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ABSTRACT For a domestic personal robot, personalized 
services are as important as predesigned tasks, because the 
robot needs to adjust the home state based on the operator’s 
habits. An operator’s habits are composed of cues, behaviors, 
and rewards. This article introduces behavioral footprints to 
describe the operator’s behaviors in a house, and applies  
the inverse reinforcement learning technique to extract the 
operator’s habits, represented by a reward function. We 
implemented the proposed approach with a mobile robot on 
indoor temperature adjustment, and compared this approach 
with a baseline method that recorded all the cues and 
behaviors of the operator. The result shows that the proposed 
approach allows the robot to reveal the operator’s habits 
accurately and adjust the environment state accordingly.

KEYWORDS personalized robot, habit learning, behavioral 
footprints

1 Introduction

Traditionally, a personal robot is designed to provide stan-
dard services in different scenarios. For example, by incor-
porating a door recognition and manipulation algorithm, the 
robot can open various kinds of doors in different houses 
in exactly the same way. This strategy, combined with com-
mands from the operator, allows the robot to complete each 
task consistently in different environments. This feature is 
desirable when the robot is used in fixed and repeating sce-
narios, but if the operator requires personalized services, this 
strategy is inadequate.

The requirement for personalization is particularly evident 
in a smart home, where the robot needs to both monitor and 
adjust the home state intelligently. For example, the robot 
may need to open a door to different extents, as some opera-
tors like it to be fully open, while others may prefer it to be 
half open. This kind of state adjustment, if designed in an off-
line way, requires a remarkable amount of manual work. To 
solve the problem, the robot must be personalized by having 

it learn the habits of the operator, in order to adjust itself ac-
cording to the habit of each operator.

To learn a habit, the robot needs to observe the environ-
ment and extract information related to the habit. A habit is 
determined by three factors: the cue, the behavior, and the 
reward [1]. After sufficient experiences with the three factors, 
the operator behaves involuntarily when seeing the cue, in-
stead of acting intentionally to collect the maximum reward. 
For a robot to understand the operator’s habit, it may collect 
all pairs of cues and behaviors from the observations to guide 
its future actions, or it may try to learn the rewards based 
on the observations in order to determine its future actions. 
The first solution is straightforward, because the robot can 
iterate its memory to find the best-matching behavior when it 
faces a cue, but it is inefficient in dealing with newly emerg-
ing cues; the second solution requires an additional learning 
process, but the learned reward can guide the robot’s action 
when new cues occur. In this work, the first solution is imple-
mented as the baseline method, and we focus on the second 
solution.

In this article, we propose a method to learn the habit of an 
operator based on observations, in the framework of inverse 
reinforcement learning. The behavior is described by the en-
vironment state changes due to the behaviors, namely the be-
havioral footprints. Meanwhile, the robot observes the cues 
based on the contacts between the operator and the objects, 
and learns the habits as a reward function based on the op-
erator’s behaviors in the house. After that, it uses the reward 
function to guide its future actions, in order to serve the 
operator autonomously. This method is implemented with a 
case study of autonomous indoor temperatures adjustment. 
Our contributions include the incorporation of behavioral 
footprints to represent the operator’s behaviors and a pro-
posal of robot personalization based on the operator’s habits.

2 Related work

Traditional research on personal robots focuses on designing 
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hardware and software to make each robot generally appli-
cable. For example, Meeussen et al. [2] develop a personal ro-
bot to open the door and charge itself. Rusu et al. [3] develop a 
perception system with visual sensors to guide the robot’s mo-
tion in different environments. Gorostiza et al. [4] use multiple 
sensors to develop a framework for human-robot interaction. 
Wyrobek et al. [5] develop a personal robot that is both safe 
and useful. In a domestic environment, Falcone et al. [6] de-
velop a personal rover that can serve both children and adults.

Many publications cover the putting of a personal robot in 
a house. For example, in Ref. [7], an electroencephalography 
signal is used to control a tele-presence robot and assist motor-
disabled people. In Ref. [8], a tele-presence robot is designed to 
help the elderly with interpersonal communications. In Ref. [9], 
a tele-medicine system is designed to monitor the health and 
activity of the elderly. To include robot actions during home 
monitoring, in Ref. [10] the service robots use sensor network-
ing and radio frequency identification to guide their actions.

With different types of sensors installed in a house, the en-
vironment state can be described using hierarchical states, and 
its changes can be described with a layered hidden Markov 
model [11], where multiple layers of hidden Markov model 
are stacked to describe the hierarchical state transition; and a 
hierarchical hidden Markov model [12], where each state of 
the higher layer incorporates a hidden Markov model in the 
lower layer.

To personalize the robot’s service, the robot needs to learn 
the operator’s habits from observation. To combine robot ac-
tions and environment state modeling, many methods have 
been proposed within the framework of reinforcement learn-
ing [13]. Besides, learning by demonstration technique [14] al-
lows a robot to imitate an operator and learn different behav-
iors. In our applications, the robot can observe the behavior 
of an operator; thus it adopts inverse reinforcement learning 
[15] to encode the operator’s habits.

In this work, we use inverse reinforcement learning to en-
able a robot to learn a reward function as the operator’s habit. 
During learning, the operator’s behaviors are represented with 
behavioral footprints, and after collecting a set of observations 
on these behaviors, the robot tries to learn the operator’s habits.

3 Methods

3.1 Behavioral footprints
A habit is determined by three parts: the cue, the behavior, 
and the reward. To learn the operator’s habit, the robot must 
observe the environment to obtain the cues, and observe the 
operator to get the behaviors; thus it can learn the reward 
function to describe the operator’s habits. For this purpose, 
the robot needs to represent the environment accurately, and 
in this work, we use the objects inside a room to describe the 
home state:

E = (C1, ..., Cn )

where E denotes the environment states and Ci (i = 1, ..., n) 
denotes the ith object in the environment. An illustration is 
shown in Figure 1.

To represent the operator’s behaviors, A, we adopt behav-
ioral footprints, defined as the changes of object states due to 

3.2 Cues and behaviors
With the behavioral footprints, the robot can observe the 
operator’s behaviors, along with the cues that trigger the 
behaviors.

The behaviors are represented by changes in object states 
due to the operator’s contact. However, some of the behav-
iors are random, and do not follow the operator’s habits, and 
these need to be excluded. To evaluate the regularity of the 
operator’s behaviors, we use the following measurements:

r = r(A)

where r measures the standard deviation of the cues leading 
to behavior A. With the measured regularity level and a 

Figure 1. An environment state is composed of multiple chains of object 
states, and these object states may be asynchronous and uncorrelated.

Figure 2. The home state can be represented as a point in the state space, 
and it evolves naturally, as shown by the thin green trajectory. However, 
the operator may manually change it into some desired states, represented 
by the thick blue points, and these actions lead to the home state change, 
represented by the thick red trajectory.

the operator’s actions, because this representation can describe 
different types of behaviors more meaningfully, and exclude 
those behaviors that do not change the environment states:

A = (Ei, Ej)

where Ei and Ej denote the transition of home states due to 
the operator’s behaviors. An illustration is shown in Figure 2.
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threshold value selected based on experiments, the robot 
only keeps the samples with regular behaviors.

Another important factor of a habit is the cue, defined as 
the environment state when the behaviors occur. The cue is 
identified by collecting data samples right before the opera-
tor’s emergence.

S = [D1(St1, ..., Stj), ...,Dm(Stk, ..., Stn )]

where Di, i = 1, ..., m denotes the moment when the operator 
appears, and each (Stk, ..., Stn ) denotes a set of home states fol-
lowing the operator’s emergence.

Two types of cues exist: agreeable ones, where the opera-
tor does not change the environment states, and disagreeable 
ones, where the operator manually changes certain object 
states. Based on the observations, the samples are assigned 
with binary indicators of agreeability:

R = [R1, ..., Rn]

3.3 Rewards
Using the samples of the operator’s regular behaviors and 
the binary indicators of the environment’s agreeability, the 
robot infers the operator’s habits. This problem is formulated 
as inverse reinforcement learning, where the robot learns a 
reward function by observing the operator’s actions [16]:

          max

s.t.|αi|≤1, i = 1,..., d

min {p(Es'∈Psα1
[V π(s' )] – Es'∈Psα

[Vπ(s' )])}
s∈S

α∈{A}
∑

                                       

max

s.t.|αi|≤1, i = 1,..., d

min {p(Es'∈Psα1
[V π(s' )] – Es'∈Psα

[Vπ(s' )])}
s∈S

α∈{A}
∑

�
(1)

where α denotes the parameter of the reward function, and

                              
t=0

∞

∑Vπ(s0) = Eπ( γtR(st )) � (2)

denotes the expected discounted reward under a policy. An 
illustration is shown in Figure 3.

of the environment states:

Rt  =  ϕ(St)

The learning of the reward function is based on the formu-
lation in Ref. [15], where the reward function is a linear com-
bination of a set of predesigned basis functions:

                                    Rt  =  ω1ϕ1(St) + ... + ωnϕP(St)�  (4)

and ϕi is a basis function.
In a personalized environment, the reward function must 

encode potential changes of environment states due to the 
appearances and disappearances of the objects inside the en-
vironment. With behavioral footprints, this problem is solved 
by clustering the state space dimensions into multiple ab-
stracted dimensions, with the correlations between different 
dimensions as the distances:

(cst1, ..., cstn)  =  partition (S, RLT)

The clustering not only excludes redundant information 
due to object state correlations, but also reveals invisible state 
transitions. In addition, it avoids having the basis functions 
redesign when the objects’ number changes, because only 
an object uncorrelated with all existing dimensions requires 
redesigned basis functions. Besides, this clustering allows 
the robot to use one action to change the states of all related  
objects.

Based on the dimension clustering, each basis function re-
cords one combination of cluster states:

Fi  =  ϕi(cst1, ..., cstn)

Substituting the basis function into Eq. (4), the reward 
function is:

                                          R(St)  =  ω . ϕ(St) � (5)

where ω  =  [ω1, ... , ωn] and  ϕ  =  [ϕ1, ... , ϕp].
Substituting Eq. (5) into Eq. (2):

Vπ(S0) = ω . Eπ(     γ
tϕ(St ))

t=0

∞

∑

With Eq. (2), Eq. (3) is simplified as:

s.t.|ωi| ≤ 1, i = 1,..., d

max min ω .(μ1 – μ2)
s.t.|ωi| ≤ 1, i = 1,..., d

max min ω .(μ1 – μ2)

where μi  =  Eπi
[∑∞

t = 0 γ
tϕ(St)], describing the expected reward 

under the ith action policy.
Inspired by the work in Ref. [15], we transform this maxi-

mization into an optimization similar to the Support Vector 
Machine (SVM):

s.t.ω . μ1≥ ω . μ2 + t,

||ω||2 ≤ 1

max t
t, ω

This optimization is solved with an existing SVM imple-
mentation [18].

3.4 Robot actions
Using the learned reward function to indicate the operator’s 

Figure 3. Inverse reinforcement learning intends to reveal the reward 
function based on the optimal action policy.

This optimization maximizes the differences between the 
operator’s actions and other actions, allowing the robot to 
learn the operator’s habits.

With only binary indicators of the environment states’ 
agreeability, the maximization in Eq. (1) is simplified as:

                   
s.t.|αi|≤1, i = 1,..., d

max min {Es'∈Psα1
[Vπ(s' )] – Es'=Psα2

[V π(s' )])}

                                      s.t.|αi|≤1, i = 1,..., d

max min {Es'∈Psα1
[Vπ(s' )] – Es'=Psα2

[V π(s' )])}

�
(3)

where α1 denotes the actions agreeable with the operator’s 
habits, and α2 denotes the actions disagreeable with the op-
erator’s habits. The agreeability is measured with the binary 
indicators.

With Eq. (3), the robot learns a reward function, a function 
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habits, the robot can guide its actions as a normal reinforce-
ment learning problem.

4 Experiments and results

4.1 Setup
We use Turtlebot as the personalized robot to observe the 
behaviors of people in an environment composed of four 
outdoor states and four indoor states. The four outdoor 
states include outside temperature, humidity, wind, and 
rain; and the four indoor states include a thermometer, a 
door, air conditioner switches, and the state of the operator. 
To observe the indoor objects accurately, a map is built with 
a Gmapping package [17] in the robot operating system. 
After collecting the states for about seven days, the robot 
tries to learn the habit and use the habit to guide future  
actions.

Our robot is not equipped with a robot hand to physically 
change the object states, so the robot actions are simulated.

4.2 Experiments
4.2.1 Habit observation
Four weather conditions are observed, including the tem-
perature, humidity, rain, and wind, which are extracted from 

a weather website (www.weather.com). These environment 
states are collected for seven days for the city of Hong Kong, 
as shown in Figure 4.

Four indoor objects are observed, including a thermom-
eter, a door, the air conditioner switch, and the status of the 
operator in a house. The states of these objects are measured 
by the robot based on their visual appearances, as shown in 
Figure 5.

4.2.2 Habit learning
Based on the observations, the robot collects the operator’s 
behaviors and the cues leading to the behaviors. The cues 
are collected as the environment states when the operator 
has contact with the objects. For example, when the operator 
enters the room and turns on the air conditioner, the cur-
rent environment states are collected as the cue that leads to 
changes to the air conditioner switches.

The behaviors are collected as the changes of environment 
states due to the operator’s actions, such as the switching of 
the air conditioner, the opening of the door, and so on.

After collecting cues and behaviors for seven days, the ro-
bot uses them to learn the operator’s habit and to update the 
result based on new observations. This habit is represented 
with the reward function.

Figure 4. The weather condition has four components, including temperature, wind, humidity, and rain. The figures show the samples collected from 25 
July to 31 July at an interval of 30 min. (a) The temperature outside, 1 sample every 30 min; (b) the humidity outside, 1 sample every 30 min; (c) the rain outside,  
1 sample every 30 min; (d) the wind outside, 1 sample every 30 min.
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4.2.3 Robot actions
With the learned reward function, the robot searches for the 
optimal actions to adjust the environment. In this work, the 
generated actions are applied manually to evaluate their ef-
fects.

4.3 Results
After collecting observations and learning the operator’s 
habits for one week, the robot extracts a set of reward func-
tions, corresponding to increasing samples. To evaluate these 
learned reward functions, two indexes are adopted, includ-
ing the accuracy of reward function rA, computed by compar-
ing the robot’s evaluation of the home states on agreeability 
and the true values provided by the operator, and the accu-
racy of robot action rD, indicated by the ratio of disagreement 
on actions between the robot and the operator.

 Two sets of experiments are conducted, corresponding to 
different numbers of objects in the environment, as shown in 
Figures 6 and 7. In each set of experiments, both the baseline 
method and the proposed method are implemented, with 
evaluation based on rA and rD. The results are shown in Fig-
ures 6 and 7.

The results show that the two methods have similar accu-
racy in evaluating home states, but the proposed method is 
much more accurate in guiding the robot’s actions. The rea-
son is that in a new state, a robot using the baseline method 
has to search in the records. However, if the action-cue pair is 
not in the record, the baseline method will not be able to find 
a correct strategy. By learning the reward function, the pro-
posed method can generate different actions according to the 
environment states.

5 Conclusions
In this article, we propose a method to enable a robot to 
learn the habit of an operator based on observations, in the 
framework of inverse reinforcement learning. The behavior 
is described by the environment state changes due to the be-

Figure 5. The four indoor object states are detected visually. The robot 
collects these object states periodically to monitor the home states.

Figure 6. The robot observes the weather conditions, the air conditioner 
switch, and the door, and learns the operator's habits, in order to act on 
the switches and the door to adjust the environment states. "IR" denotes 
inverse reinforcement learning, rA denotes the accuracy of reward functions, 
and rD denotes the accuracy of robot actions.

haviors, namely the behavioral footprints. The robot learns 
the cue based on the contact between the operator and the 
objects, and learns the habits as a reward function based on 
the operator’s behaviors in the house. After that, it uses the 
reward function to guide its future actions, in order to serve 
the operator autonomously. This work concentrates on the 
robot learning how to adjust indoor temperatures, and com-
pares the proposed method with a baseline method on home 
state evaluation and robot action selection. The results show 
that the proposed method is more accurate in guiding the ro-
bot’s actions in complicated scenarios.

In future work, the proposed method can be improved in 
multiple aspects. First, the basis function can be designed 
more flexibly, in order  to analytically describe the change 

Figure 7. The robot observes the weather conditions, the air conditioner 
switches, the door, and the thermometer, and learns the operator's habits, 
in order to act on the switches and the door to adjust the environment 
states.



084 Engineering  Volume 1 · Issue 1 · March 2015  www.engineering.org.cn

Robotics—ArticleResearch

of environment states. The learning method can also be im-
proved to cover different types of habits, in addition to the 
one represented by a set of basis functions.
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