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ABSTRACT In this paper, we develop a decentralized 
algorithm to coordinate a group of mobile robots to search 
for unknown and transient radio sources. In addition to 
limited mobility and ranges of communication and sensing, 
the robot team has to deal with challenges from signal 
source anonymity, short transmission duration, and variable 
transmission power. We propose a two-step approach: First, 
we decentralize belief functions that robots use to track 
source locations using checkpoint-based synchronization, 
and second, we propose a decentralized planning strategy 
to coordinate robots to ensure the existence of checkpoints. 
We analyze memory usage, data amount in communication, 
and searching time for the proposed algorithm. We have 
implemented the proposed algorithm and compared it 
with two heuristics. The experimental results show that our 
algorithm successfully trades a modest amount of memory 
for the fastest searching time among the three methods.

KEYWORDS wireless localization, networked robots, transient 
targets

1 Introduction
The fast development of wireless sensor network (WSN) 
technology provides excellent tools to collect information. 
However, WSNs can also be a significant threat to our secu-
rity and privacy (e.g., an enemy may deploy a sensor field 
to detect troop movements). The large number of miniature 
sensors in a large field makes it difficult to manually search 
and neutralize the sensors. We are developing algorithms to 
enable a team of mobile robots to perform the task. In this 
“robot network” vs. “sensor network” setup, each party has 
its own advantages and limitations. Robots have mobility 
while sensors do not. Robots know their own locations and 
received signal strength (RSS) readings. However, robots 
cannot decode the protocol of the sensor network and have 
to treat sensors as plain radio sources. Therefore, signal ano-

nymity, short transmission duration, variable transmission 
power, and the unknown source number challenge robots, in 
addition to communication and sensing range constraints.

Building on our prior work, we propose a two-step ap-
proach: First, we decentralize belief functions that robots use 
to track source locations using checkpoint-based synchro-
nization; and second, we propose a decentralized planning 
strategy to coordinate robots to ensure the existence of check-
points.

We formally show that our planning algorithm ensures the 
decentralized belief functions to be synchronized periodi-
cally with explicit analysis on memory and communication 
requirements. Furthermore, the expected searching time of 
our algorithm is insensitive to the number of radio sources. 
We have implemented the proposed algorithm and compared 
it with two heuristics in a simulation based on real sensory 
data. The experimental results show that our algorithm suc-
cessfully trades a modest amount of memory for the fastest 
searching time among the three methods.

2 Related work
Searching for multiple transient radio sources relates to radio 
frequency (RF)-based localization and multi-robot motion 
estimation and planning.

The recent development of RF-based localization can be 
viewed as the localization of “friendly” radio sources, because 
researchers either assume that an individual radio source 
continuously transmits radio signals (similar to a lighthouse) 
[1, 2], or assume that robots/receivers are a part of the net-
work and understand the detailed packet information [3, 4].  
However, such information is not always available for an 
unknown network. When signal sources are not cooperative, 
RSS readings are the primary information for localization 
because RSS attenuates over distance. When signal transmis-
sion power at the source is not available, ratios between RSS 
readings from dislocated listeners [5, 6] or an antenna array [7] 
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have been proven to be effective in obtaining bearing and/or 
range readings.

In the area of multi-robot research, decentralized esti-
mation of robot positions and poses has recently gained 
considerable attention. Durrant-Whyte [8] developed the de-
centralized estimation technology based on the distributed 
Kalman filter framework. Leung et al. [9] also tackled the 
decentralized multi-robot localization problem by a concept 
of checkpoints, which represent delayed synchronization 
of observation after exchanges of observations between ro-
bots. Researchers extend the concept to the decentralized 
information transfer scheme [10] based on communication 
constraints. Our problem is similar in the way that we can 
benefit from the range and heading sensory models, but it is 
different in that we focus on estimating the positions of the 
positions of transient targets instead of the positions of ro-
bots themselves.

Also in multi-robot research, Pereira et al. [11] proposed 
decentralized planning under sensing and communication 
constraints while keeping connectivity with neighbors. By 
using decentralized multi-robots, Bhadauria et al. [12] ad-
dressed the data gathering problem (DGP) in which multiple 
robots gather information from deployed sensor networks. In 
this work, they formulated the DGP as traveling salesperson 
problem (TSP) instances, and proposed two sub tour plans. 
One tour is a counterclockwise tour, and the other is a clock-
wise tour, to ensure that the two tours cover all deployed 
sensor nodes. Another aspect of decentralized planning is 
synchronization. Martinez et al. [13, 14] analyzed the motion 
synchronization of decentralized multi-robots, introducing 
a network of locally connected agents on the tour using the 
agree-and-pursue algorithm. These works on communication 
and sensing constraints inspire our work. Unlike the popular 
pursuit-evasion game, the radio sources in our problem do 
not move. However, the stationary nodes do not make the 
problem simpler, because the radio sources are transient and 
can vary transmission power, which leads to a different type 
of problem.

Our group studies the transient radio source searching 
problem under different setups and constraints [15, 16]. The 
most relevant prior work is the Bayesian localization scheme 
proposed in Refs. [17, 18] for using a single robot and its 
extension to multiple robots [19, 20]. This paper builds on a 
previous conference version [21], and differs from existing 
searching methods by decentralizing belief functions and 
proposing a new decentralized planning algorithm.

3 Problem definition
Our problem setup and assumptions are:

(1) Robots and radio sources reside in an open 2D space.
(2) Each robot has a limited communication range and a 

limited sensing range.
(3) Each robot knows its position using the global position-

ing system (GPS). GPS clocks also provide accurate time 
for the purpose of synchronization.

(4) Transmission powers of radio sources are unknown to 
robots and may change from time to time. However, lo-
cations of radio sources do not change.

For the new decentralized approach, we will follow the 
same problem definition in the corresponding centralized 
versions [17–20], where the searching problem is partitioned 
into two sub problems:

Definition 1 (sensing problem): Given the RSS readings 
and corresponding locations from robots, update robot belief 
functions for radio source locations.

Definition 2 (planning problem): Given the belief functions, 
plan robot trajectories to increase searching efficiency. We 
will concretely define the belief functions in detail later in the 
paper. This is a Monte Carlo type algorithmic approach, with 
the following stopping time for radio source detection, and 
searching condition: A radio source is considered as found if 
the belief function is bigger than a preset threshold pt. 

Now let us begin with the sensing problem.

4 Decentralized belief functions
Belief functions track the radio source distribution based on 
RSS readings and robot locations. They are usually built on a 
Bayesian framework and antenna models to allow incremen-
tal update. In our previous work [17, 19, 20] on the centralized 
localization of transient and unknown radio sources, we pro-
posed a spatial temporal occupancy grid (SPOG) as the ro-
bots’ common belief functions. Let us review it first and then 
we will decentralize SPOG.

4.1 A brief review of SPOG
SPOG partitions the searching region into small and equal-
sized grid cells. Define i∈N as the cell index variable where  
N: = {1, ..., n} is the grid cell index set and n is the total num-
ber of cells. SPOG tracks two types of probabilistic events: Ci 
represents the event that cell i contains a radio source, and 
Ci

1 represents the event that cell i is the active source when 
a transmission is detected. Ci

1 actually reflects the relative 
transmission rates among multiple sources, which is a tem-
poral dimension signature. Define P(C) as the probability for 
event C. P(Ci) and P(Ci

1) characterize spatiotemporal behav-
iors of transient radio sources.

Let l ∈ M: = {1, ..., m}  be the robot index variable, where 
m is the total number of robots and M is the robot index 
set. Note that m is always an even number since we will 
pair robots up later. Discrete time k, or the corresponding 
continuous time tk, refers to each moment when a transmis-
sion is detected by robots. Let xl

k: = [xl
k, yl

k]T be the location 
of robot l at time k and Xk: = [x1

k, ..., xm
k]T be a set of all robot 

locations at time k. Let the discrete random variable Z~l
k be 

the RSS reading of the l-th robot at time k. Define Z~ k: = [Z~1
k, ...,  

Z~m
k]T as a discrete random vector of all the RSS readings at 

time k and let z~k: = [z~1
k, ..., z~m

k]T be corresponding values. As a 
convention, we use lower cases of random variables or vec-
tors to denote their values. Define Z 1:k: = [z~1, ..., z~k]T as the set 
of all RSSs sensed from the beginning of the searching to tk. 
Define P(Ci|Z 1:k) as the conditional probability that cell i con-
tains at least one radio source, given Z 1:k. Similarly, we define 
P(Ci|Z 1:k–1 ), P(Ci

1|Z 1:k), and P(Ci
1|Z 1:k–1 ). At time k, event Z~ k = 

z~k is perceived by robots. The posterior probability P(Ci|Z 1:k) 
over the grid needs to be updated. According to Ref. [17] this 
is actually a nested multivariate Bayesian process. As more 
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RSS readings enter the system over time, P(Ci|Z 1:k) converges 
until  P(Ci|Z 1:k)  > pt, which means that the searching condi-
tion in Section 3 is satisfied.

4.2 Decentralized SPOG (D-SPOG)
In the decentralized system, each robot has to maintain its 
own local SPOG by accumulating RSS readings internally 
and exchanging information with other robots whenever 
other robots move into its communication range. However, 
the centralized SPOG in Ref. [17] depends on the strict order 
of complete observation set Z~1:k. Robots cannot arbitrarily use 
their partial receptions to generate a local SPOG. Further-
more, robots cannot keep their readings forever for future 
information exchange due to limited onboard memory space.

Before we address this problem, let us take a close look at 
the decentralized system. There are three types of discrete 
events in the decentralized system: detection events, referring 
to moments when a transmission is detected by robots; ren-
dezvous events, describing moments when a robot moves into 
another robot’s communication range; and planning events, de-
scribing moments when a robot starts a new path planning. 
Recall that k is the time index variable for the detection event. 
Denote j and k as the rendezvous event and the planning 
event, respectively. Define tk

j:k to describe the three events in 
the continuous time domain, as a convention in this paper. 
To reduce cluttering, we may also use a reduced version such 
as tk and tj for the corresponding event time. tk indicates the 
beginning of the k-th planning period.

An effective coordination plan should allow robots to ex-
change information among each other so that all robots have 
the same set of observations Z1:k at time j, tj ≥ tk. This is the 
time at which all robots can update their SPOG up to time k. 
In such a way, the centralized SPOG can be decentralized and 
synchronized among all robots. The “delayed synchroniza-
tion” concept was proposed as a checkpoint by Leung et al. [9]. 
Let us denote Y(tk, tj) as the checkpoint. Note that each check-
point for a robot always has two time variables: It begins with 
an early detection event time and ends with a future rendez-
vous event time, because information is always generated by 
detection events and synchronized by rendezvous events.

Figure 1 shows an information flow graph to illustrate the 
checkpoint concept and how information is passed around 
the distributed robot pairs in D-SPOG. Note that robots 
have been paired up in this graph because it takes two ro-
bots to obtain a signal ratio for radio sources with unknown 
and variable transmission powers. We ignore the intra-
pair communication because a pair can always talk to each 
other according to planning. Following the arc arrows in 
vertical directions, we can see that both Y(tk

j, k+1, tk
j+2, k+3 ) and  

Y(tk
j, k+2, tk

j+3, k+4 ) are checkpoints.
To build a D-SPOG, the remaining question is how each 

robot stores and exchanges information. Say that Yl(tk–1,  
tk–1, j–1 ) is the last checkpoint for robot l. After the update at 
tj–1, D-SPOG for the robot l is synchronized up to tk–1 with 
the fictitious centralized SPOG according to the checkpoint 
property. Robot l only needs to store its own locations and 
RSS readings after tk–1, which results in significant saving in 
memory. Due to the fact that robots without detection may 

not know the time of the radio transmission, each robot has 
to keep track of its trajectory in addition to RSS readings. Let 
Wl

k–1, t be the measurement set internally generated by robot l 
between tk–1 and current time t, t > tk–1:

                            Wl
k–1, t = {Xl((tk–1, t)), zl((tk–1, t))} � (1)

where xl(.) is the robot trajectory and zl(.) is the RSS reading 
set for the duration. Similarly, we define Wl

k–1, j and Wl
k–1, k by 

replacing t with tj and tk, respectively.
Let us define the measurement set of robot l at rendezvous 

time tj as Γ l
k–1, j, which contains information from both its 

onboard sensors and other robots. To describe the moment 
right before robot l encounters another robot, we introduce a 
(.)–

 notation. It is clear that Wl
k–1, j ⊆ (Γ l

k–1, j)–. At tj, robot l meets 
robot p, which has measurement set (Γ l

k'–1, j)– prior to the in-
formation exchange, where t k'–1 is the detection event time 
of the last checkpoint that robot p has. Note that t k'–1 and t k–1 
are not necessarily the same. The two robots first compare 
the two times, because a newer time means a more recent D-
SPOG. The other robot should synchronize its SPOG to the 
more recent one. After synchronizing their SPOGs, they need 
to synchronize the measurement set. Note that we have (Γ l

k–1, j)–  
for robot l and (Γp

k'–1, j)– for robot p before the synchronization. 
Without loss of generality, we assume t k–1≥t k'–1, and the syn-
chronization process is:

                 Γ l
k–1, j = Γp

k–1, j = (Γ l
k–1, j)–∪( Γp

k–1, j)–� (2)

where ( Γp
k–1, j)– = ( Γp

k'–1, j)–\Γp
k'–1, k–1 is obtained by discarding the 

measurement between t k'–1 and t k–1, a reduction in memory 
usage.

After the rendezvous event, each robot needs to search if 
a more recent checkpoint can be established. For robot l, it 
checks Γ l

k–1, j to see if the measurement set contains informa-
tion from all other robots for detection events that happened 
after the (k–1)-th detection event by searching for the maxi-
mum δ, subject to δ∈Z∩[–1, ∞) and tk+δ ≤ t, 

                    δ = arg max  δ[∏m
p = 1(Wl

k–1, k+δ ∪

Γ l
k–1, j)]� (3) 

Figure 1. A sample information flow graph for four robot pairs. Gray 
rectangles represent robot rendezvous events. Arc arrows in the vertical 
direction indicate information exchange between robots in communication 
range. Black and white circles represent events for robots with and without 
detection of active radio transmissions, respectively.
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where (Wl
k–1, k+δ ∪

Γ l
k–1, j) is a logic opera-

tion that returns 0 if the relationship 
is not satisfied and 1 otherwise. Only 
the existence of a nonnegative solution 
indicates that a new checkpoint Yl(tk+δ, 
tj) can be established and hence the D-
SPOG can be updated. After the update, 
it is clear that D-SPOG is equivalent to 
the centralized SPOG update with a 
delay of t – tk+δ. We have the following 
lemma:

Lemma 1: To ensure proper update 
of D-SPOG at checkpoints, both the 
amount of information that every robot 
stores onboard and the amount of in-
formation exchange during the rendez-
vous event between two robots are O(n 
+ m(t – tk–1)), where t is current time and 
tk–1 is the detection event time of the lat-
est checkpoint.

Proof: Each robot has to store a D-
SPOG that takes O(n) memory space. 
In the worst case scenario, Γ p

k–1, t may 
contain (m – 1) robots’ trajectories and 
RSS reading sets from tk–1 to t. Since the 
trajectory storage using a fixed period 
and the mean number of transmissions 
is linear to the time duration, hence the 
overall amount of information stored 
on each robot is O(n + m(t – tk–1)). Since 
both D-SPOG and their measurement 
sets need to be synchronized during the 
rendezvous of robots, the lemma holds.

However, if just one robot is geogra
phically isolated from the others, which 
results in no communication to others, 
no checkpoint can be established. t – tk–1 
becomes unbounded and the robot may 
quickly run out of memory, which leads 
to failure. To address this problem, we 
propose a decentralized planning that 
guarantees periodic checkpoint existence.

5 Decentralized planning
The decentralized planning strategy 
needs to take checkpoint existence, 
communication range limit, synchro-
nization, and searching time into con-
sideration. We build the new planning 
strategy by decentralizing our existing 
ridge walking algorithm (RWA) in Refs. 
[17, 18].

5.1 A brief review of RWA and pairwise RWA 
(PRWA)
In SPOG or D-SPOG, P(Ci|Z1:k ) is the 
conditional probability that cell i con-
tains a radio source. RWA plans a path 

for a single robot by building on this spatial distribution of radio sources. We gen-
erate a level set L(p), p∈(0, 1] by using a plane parallel to the ground plane to inter-
sect the mountain-like distribution P(Ci|Z1:k) at height p. The intersection generates 
L(p), which contains all cells with P(Ci|Z1:k) above the plane. L(p) usually consists of 
several disconnected components. The irregular contours in Figure 2(a) are an ex-
ample of L(0.1). For each component, we define its ridge as the longest line segment 
along its dominating direction [18]. We know each ridge has a very high probabil-
ity of being close to a potential signal source. We generate a traveling salesperson 
problem (TSP) tour that contains all ridges. For off-ridge segments, the robot moves 
at its fastest speed. The solid red and dashed blue lines in Figure 2(a) represent 
on-ridge and off-ridge movements, respectively. For on-ridge segments, the robot 
spends the time proportional to the summation of posterior conditional probability 
P(Ci|Z1:k) over the corresponding isolated level set on each ridge. This allows the ro-
bot to spend most of its time on ridges; then the intuition yields the RWA in Ref. [18]. 
RWA has shown superior convergence performance and scalability in searching for 
multiple signal sources.

Figure 2. Sample results for decentralized planning using 4 robot pairs. (a) Sample robot trajectories 
of DPRWA, with the solid red and dashed blue lines represent the on-ridge and off-ridge movements, 
respectively; (b) an example of the intra-ring movements on the time ring; (c) changes of robot pair directions 
corresponding to the intra-ring movements; (d) sample interring movements using time ring space instead of 
Euclidean space.

PRWA extends RWA to plan trajectories for a team of robots to handle unknown 
and changing transmission power in Refs. [19, 20]. First, PRWA expands SPOG by 
developing a pairwise sensing model based on RSS ratios from robot pairs instead 
of assuming known absolute source transmission power. Second, PRWA coordi-
nates robots in pairs by minimizing information entropy so that a robot pair can 
be viewed as a super-robot in planning. We will inherit the pairwise sensing model 
and coordinate robots in pairs in this decentralized version.

5.2 Decentralized PRWA (DPRWA)
Similar to RWA, DPRWA coordinates robot pairs to patrol on TSP tours that link 
all ridges. We generate a TSP tour in each planning period. In fact, each planning 
period is divided into two parts: short inter-ring movements for transition between 
TSP tours in adjacent planning periods, followed by long intra-ring movements for 
the time allocated for robots to patrol the TSP tour.

(1) Inter-ring and intra-ring movements: Let us begin with inter-ring move-
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ments. Before the planning period starts, each robot pair 
computes the TSP tour. All robot pairs actually share the 
same TSP tour from the synchronized D-SPOG. Inter-ring 
movements allow robots to move from the current TSP tour 
to the next. Each robot has a pre-allocated beginning posi-
tion on the TSP tour (detailed later as initial positions for 
intra-ring movements). Therefore, the amount of travel time 
for inter-ring movement can be predicted as soon as the TSP 
tour for the planning period is established. Define Du, k as the 
inter-ring travel time of the u-th robot pair. To synchronize 
the starting time of intra-ring movements of all robot pairs, 
every robot pair waits until all other robot pairs reach their 
initial positions. Define Dk

max
 as the maximum travel time: 

Dk
max = argmaxu Du, k. For those robots that arrive early due to 

short traveling distance, they need to wait wu
k = Dk

max – Du, k  
before the synchronized intra-ring movements start. Syn-
chronization will be detailed later in Section 5.2(3). To save 
time, robots move at their fastest speed to shorten inter-ring 
movement time.

Now let us introduce intra-ring movements. Since the TSP 
tour is a continuous loop, it can be mapped to a circular ring 
in time with its circumference being the time for a single pair 
of robots to traverse the entire TSP tour, which is defined as τ0. 
The mapping is one-to-one if we fix a point correspondence in 
the mapping. For example, the leftmost point (the smallest in 
lexicographic order) on the TSP tour corresponds to the 9 clock 
position on the time ring as the green stars shown in Figures 
2(a) and 2(b). All robots share this mapping rule to synchronize 
their positions on the time ring. The introduction of the time 
ring can facilitate our planning. Under the time ring, the inter-
ring movements can also be simplified as shown in Figure 2(d).

As illustrated in Figure 2(b), each pair of robots are evenly 
distributed on the time ring. Define ϕu, k and ϕ'u, k

 
as the posi-

tion and speed of the u-th robot pair on the time ring, respec-
tively. Robots’ speeds on the time ring are unitary based on 
the definition of the time ring. Odd and even pairs are ini-
tially assigned to move counterclockwise and clockwise on 
the time ring, which are represented as 1 and –1, respectively. 
Recall that there are m robots and hence m/2 pairs. We have

             
ϕu, k = and ϕ'u, k =

1
−1

if u is odd,
otherwisem

2τ0(u − 1)
�  (4)

as the initial positions and speeds for robot pairs. Figure 2(b) 
illustrates the initial positions and directions (represented by 
the heading direction of each robot) of four robot pairs. When 
two robot pairs rendezvous on the time ring, they exchange 
information and then reverse their moving directions. There-
fore, each robot pair oscillates on the time ring centered at its 
initial position as shown in Figure 2(c).

Define T as the time of the intra-ring movements. The robot 
pairs have to execute the intra-ring movements long enough 
to ensure the existence of the checkpoint.

Lemma 2: Each robot pair has at least one checkpoint if the 
intra-ring movement time T is

                          τ0

m
τ0

2

τ0

2
m
2if      is even,{T =

+ otherwise � (5)

Proof: Starting from its initial position, robot pair u meets 
its two neighbors u – 1 and u + 1 and returns to the initial 
position with a period of 2τ0/m. The furthest point is a half 
circle away, τ0/2. The two rendezvous bring information from 
further both downstream (from u + 1 at the lower half circle) 
and upstream (from u – 1 at the upper half circle). Imagine 
the information is sent out from the furthest robot pair from 
both upstream and downstream directions. When the infor-
mation reaches robot pair u, it contains information from all 
robot pairs. There are two cases: even and odd numbers of 
robot pairs. For the even case, due to the unitary speed, τ0/2 
is the exact time when robot pair u gathers the information. 
Eq. (3) has a nonnegative solution and a new checkpoint is 
established. For the odd case, the proof is similar except that 
there needs to be an additional half period for meeting the 
additional pair.

Figure 1 illustrates the information flow and checkpoint 
existent for the four-robot-pair case in Figures 2(b) and 2(c) 
under the oscillating intra-ring movements.

(2) Memory usage and expected searching time: DPRWA 
ensures periodical checkpoint existence, which leads to guar-
anteed performance. To measure the algorithm performance, 
we employ two metrics: memory usage for each robot and the 
expected searching time for each radio source.

For the memory usage, following Lemma 2, we have
Theorem 1: DPRWA guarantees that D-SPOG has a time 

delay less than Dk
max + T if comparing the D-SPOG to the 

centralized SPOG. To achieve that, each robot requires  
O(n + m(Dk

max + T)) memory space.
The expected searching time for a radio source has to de-

pend on the source transmission rate. Assume a radio source 
i transmits signals according to a Poisson process with a rate 
of λi. In Ref. [16], we have introduced the expected searching 
time (EST) for a single-robot-single-target case. Let us extend 
this analysis to DPRWA. Denote TS as the searching time. 
Similar to the EST analysis of RWA in Ref. [18], we tighten the 
convergence condition from the probability threshold pt to the 
condition of signal saturation. Radio source i is considered to 
be found if the robot pairs hear the transmission within the 
distance da of the radio source. da is set to be small, such that 
if the transmission is heard, the probability threshold pt must 
be reached. This defines a sensing circle with its center at the 
radio source i and a radius of da. Define τIN and τOUT as por-
tions of the time when traveling within and outside distance 
da of radio source i, respectively. Hence

                                Dk
max + T = τIN + τOUT�  (6)

We have the following theorem:
Theorem 2: The expected searching time E(Ts) of radio 

source i has the following upper bound:

           
E(Ts ) ≤ Dk

max + (Dk
max + T )E( )+ +

τ0

m
1
λi

e–λiτIN

1 – e–λiτIN

Proof: From Theorem 1 in Ref. [16], the expected searching 
time E(Ts) of transient radio source i is

                      
E(Ts )  = E(D) E( )τOUT+ +

1
λi

e–λiτIN

1 – e–λiτIN � (7)
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where D is the amount of time from the beginning of the 
search to the moment when the robot is within distance da of 
the radio source i for the first time. The theorem is built on 
the general case that the searching process can be modeled 
as a delayed alternative renewal reward process [22]. In our 
case, the renewal period starts at the first entry to the sens-
ing circle by the robot team at each planning period. It is not 
exactly the same as the planning period but will share the 
same expected period length with the planning period. Since 
the search begins with the inter-ring movements in the first 
planning period, let us define probability event B as the event 
if the robot team meets the radio source during inter-ring 
movements. Therefore,

                        E(D) = E(D|B)P(B) + E(D|B
-

)(1 – P(B))� (8)

Event B is a small probability event given the large search-
ing field size. Hence P(B) << 1 – P(B) ≈ 1. Since the point of 
the first entry to the sensing circle could be anywhere on the 
time ring, it is uniformly distributed on the time ring. Also, 
we have m/2 pairs of robots evenly distributed on the time 
ring,

�
(9)

              
E(D|B) = Dk

max + = Dk
max + ≥E(D)

τ0

m/2
τ0

m
1
2

Since the search region is usually much larger than the 
sensing region τIN << Dk

max + T, we have

                                 E(τOUT) ≈ Dk
max + T � (10)

from Eq. (6). Since each renewal period is independent and 
identically distributed (i.i.d.), it allows us to apply Theorem 1 
in Ref. [16]. Since Dmax + T is independent of τIN, plugging Eqs. 
(9) and (10) into Eq. (7), we have the result in Eq. (11).

Theorem 3: The expected searching time E(Ts) of radio 
source i has the following upper bound, where vavg is the 
average traveling speed of the robot and will be defined in 
detail later.

        E(Ts) ≤ ( )( ){ }E+++
1
λi

4 3
vavg

e–λiτIN

1 – e–λiτIN

τ0

1 – e–λiτ0

2
m

1
2 � (11)

Remark 1: An important result given by Theorem 2 is the 
fact that E(Ts) entries are not sensitive to the number of radio 
sources, which means excellent scalability.

(3) Algorithm: We summarize our DPRWA in Algorithm 1. 
The algorithm runs on each robot pair, which skips details of 
intra-pair coordination.

Synchronization: The algorithm runs at tk, the beginning 
of planning period k. The algorithm relies on the D-SPOG at 
tk–1, which is the synchronized belief function across all ro-
bots. Therefore, all robots will have the same TSP tour, which 
ensures their motions are synchronized given the same plan, 
accurate clocks from GPS, and the same mapping rule be-
tween the time ring and the Euclidean space.

Virtual ridges: One point that we have yet to explain is the 
virtual ridge mentioned in line 2 of Algorithm 1. Define smax 
as the maximum number of ridges. If there are not enough 
ridges generated from the D-SPOG, we employ virtual ridges 
to ensure that there are smax ridges. Virtual ridges are genera
ted uniformly random in the searching region and also re-

freshed at every planning period. The introduction of virtual 
ridges can be simply viewed as a sampling approach to cover 
regions with low probabilities. The virtual ridge sets are syn-
chronized in the same way as D-SPOG.

Sparse sensor fields: The DPWRA in Algorithm 1 forces 
all robots to share a single TSP tour. This is efficient when 
radio sources are relatively dense (i.e., the distances be-
tween disconnected components in the level set are less 
than the communication range). However, sharing a TSP 
tour might not be efficient when the radio source are sparse-
ly distributed in the searching region, because robots have 
to waste considerable time on off-ridge movements running 
between radio sources.

Since the communication range is much larger than the 
sensing range, given that robots have more power and bet-
ter antenna than radio sources, the sensing processes in 
D-SPOG are independent across distant groups, which al-
lows us to partition D-SPOG spatially into disjoint distant 
groups. Each group is treated as a separated problem with 
no requirement to merge D-SPOG during the partition. 
We can regroup periodically should inter-group distances 
change. At the moment of regrouping, we can merge D-
SPOG across groups. Robot pairs will be proportionally dis-
patched to different groups according to the total P(Ci|Z 1:k) 
of each group. We may have to merge some close groups 
when there is an insufficient number of robot pairs. For each 
group, we apply Algorithm 1.

6 Experiments

To validate the algorithm, we have implemented the algorithm 
and a simulation platform. The hardware-driven simulation 
builds on real robot and radio source parameters measured 
in physical experiments (Figure 3 (a)). The radio sources are 
XBee Pro with ZigBeeT radio frequency modules produced 
by Digi International Inc. We use the RSS readings from XBee 
Pro to drive the simulation experiments (Figure 3 (b)). We 
simulate iRobot Create in the process, which has a maximum 
speed of 40 cm.s–1. The grid is a square with 50 × 50 cells. 
Each grid cell has a size of 50 × 50 cm2. Each radio source 
generates radio transmission signals according to an i.i.d. 
Poisson process with a rate of λ = 0.05 packets per second. The 

input : D-SPOG at tk–1
Apply the level set
Compute ridges and merge them with pre-generated 
virtual ridges O(smax)
Compute the TSP tour from the merged ridge set
// Inter Ring Movements
Compute Du,k and Dk

max

Move to initial positions
Wait wu

k

// Intra Ring Movements
while t≤tk + Dk

max + T do
        Patrolling along the TSP tour
        if ϕu,k = ϕ j,k 

                Update гu,k
        end
end

1
2

3

4
5
6

7
8
9

10
11
12
13

O(n)

O((smax–1)!)

O(1)
O(1)

O(Dk
max)

O(T)
O(1)

O(1)
O(1)

  u-1,k

j,k

j,k   u+1,k
j,kor   ϕu,k = ϕ j,k

 u,k
j,kϕ'u,k = –ϕ' j,k

then 

Algorithm 1: DPRWA
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7 Conclusions

We developed a decentralized algo-
rithm to coordinate a group of mobile 
robots to search for unknown and 
transient radio sources in an open field 
under mobility, communication range, 
and sensing constraints. We proposed a 
two-step approach: First we decentral-
ized belief functions that robots use to 
track source locations using checkpoint-
based synchronization, and second 
we proposed a decentralized planning 
strategy to coordinate robots to ensure 
the existence of checkpoints and coordi-
nated searching. We formally analyzed 
memory usage, data amount in com-
munication, and searching time for the 
proposed algorithm. We implemented 
the proposed algorithm and compared 
it with two heuristics in a simulation 
based on real sensory data.
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Figure 3. Hardware used to drive the simulation. 

Figure 4. Experiment results when comparing the DPRWA, the pairwise random walk, and the pairwise fixed-route patrol. (a) The maximum memory space 
usage using number of detection events stored on-board; searching time comparison while changing: (b) number of robots, or (c) number of radio sources. 

We compare the DPRWA algorithm to two heuristics including a pairwise 
random walk and a pairwise patrol. In both heuristics, robots are paired just as 
DPRWA does. In the former, each pair is treated as a super robot to perform a 
random walk together. In the latter, robot pairs follow a linear formation with an 
equal inter-pair distance to be the maximum communication distance. Since global 
connectivity is maintained, it becomes centralized planning.

Figure 4 illustrates the simulation results by using memory usage and searching 
time as metrics while changing communication range, number of robots, and num-
ber of radio sources. Each data point is an average of 20 independent trials. There 
are 6 radio sources to be searched in Figures 4(a) and 4(b). In Figures 4(a) and 4(c), 8 
robots are employed. The communication range is set to be 6 m in Figures 4(b) and 
4(c). Since the pairwise patrol maintains global connectivity, it requires the least 
amount of memory for synchronization purpose. The pairwise random walk is the 
opposite because the time between checkpoints for robots can be very long. Our 
DPWRA requires more memory than that of the patrol but still much less than that 
of the random walk (Figure 4(a)). When it comes to the searching time, DPRWA is 
significantly faster than its counterparts (Figures 4(b) and 4(c)). The advantage is 
even greater when the number of robots is limited, which happens when the search 
is constrained by resources. Figure 4(b) also compares DPRWA with the centralized 
PRWA (CPRWA) in Refs. [19, 20]. It is surprising that DPRWA EST is about the same 
as CPRWA despite the advantage that CPRWA has in coordination and synchroni-
zation. Figure 4(c) further confirms Theorem 3: the EST of DPRWA is insensitive to 
the number of radio sources.

radio sources also dynamically vary their transmission power using one of 5 power 
settings in XBee Pro, which results in a varying sensing range from 1.67 m to 3.45 m. 
We set τ = 500 s in the simulation. We choose the probability convergence threshold 
as pt = 0.9. During each trial, we randomly generate radio source locations in the  
grid.
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