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The time-varying network topology can significantly affect the stability of multi-agent systems. This
paper examines the stability of leader–follower multi-agent systems with general linear dynamics and
switching network topologies, which have applications in the platooning of connected vehicles. The
switching interaction topology is modeled as a class of directed graphs in order to describe the informa-
tion exchange between multi-agent systems, where the eigenvalues of every associated matrix are
required to be positive real. The Hurwitz criterion and the Riccati inequality are used to design a dis-
tributed control law and estimate the convergence speed of the closed-loop system. A sufficient condition
is provided for the stability of multi-agent systems under switching topologies. A common Lyapunov
function is formulated to prove closed-loop stability for the directed network with switching topologies.
The result is applied to a typical cyber–physical system—that is, a connected vehicle platoon—which
illustrates the effectiveness of the proposed method.
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Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In recent years, the coordination control of multi-agent-based
cyber–physical systems has attracted considerable research atten-
tion due to theoretical breakthrough and wide-ranging engineering
applications. Research topics in coordination control include con-
sensus control [1], rendezvous control [2], flocking control, and for-
mation control [3]. In addition, coordination control has a broad
range of applications due to its efficiency and reliability, such as
vehicle platooning, the formation of multiple unmanned aerial
vehicles (UAVs), collaborative assembly systems [4], and sensor
networks [5,6].

One central topic is the design of a distributed control law to
stabilize a multi-agent system or reach a certain consensus, where
each agent only uses local information from its neighbors for feed-
back [7]. Graph Laplacians play an important role in describing the
interaction topologies and analyzing the stability of multi-agent
systems [8,9]. The theoretical framework for proving the stability
with graph Laplacians was introduced in the seminal work by
Olfati-Saber et al. [10,11], where each agent of the multi-agent sys-
tem is a single integrator. By extending this framework into
double-integrator dynamics, Ren and colleagues [12,13] presented
sufficient and necessary conditions for the stability of multi-agent
systems from a graph-theoretic perspective, where the transforma-
tion of the Jordan normal form was applied to analyze the closed-
loop matrices. For high-order dynamics, Ni and Cheng [14]
designed a stability algorithm based on the Riccati and Lyapunov
inequality. Zheng et al. [15] proved the stability under intercon-
nected topologies whose matrix has positive real eigenvalues using
matrix decomposition and the Hurwitz criterion. Hong et al. [16]
proposed a rigorous proof for the stability with an extension of
LaSalle’s invariance principle. Beyond the abovementioned control
law, Zheng et al. [17] also designed a distributed model predictive
controller for multi-agent nonlinear systems and formulated a Lya-
punov function to prove the asymptotic stability of a connected
vehicle platoon. Wu et al. [18] presented a distributed sliding mode
controller for multi-agent systems with positive definite topologies
and exploited the asymptotic stability in the Lyapunov sense.
Barooah et al. [19] introduced a mistuning-based control
method to improve the stability margin of vehicular platoons.
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Fig. 1. A depiction of the relationship between the discussed topologies. Positive
real eigenvalues topology has the property of all the eigenvalues of matrix L þ Pð Þ
being positive real. The followers in the forward–back topology can receive
information from the same number of agents both forward and backward. It is clear
that the forward–back type of topology is both a balanced graph and a positive real
eigenvalues topology.
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Ploeg et al. [20] developed an H-infinity control law to achieve the
string stability of multi-agent systems.

The variation of interaction topologies is quite common due to
link failures/creations in networks or obstruction between inter-
actional agents. The stability of multi-agent systems under
switching topologies has also attracted considerable research
attention. For example, Tanner et al. [21] proposed a control
law in combination with the attractive and alignment forces,
which could stabilize the flocking system under dynamic topol-
ogy. Olfati-Saber et al. [10] introduced a common Lyapunov func-
tion that could ensure the stability of single-integrator linear
systems based on matrix theory and algebraic graph theory. Ren
[12] considered a multi-agent system with double-integrator
dynamics and showed that a set of connected, undirected, or
directed topologies could stabilize the switching system by prov-
ing that the Lyapunov function is locally Lipschitz continuous. Ni
and Cheng [14] expanded this study into a high-order integrator
dynamic system and discussed the problem under the jointly con-
nected undirected graph using Cauchy’s convergence criteria.
Theoretically, the stability analysis of directed graphs is more
challenging than the case of an undirected graph [10]. The meth-
ods for undirected topologies cannot naturally be applied to prob-
lems with directed topologies due to the lack of a positive definite
property in directed topologies. In addition, it is more challenging
to find a common Lyapunov function for switching directed
topologies. Some pioneering studies have focused on the stability
analysis of multi-agent systems with special switching directed
topologies. For example, Qin et al. [22] analyzed a Lyapunov func-
tion of switching directed topologies systems and proved that
system stability can be achieved under balanced directed graphs.
Dong et al. [23] explored an explicit expression of the time-
varying formation reference function and showed that the stabili-
ty can be maintained if the dwell time is greater than a positive
threshold.

This paper examines the stability and exponential convergence
speed of general linear dynamic multi-agent systems under a class
of directed switching topologies. A sufficient condition is presented
by combining the transformation of the Jordan normal form and
the common Lyapunov function. The unique contributions of this
paper are two-fold. First, for the single- and double-integrator
dynamics in Refs. [10,12], the Laplacian matrices of high-order
dynamic systems are coupled with the number of agents, which
causes the analysis methods used for single- and double-
integrator systems to be non-applicable for general linear dyna-
mics. In comparison, this paper considers the stability of a class
of directed topologies whose eigenvalues are positive real num-
bers, and our result is applicable for multi-agent systems with
general linear dynamic subsystems. Second, in comparison with
the undirected topologies in Ref. [14], the positive definite
property is more difficult to analyze because of the asymmetry in
directed cases. The result in Ref. [22] cannot be applied to the direc-
ted topologies with positive real eigenvalues in this paper because
the matrix L þ LT=2

� �
is not always positive definite, in contrast to

the balanced directed topologies discussed in Ref. [22]. The method
proposed in this paper is suitable for topologies with positive real
eigenvalues. The relationship between the topologies in this paper
and balanced directed topologies is illustrated in Fig. 1.

The rest of this paper is organized as follows: Section 2 intro-
duces the algebraic graph theory. In Section 3, a class of positive
real eigenvalues topologies is introduced and a linear controller
designed with a common Lyapunov function and Riccati inequality
is proposed. In Section 4, the stability and convergence speed of the
closed-loop systems under switching topologies are proved. Sec-
tion 5 illustrates the method through numerical simulation, and
Section 6 concludes this paper.
2. Preliminaries and problem statement

This paper considers a multi-agent system that consists of one
leader and N followers. The dynamics of each agent are homoge-
neous and linear. It is assumed that all the eigenvalues of the
matrices L þ Pð Þ describing the interaction topologies are positive
and real numbers.

2.1. Communication graph topology

The information flow among agents is described by a directed
graph topology G V; Eð Þ with a set of N nodes V ¼ a1; a2; :::; aNf g,
and a set of edges E � V � Vð Þ. The node ai denotes the ith agent,
and each edge indicates a directed information flow between two
agents.

The adjacency matrix is defined as E ¼ eij
� � 2 RN�N . with eij > 1

if aj; ai
� � 2 E; otherwise, eij ¼ 0, where R denotes real number

domain. aj; ai
� � 2 E means that agent j can obtain information

from agent i. Self-edges ai; aið Þ is not allowed, which means that
eii ¼ 0. Denote a neighbor set of node ai as Ni ¼ aj : aj; ai

� � 2 E� �
.

Define the Laplacian matrix L ¼ lij
� � 2 RN�N as lii ¼

PN
j¼1;j–i

eij,

lij ¼ �eij, i–j.
To represent the information flow between the leader and fol-

lowers, a pinning matrix P is defined as P ¼ diag p1; p2; :::; pNf g,
where pi ¼ 1 if the agent can obtain the information from the lea-
der; otherwise, pi ¼ 0. Based on the pinning matrix P, a leader-
reachable set could be defined as Pi ¼ 0f g if pi ¼ 1; otherwise,
Pi ¼ £. Then, an information-reachable set is defined as
Ii ¼ Ni [ Pi to represent the nodes from which agent i can obtain
information.

A directed path from ai to aj is a sequence of edges in a directed
graph of the form ai; ai1

� �
; . . . ; aiE ; aj

� �
, where every edge

ap; aq
� � 2 E. A directed spanning tree is a directed graph, each node
of which has exactly one parent except the root. A directed span-
ning tree Vs; Esð Þ of the graph V; Eð Þ is a subgraph of V; Eð Þ such that
Vs; Esð Þ is a directed tree and Vs ¼ V.

2.2. Agent dynamics

The dynamics of each agent is:
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_xi tð Þ ¼ Axi tð Þ þ Bui tð Þ ð1Þ
where xi tð Þ 2 Rn denotes the state vector, ui tð Þ 2 Rm is the control
input, n and m are the dimension of state and control variable
respectively, A 2 Rn�n and B 2 Rn�m are the system matrix and input
matrix, respectively. The system is assumed to be stable by choos-
ing an appropriate value of the pair A; Bð Þ.

The leader has the following linear dynamic:

_x0 tð Þ ¼ Ax0 tð Þ ð2Þ
where x0 2 Rn is the state of the leader.

2.3. Stability of multi-agent systems

The objective of multi-agent consensus control is to make the
state of each following agent consistent with that of the leader.
For every agent i 2 1; . . . ; Nf g, a distributed controller ui tð Þ is
required to realize

lim
t!1

xi tð Þ � x0 tð Þj j ¼ 0; i ¼ 1; :::; N ð3Þ

For the simplicity of the subsequent stability analysis, a new
tracking error is defined as follows:

x
�
i tð Þ ¼ xi tð Þ � x0 tð Þ ð4Þ
The state space function of the tracking error is

_
x
�
i tð Þ ¼ Ax

�
i tð Þ þ Bui tð Þ ð5Þ
3. Design of the controller

The interconnected topology of a multi-agent system varies
with time due to some communication breakdown or obstacle
between agents. In a switching topology problem, the
information-reachable set of every agent varies with time. The
notation L þ Pð Þr is used to describe the time-dependence of infor-
mation flow, in which r : 0; 1½ Þ ! R is a switching signal at time t,
and R is the index set of a group of graphs containing all the
topologies. Consider an infinite sequence of nonempty time inter-
vals tk; tkþ1½ Þ; k ¼ 0; 1; . . .with t0 ¼ 0; tkþ1 � tk � Tc for some con-
stant Tc. It is assumed that r is constant in each interval and the
graph can be denoted as Gr. In order to ensure stability under vary-
ing topologies, an appropriate controller and the graph set GRf g are
designed in this section.

3.1. Linear control law

For each agent, the controller is distributed and can only use the
information from its information-reachable set Ii. The following
control law is used [24]:

ui ¼ �K
X
j2Ii

xi � xj
� �

; i ¼ 1; :::; N ð6Þ

where K 2 Rm�n is a linear feedback gain. Substituting Eq. (6) to Eq.
(5), the closed-loop dynamics of agent i can be obtained as follows:

_
x
�
i tð Þ ¼ Ax

�
i tð Þ � BK

X
j2Ii

x
�
i tð Þ � x

�
j tð Þ

� 	" #
ð7Þ

To describe the dynamic of the multi-agent system, the collec-
tive states of the system are defined as follows:

X ¼ x
�
1; x

�
2; :::; x

�
N

h iT
ð8Þ

Recall the definition of Laplacian matrix L and pinning matrix
P; the closed-loop dynamics of the leader–follower multi-agent
system are
_X tð Þ ¼ IN � A� Lþ Pð Þ � BKf gX tð Þ ð9Þ
where IN is the identity matrix and symbol � is the Kronecker prod-
uct. The overall closed-loop system matrix is defined as follows:

Ac ¼ IN � A� Lþ Pð Þ � BK ð10Þ
For a linear system, the stability is associated with the

eigenvalues of the closed-loop system matrix. From Eq. (10), it
can be seen that the eigenvalues of Ac depend on L þ Pð Þ. In other
words, the interconnected topology influences the stability of the
multi-agent system. In the following subsections, we will discuss
a class of topologies that ensures that the eigenvalues of L þ Pð Þ
are positive real numbers.

3.2. Interconnected topologies with positive real eigenvalues

The method proposed in this paper is suitable for a topology
with positive real eigenvalues that lacks an exact uniform mathe-
matic description. Therefore, a specific type of topology with a
positive real property is particularly focused on in this paper.

Lemma 1 [15]: Let ki; i ¼ 1; 2; :::; N, be the eigenvalues of
L þ Pð Þ, then all the eigenvalues are positive real numbers; that
is, ki > 0; i ¼ 1; 2; :::; N, if there exists a directed spanning tree
whose root is the leader and one of the following conditions holds:

(1) The interconnected topology of the following agents is the
forward type; that is, Ni ¼ i� hu; :::; i� hlf g \ 1; :::; Nf g, where
hu and hl are the upper and lower bound of forward communica-
tion range respectively.

(2) The interconnected topology of the following agents
is the forward–backward type; that is, Ni ¼ i� h; :::; iþ hf g\
1; :::; Nf g= if g, where h is the communication range.
(3) The communication topology of the following agents is the

undirected type; that is, j 2 Ni () i 2 Nj.
Remark 1: For single-integrator or double-integrator dynamics,

it is proved that switching directed topologies with a directed
spanning tree is sufficient to stabilize the system; for example,
see Refs. [10,12].

Remark 2: In Ref. [14], stability under the switching of jointly
connected undirected topologies is discussed. Our paper consid-
ered directed topologies; disconnected conditions are not consid-
ered, and will be studied in further work.

Remark 3: The positive real eigenvalues and the positive defi-
niteness of the matrix L þ Pð Þ or matrices correlated with L are
important in analyzing the stability of multi-agent systems. In
Ref. [22], balanced directed topologies are considered, whose
Laplacian matrix has the property that L þ LT� �

=2 is a positive def-
inite matrix. A balanced and strongly connected graph can ensure
that the spectral radius of L þ Pð Þ is greater than zero [13], while
the positive realness of the eigenvalues is not usually matched.

3.3. Design of the coefficient matrix

Since the pair A; Bð Þ is stabilizable, there exists a solution P > 0
for the following Riccati inequality:

Aþ dIð ÞTP þ P Aþ dIð Þ � PBBTP < 0 ð11Þ
where d is a positive number, which can be designed to influence
the convergence of the system [25], and I is the identity matrix.
The feedback matrix K can be constructed as follows:

K ¼ aBTP ð12Þ
where a is the scaling factor that satisfies the following:

a > max
1

min k He Jrð Þð Þf g

 �

ð13Þ
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where He Jrð Þ ¼ Jr þ JTr; Jr is the Jordan canonical form of L þ Pð Þr,
that is, W�1

r L þ Pð ÞrWr ¼ Jr; where Wr is an invertible matrix
and min k He Jrð Þð Þf g denotes the minimum eigenvalue of He Jrð Þ
under all switching topologies. If the topology satisfies Lemma 1,
it will be presented that He Jrð Þ is a positive definite matrix. Before
the theorem, the following lemmas will be introduced.

Lemma 2 [12]: Consider a matrix A ¼ aij
� � 2 Rn�n. Then, all the

eigenvalues of A are located within the union of n discsSn
i¼1

z 2 C : z� aiij j � Pn
j¼1;j–i

aij

�� ��( )
� G Að Þ, where C denotes the com-

plex number set and z is a complex number.
Lemma 2: is the well-known Gershgorin Disk Criterion.
Lemma 3 [26]: Consider a matrix Q ¼ qij

� � 2 Rn�n and a set

S ¼ i 2 1;2; . . . ;nf gj qiij j > Pn
j¼1;j–i

qij

�� ��( )
–£. If there exists a nonzero

sequence qii1
; qi1 i2

; . . . ; qir j

n o
for 8i R S, and j 2 S, then Q is

nonsingular.
Theorem 1: For the topology described in Lemma 1, L þ Pð Þ is

transformed to a Jordan diagonal canonical form J. Then He Jð Þ is a
positive definite matrix.

Proof: For the topology defined as (2) and (3) in Lemma 1,
matrix L þ Pð Þ is real symmetric. It is obvious that He Jð Þ is positive
definite, since J is a diagonal matrix. For the topology defined as (1)
in Lemma 1, the eigenvalues of L þ Pð Þ are larger than or equal to
1. J can be written as follows:

J ¼

Jn1
�k1
� �

Jn2
�k2
� �

. .
.

Jnr
�kr
� �

0BBBBBBB@

1CCCCCCCA ð14Þ

where �ki is the eigenvalue of Lþ Pð Þ, and Jn1
�k1
� �

; Jn2
�k2
� �

; :::; Jnr
�kr
� �

is the Jordan block of size n1; n2; :::; nr . Then we have

He Jð Þ ¼

He Jn1
�k1
� �� 	

He Jn2
�k2
� �� 	

. .
.

He Jnr
�knr
� �� �

0BBBBBBBBB@

1CCCCCCCCCA
ð15Þ

For each block of He Jð Þ, it has the following form:

He Jni
�kni
� �� 	

¼

2�kni 1

1 2�kni 1

1 . .
.

1

1 2�kni

0BBBBBBB@

1CCCCCCCA
ð16Þ

According to the Gershgorin Disk Criterion, all the eigenvalues

of He Jð Þ are not less than zero, since �kni � 1 and aii �
Pn

j¼1;j–i
aij
�� ��,

where He Jð Þ ¼ aij
� � 2 Rn�n. According to Lemma 2, it can be deter-

mined that He Jni
�kni
� �� 	

is nonsingular since a11 � Pn
j¼2

a1j

�� �� and

He Jni
�kni
� �� 	

is a triple diagonal matrix. Given that He Jð Þ is a

quasi-diagonal matrix, He Jð Þ is also nonsingular. Then, all the
eigenvalues of He Jð Þ are greater than zero. If He Jð Þ is symmetric,
the result that He Jð Þ is a positive definite matrix can be proved.
Table 1 presents the minimum eigenvalue of He Jð Þ for some typical
topologies holding the conditions in Lemma 1. These topologies
are described in Ref. [15], including: predecessor following (PF)
topology, predecessor-leader following (PLF) topology, two prede-
cessors following (TPF) topology, two predecessor-leader following
(TPLF) topology, bidirectional (BD) topology, and bidirectional-
leader (BDL) topology.

Remark 4: Theorem 1 shows that the minimum eigenvalue of
He Jð Þ can influence the stability margin of the multi-agent system.
It can be seen from Table 1 that the stability margin of the PF and
BD topologies will get worse as the size N of followers increases,
while the stability margin of the PLF, TPF, TPLF, and BDL topologies
is independent of size N. The information from the leader is impor-
tant for the stability margin of the system, and a suitable selection
of topology, such as PLF and BDL, can improve the stability margin
of the system. The result of the undirected topologies BD and BDL
is the same as shown in Ref. [27]. A strict theoretical analysis will
be conducted in future.
4. Stability under switching topologies

It is obvious that for a finite switching system, stability can be
realized if the final topology can stabilize the system with the con-
trol law proposed in Section 3. Under infinite switching conditions
and under a class of topologies, the system will be stabilized with
the control law shown in Eq. (6). The speed of convergence can also
be ensured.

Lemma 4 [28]: Given a family f r, r 2 R of functions from Rn to
Rn, where R is some index set. This can represent a family of sys-
tems _x ¼ f r xð Þ, r 2 R. If all systems in the family share a common
Lyapunov function, then the switching system _x ¼ f r xð Þ is globally
uniform asymptotically stable.

This theorem will be used to prove our main theoretical
result. Before the proof, some lemmas in matrix theory will be
introduced.

Lemma 5: Consider a positive definite real matrix M, and a
positive real number n < min k Mð Þf g, where k Mð Þ denotes the
eigenvalues of M. The matrix M � nI is still positive definite.

Proof: If ki is an eigenvalue of M, there exists an eigenvector xi
satisfying Mxi ¼ kixi. Then, we have M � nIð Þxi ¼ ki � nð Þxi. Since
0 < n < min k Mð Þf g, all the eigenvalues of M � nIð Þ are positive. It
is obvious that M � nIð Þ remains symmetric. Therefore, M � nI is a
positive definite matrix.

Lemma 6 [16]: Considering a stable linear constant system
_z ¼ Hz, design its Lyapunov equation as HTT þ TH þ mT ¼ 0, where
z is the state vector, H is the state matrix, m is a positive real
number and T is a positive defined solution of this equation. The
Lyapunov function of this system is V xð Þ ¼ zTTz, and the conver-
gence speed of the system, V xð Þ, can be estimated by m; that is,
V xð Þ < V x0ð Þe�m=2 t�t0ð Þ, where t is the time of the system, x0 and t0
is the initial state and time of the system, respectively.

The main result of this paper is stated as follows.
Theorem 2: Consider a class of switching interconnected

topologies Gr : r 2 Rf g, in which all the eigenvalues of (L þ PÞ
for every topology are positive real. For any Gr, design the
control parameters as shown in Eq. (12) and Inequality (13). Then,
the switching system is globally uniform asymptotical stable
with a common Lyapunov function V Xð Þ ¼ 1

2X
TnI � PX. The

convergence speed satisfies V Xð Þ < V X0ð Þe�2d t�t0ð Þ, where

X ¼ x
�
1; x

�
2; . . . ; x

�
N

h iT
2 RnN�1, N is the number of followers, n is

the dimension of each agent, d is the response coefficient, and

n < min k WT
rWr

� 	
; 1

n o
.



Fig. 2. Switching topologies G
�
1, G

�
2, and G

�
3 are all positive real eigenvalue

topologies. G
�
1 and G

�
2 are the forward type and G

�
3 is the forward-back type. In

the simulations, the topology switches among these three topologies.

Table 1
min k He Jð Þð Þf g of topologies.

Number of follower PF PLF TPF TPLF BD BDL

5 0.2679 2 2 2 0.1620 2
6 0.1981 2 2 2 0.1162 2
7 0.1522 2 2 2 0.0874 2
8 0.1206 2 2 2 0.0681 2
9 0.0979 2 2 2 0.0546 2
10 0.0810 2 2 2 0.0447 2
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Proof: Following the control law in Eq. (12) and Inequality (13),
the following inequality can be obtained:

ATP þ PA� PBBTP < �2dP ð17Þ
The closed-loop dynamics of the multi-agent system are

Acr ¼ IN � A� Lþ Pð Þr � BK ð18Þ
For a positive real topology, L þ Pð Þr is transformed to a Jordan

diagonal canonical form. The closed-loop dynamic matrix can also
be transformed to a diagonal block matrix:

A
�
cr ¼ Wr � INð Þ�1Acr Wr � INð Þ

¼ Wr � INð Þ�1 IN � A� Lþ Pð Þr � BK
� �

Wr � INð Þ
¼ IN � A� Jr � BK

ð19Þ

Substituting Inequality (13) into Eq. (19), we have

A
�
cr ¼ IN � A� Jr � aBBTP ð20Þ
The matrix

A
�T

cr IN � Pð Þ þ IN � Pð ÞA
�
cr

¼ IN � ATP þ PA
� 	

�He Jrð Þ � aPBBTP
� 	 ð21Þ

is still symmetric. He Jrð Þ is a positive definite matrix, according to
Theorem 1.

According to the Lemma 5, the inequality can be derived as
follows:

A
�T

cr IN � Pð Þ þ IN � Pð ÞA
�
cr

¼ IN � ATP þ PA
� 	

�He Jrð Þ � aPBBTP
� 	

< IN � ATP þ PA� PBBTP
� 	

< IN � �2dPð Þ

ð22Þ

Thus,

A
�T

cr I � Pð Þ þ I � Pð ÞA
�
cr � IN � �2dPð Þ < 0 ð23Þ

Multiplying Wr � INð ÞT and Wr � INð Þ on the left and right parts
of the left side of the inequality, respectively, yields a new
inequality:

AT
cr WT

rWr

� 	
� P þ WT

rWr

� 	
� PAcr < �2dAT

cr WT
rWr

� 	
� P ð24Þ

The following inequality can be derived according to Lemma 5:

AT
cnI�PþnI�PAc <AT

cnI�PþnI�PAcþ2dAT
crnI�P <0 ð25Þ

V Xð Þ ¼ 1
2X

TnI � PrmaxX is the common Lyapunov function of the
system with a positive real topologies family. Inequality (25)
ensures the stability of the switching systems. According to
Lemma 6, the rapidness of the system can be estimated by d; that
is, V Xð Þ < V X0ð Þe�2d t�t0ð Þ.

Remark 5: Compared with Ref. [22], the topologies discussed in
Theorem 2 do not need to be a balanced graph, which expends the
family of directed topology under the switching condition. A typi-

cal forward topology such as PF is not a balanced graph (e.g., G
�
1, G

�
2

in Fig. 2). Furthermore, the dwell time has no effect on the stability
of the controller in Theorem 2, in contrast to the result in Ref. [23].

Remark 6: In practice, the switching topologies may be
unknown, which makes the selection of a nontrivial. A larger a is
helpful to stabilize the switching system in this situation. In fact,
Inequality (13) is only a sufficient condition for the system stabi-
lity, which ensures the stability in theory. In our simulation, an a
inconsistent with this inequality can also stabilize the system.
5. Simulation results

The vehicle platoon is a typical multi-agent system, which has
attracted increasing attention because of its benefit in traffic
[24]. The (L þ PÞ matrices of typical topologies that describe the
information flow among the vehicles in a platoon have positive real
eigenvalues [15]. We conducted simulations of a homogeneous
platoon with six identical vehicles (one leader and five followers)
in order to validate the effectiveness. For platoon control, a third-
order state space model is derived for each vehicle [17]:

_xi tð Þ ¼ Aixi tð Þ þ Biui tð Þ

xi tð Þ ¼
pi

v i

ai

0B@
1CA; Ai ¼

0 1 0
0 0 1
0 0 �1=si

0B@
1CA; Bi ¼

0
0

1=si

0B@
1CA ð26Þ

where pi; v i; ai denote the position, velocity, and acceleration of
each vehicle; and si is the inertial delay of the vehicle longitudinal
dynamics, which is set as 0.4 s in the simulations. The information



Table 2
Eigenvalues of He Jð Þ for eG1, eG2, and eG3.

Switching topology Eigenvalue of He Jð Þ
eG1

0.27, 1.00, 2.00, 3.00, and 3.73eG2
0.59, 1.00, 2.00, 3.00, and 3.41eG3
0.16, 1.38, 3.43, 5.66, and 7.37

Table 3
Controller parameters.

Parameters Scenario 1 Scenario 2 Scenario 3

K 10.07 1.60 10.00
24.00 8.64 2.10
8.00 3.20 4.00

a 10.00 10.00 —
d 0.50 0.20 —
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flow topologies are illustrated in Fig. 2, the Lþ Pð Þ matrices’ eigen-
values of which are all positive real numbers. The topology of the

system is set to switches every 2 s periodically from G
�
1 to G

�
2, G

�
2

to G
�
3, and then G

�
3 to G

�
1, as shown in Fig. 3. The initial speed of every

vehicle is 20 m	s�1, and the position error is randomly distributed in
the interval [�10 m, 10 m]. The leader is set to continuously run at
v0 ¼ 20 m	s�1.

The eigenvalues of He Jð Þ for the three topologies are listed in
Table 2. All the eigenvalues are positive real and, considering their
minimum value, the scaling factor a can be chosen to be 10. Three
scenarios have been simulated, with two stable scenarios of differ-
ent response coefficients d and one unstable scenario. The controller
parameters in Scenarios 1 and 2 are designed as in Theorem2. How-
ever, the parameters in Scenario 3 do not satisfy the stability condi-
tion in Ref. [15]. All the parameters are listed in Table 3.

Fig. 4 shows the state error of the vehicle platoon under the
switching topologies. The simulation result shows that the control
law designed according to Eq. (12) and Inequality (13) can stabilize
the vehicle platoon. Compared with Fig. 5, it demonstrates that a
larger d tends to make the system converge to the stable state more
quickly. Fig. 6 illustrates the performance of a controller whose
parameters are chosen as the unstable region criterion in Ref.
[15], which can show the effectiveness of our controller design
method. It should be noted that Theorem 2 is only a sufficient con-
dition for the system stability, which means that the selection of
controller parameters—that is, if a does not meet the condition of
Inequality (13)—may also stabilize the switching system.
Fig. 3. Switching signal. The dwell time is set as 2 s.
6. Conclusions

This paper examines the stability of multi-agent systems under
a class of switching topologies, where all the eigenvalues of (L þ P)
matrices are positive real numbers. Graph theory is used to
describe the interconnected topology. The Hurwitz criterion and
Fig. 5. Stability performance under switching topologies with d = 0.2. (a), (b), and (c) show the tracking error of the position, velocity, and acceleration, respectively.
Compared with the controller in Scenario 1, this controller tends to have a longer convergence time of about 25 s.

Fig. 4. Stability performance under switching topologies with d = 0.5. (a), (b), and (c) show the tracking error of the position, velocity, and acceleration, respectively. The
switching system achieved stability in 15 s.



Fig. 6. Stability performance under switching topologies with an unstable controller. (a), (b), and (c) show the tracking error of the position, velocity, and acceleration,
respectively. The parameters are designed from the unstable region presented in Ref. [15]. This illustrates the effectiveness of our controller design method.
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Riccati inequality are applied to design the control law in order to
stabilize the multi-agent system and adjust the convergence speed
of the system. By using the common Lyapunov function theorem,
the stability of switching topology systems is proved. We have
shown that stability can be achieved if the L þ Pð Þ matrices’ eigen-
values of all the topologies are positive real numbers and present a
sufficient condition for the switching system. The exponential sta-
bility and convergence speed can be influenced by the response
coefficients d in our controller.
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