;35
(1):1–25.

[12] Lowe A, Harrison N, French AP. Hyperspectral image analysis techniques for
the detection and classification of the early onset of plant disease and stress.
Plant Methods 2017;13(1):80.

[13] Thomas S, Wahabzada M, Kuska MT, Rascher U, Mahlein AK. Observation of
plant–pathogen interaction by simultaneous hyperspectral imaging reflection
and transmission measurements. Funct Plant Biol 2016;44(1):23–34.

[14] Cen H, Weng H, Yao J, He M, Lv J, Hua S, et al. Chlorophyll fluorescence imaging
uncovers photosynthetic fingerprint of citrus Huanglongbing. Front Plant Sci
2017;8:1509.

[15] Ghosal S, Blystone D, Singh AK, Ganapathysubramanian B, Singh A, Sarkar S. An
explainable deep machine vision framework for plant stress phenotyping. Proc
Natl Acad Sci USA 2018;115(18):4613–8.

[16] Abdulridha J, Ampatzidis Y, Qureshi J, Roberts P. Laboratory and UAV-based
identification and classification of tomato yellow leaf curl, bacterial spot, and
target spot diseases in tomato utilizing hyperspectral imaging and machine
learning. Remote Sens 2020;12(17):2732.

[17] Das K, Roychoudhury A. Reactive oxygen species (ROS) and response of
antioxidants as ROS-scavengers during environmental stress in plants. Front
Environ Sci 2014;2:53.

[18] Kaur S, Bhardwaj RD, Kaur J, Kaur S. Induction of defense-related enzymes and
pathogenesis-related proteins imparts resistance to barley genotypes against
spot blotch disease. J Plant Growth Regul 2021;41(2):682–96.

[19] Zarco-Tejada PJ, Camino C, Beck PSA, Calderon R, Hornero A, Hernández-
Clemente R, et al. Previsual symptoms of Xylella fastidiosa infection revealed in
spectral plant-trait alterations. Nat Plants 2018;4(7):432–9.

[20] Zhang N, Yang G, Pan Y, Yang X, Chen L, Zhao C. A review of advanced
technologies and development for hyperspectral-based plant disease detection
in the past three decades. Remote Sens 2020;12(19):3188.

[21] Mahlein AK, Steiner U, Hillnhütter C, Dehne HW, Oerke EC. Hyperspectral
imaging for small-scale analysis of symptoms caused by different sugar beet
diseases. Plant Methods 2012;8(1):3.

[22] Bendel N, Backhaus A, Kicherer A, Köckerling J, Maixner M, Jarausch B, et al.
Detection of two different grapevine yellows in Vitis vinifera using
hyperspectral imaging. Remote Sens 2020;12(24):4151.

[23] Shuaibu M, Lee WS, Schueller J, Gader P, Hong YK, Kim S. Unsupervised
hyperspectral band selection for apple Marssonina blotch detection. Comput
Electron Agric 2018;148:45–53.

[24] Arens N, Backhaus A, Döll S, Fischer S, Seiffert U, Mock HP. Non-invasive
presymptomatic detection of Cercospora beticola infection and identification of
early metabolic responses in sugar beet. Front Plant Sci 2016;7:1377.

[25] Gao Z, Khot LR, Naidu RA, Zhang Q. Early detection of grapevine leafroll disease
in a red-berried wine grape cultivar using hyperspectral imaging. Comput
Electron Agric 2020;179:105807.

[26] Abdulridha J, Ampatzidis Y, Roberts P, Kakarla SC. Detecting powdery mildew
disease in squash at different stages using UAV-based hyperspectral imaging
and artificial intelligence. Biosyst Eng 2020;197:135–48.

[27] Abdulridha J, Ampatzidis Y, Kakarla SC, Roberts P. Detection of target spot and
bacterial spot diseases in tomato using UAV-based and benchtop-based
hyperspectral imaging techniques. Precis Agric 2020;21(5):955–78.

[28] Thomas S, Behmann J, Steier A, Kraska T, Muller O, Rascher U, et al.
Quantitative assessment of disease severity and rating of barley cultivars
based on hyperspectral imaging in a non-invasive, automated phenotyping
platform. Plant Methods 2018;14(1):45.

[29] Kuska M, Wahabzada M, Leucker M, Dehne HW, Kersting K, Oerke EC, et al.
Hyperspectral phenotyping on the microscopic scale: towards automated
characterization of plant–pathogen interactions. Plant Methods 2015;11
(1):28.

[30] Kuska MT, Brugger A, Thomas S, Wahabzada M, Kersting K, Oerke EC, et al.
Spectral patterns reveal early resistance reactions of barley against Blumeria
graminis f. sp. hordei. Phytopathology 2017;107(11):1388–98.

[31] Zhou RQ, Jin JJ, Li QM, Su ZZ, Yu XJ, Tang Y, et al. Early detection ofMagnaporthe
oryzae-infected barley leaves and lesion visualization based on hyperspectral
imaging. Front Plant Sci 2019;9:1962.

[32] Zhu F, Zhang D, He Y, Liu F, Sun DW. Application of visible and near infrared
hyperspectral imaging to differentiate between fresh and frozen–thawed fish
fillets. Food Bioprocess Technol 2013;6(10):2931–7.

[33] Wellburn AR, Lichtenthaler H. Formulae and program to determine total
carotenoids and chlorophylls A and B of leaf extracts in different solvents. In:
Proceedings of the VIth International Congress on Photosynthesis; 1983 Aug
1–6; Brussels, Belgium. Netherlands: Springer; 1984. p. 9–12.

[34] Sanaeifar A, Zhu F, Sha J, Li X, He Y, Zhan Z. Rapid quantitative characterization
of tea seedlings under lead-containing aerosol particles stress using Vis-NIR
spectra. Sci Total Environ 2022;802:149824.

[35] Chen HZ, Zhang M, Guo Z. Discrimination of fresh-cut broccoli freshness by
volatiles using electronic nose and gas chromatography-mass spectrometry.
Postharvest Biol Technol 2019;148:168–75.

[36] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-
time quantitative PCR and the 2�DDCt method. Methods 2001;25(4):402–8.

[37] Deshmukh S, Hückelhoven R, Schäfer P, Imani J, Sharma M, Weiss M, et al. The
root endophytic fungus Piriformospora indica requires host cell death for
proliferation during mutualistic symbiosis with barley. Proc Natl Acad Sci USA
2006;103(49):18450–7.

[38] Deshmukh SD, Kogel KH. Piriformospora indica protects barley from root rot
caused by Fusarium graminearum. J Plant Dis Prot 2007;114(6):263–8.

[39] Macqueen J. Some methods for classification and analysis of multivariate
observations. Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, 1967; Oakland, CA, USA. Cambridge: Cell Press;
1969.

[40] Bezdek JC, Ehrlich R, Full W. FCM: the fuzzy c-means clustering algorithm.
Comput Geosci 1984;10(2–3):191–203.

[41] Keshava N, Mustard JF. Spectral unmixing. IEEE Signal Process Mag 2002;19
(1):44–57.

[42] Nascimento JMP, Dias JMB. Vertex component analysis: a fast algorithm to
unmix hyperspectral data. IEEE Trans Geosci Remote Sens 2005;43
(4):898–910.

[43] Huang Y, Dong W, Sanaeifar A, Wang X, Luo W, Zhan B, et al. Development of
simple identification models for four main catechins and caffeine in fresh

F. Zhu, Z. Su, A. Sanaeifar et al. Engineering 22 (2023) 171–184

183



green tea leaf based on visible and near-infrared spectroscopy. Comput
Electron Agric 2020;173:105388.

[44] Liu Z, Cai W, Shao X. Outlier detection in near-infrared spectroscopic
analysis by using Monte Carlo cross-validation. Sci China B Chem 2008;51
(8):751–9.

[45] Maldonado AIL, Rodriguez-Fuentes H, Contreras JAV. Hyperspectral imaging in
agriculture, food and environment. London: IntechOpen; 2018.

[46] Tian L, Xue B, Wang Z, Li D, Yao X, Cao Q, et al. Spectroscopic detection of rice
leaf blast infection from asymptomatic to mild stages with integrated machine
learning and feature selection. Remote Sens Environ 2021;257:112350.

[47] Leucker M, Wahabzada M, Kersting K, Peter M, Beyer W, Steiner U, et al.
Hyperspectral imaging reveals the effect of sugar beet quantitative trait loci on
Cercospora leaf spot resistance. Funct Plant Biol 2017;44(1):1.

[48] Krinidis S, Chatzis V. A robust fuzzy local information c-means clustering
algorithm. IEEE Trans Image Process 2010;19(5):1328–37.

[49] Ollinger SV. Sources of variability in canopy reflectance and the convergent
properties of plants. New Phytol 2011;189(2):375–94.

[50] Cen H, He Y. Theory and application of near infrared reflectance spectroscopy
in determination of food quality. Trends Food Sci Technol 2007;18(2):72–83.

[51] Walsh KB, Blasco J, Zude-Sasse M, Sun X. Visible-NIR ‘point’ spectroscopy in
postharvest fruit and vegetable assessment: the science behind three decades
of commercial use. Postharvest Biol Technol 2020;168:111246.

[52] Able AJ. Role of reactive oxygen species in the response of barley to
necrotrophic pathogens. Protoplasma 2003;221(1–2):137–43.

[53] Yusuf CS, Chand R, Mishra VK, Joshi AK. The association between leaf
malondialdehyde and lignin content and resistance to spot blotch in wheat.
J Phytopathol 2016;164(11–12):896–903.

[54] Yendrek CR, Tomaz T, Montes CM, Cao Y, Morse AM, Brown PJ, et al. High-
throughput phenotyping of maize leaf physiological and biochemical traits
using hyperspectral reflectance. Plant Physiol 2017;173(1):614–26.

F. Zhu, Z. Su, A. Sanaeifar et al. Engineering 22 (2023) 171–184

184


