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Over time, the performance of processes may deviate from the initial design due to process variations and 
uncertainties, making it necessary to develop systematic methods for online optimality assessment based 
on routine operating process data. Some processes have multiple operating modes caused by the set point 
change of the critical process variables to achieve different product specifications. On the other hand, the 
operating region in each operating mode can alter, due to uncertainties. In this paper, we will establish an 
optimality assessment framework for processes that typically have multi-mode, multi-region operations, 
as well as transitions between different modes. The kernel density approach for mode detection is adopt-
ed and improved for operating mode detection. For online mode detection, the model-based clustering 
discriminant analysis (MclustDA) approach is incorporated with some a priori knowledge of the system. In 
addition, multi-modal behavior of steady-state modes is tackled utilizing the mixture probabilistic principal 
component regression (MPPCR) method, and dynamic principal component regression (DPCR) is used to 
investigate transitions between different modes. Moreover, a probabilistic causality detection method based 
on the sequential forward floating search (SFFS) method is introduced for diagnosing poor or non-optimum 
behavior. Finally, the proposed method is tested on the Tennessee Eastman (TE) benchmark simulation pro-
cess in order to evaluate its performance.
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1. Introduction

Process operating performance assessment is an important 
subject in the process industry and has attracted attention in both 
academia and industry. Since the performance of processes may de-
teriorate over time and depart from the initial design due to process 
variations or process condition changes, it is necessary to continu-
ously monitor process performance. This type of analysis is a step 
forward from traditional control performance assessment and has 
been named “optimality assessment.”

Some studies on optimality assessment [1‒4] have recently been 
conducted. However, these studies do not describe a method that is 
applicable to general, complicated process operations. In this paper, 
a systematic framework for optimality assessment is proposed that 
addresses the main issues associated with the performance assess-
ment of modern industrial processes. First, we consider multiple 
operating modes due to the process condition and product demand 

changes. Second, we introduce multiple operating regions in each 
steady-state mode due to uncertainties and disturbances. Third, we 
consider transitions between different operating modes.

To solve these problems, a novel method for optimality assess-
ment based on probabilistic principal component regression (PPCR) 
is proposed. It is first described for the unimodal processes that are 
common in practice, and is then extended to multiple operating 
mode processes. For unimodal processes, the developed method 
consists of two stages: offline training and online assessment. In off
line training, the steady-state data, including process variables and 
the optimality index (OI), are collected. Note that the OI definition 
depends on the process. For example, depending on the process, OI 
can refer to operation costs, profit, product quality, environmental 
index, and so on. To obtain an online estimation of OI, it is necessary 
to build a predictive model of OI based on the process variables. 
Since each operating mode usually has multiple operating regions, 
the mixture probabilistic principal component regression (MPPCR) 
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model is employed for modeling. The MPPCR model describes the 
Gaussian distribution of OI in each operating region, based on which 
the local value of OI in each operating region can be obtained. By 
comparing the local OI in each operating region, their optimality 
condition is analyzed. In online assessment, the operating region of a 
new data point is estimated based on its posterior probability. Based 
on the constructed model, OI is predicted using Bayesian inference to 
evaluate the process performance. When the process performance is 
non-optimum, diagnosing the cause of the problem helps steer the 
process to a better performance. A probabilistic contribution analy-
sis technique based on the missing variable approach [5] is adopted 
to address this issue. The sequential floating forward search (SFFS) 
method is utilized, instead of a branch and bound method, in order to 
decrease computational time and simplify the solution.

For multiple operating mode processes, it is assumed that the data 
points are unlabeled with respect to the operating modes. In other 
words, the number of operating modes and the operating mode of 
each data point are unknown. To estimate the labels of the dataset, 
critical process variables that govern the change of operating modes 
are selected and named as scheduling variables. Based on the select-
ed scheduling variables, a local kernel-density-based approach [6] is 
adopted and improved to detect the labels of the data points. In order 
to estimate the operating modes in online assessment, a mixture 
discriminant analysis (MDA) is built based on the labeled dataset. In 
addition, to improve the accuracy of online mode detection, the pro-
cess knowledge is incorporated into the MDA results. Optimality as-
sessment of steady-state modes is the same as for unimodal process-
es. For transitions between modes, a dynamic principal component 
regression (DPCR) model was built, and the performance grades are 
compared based on the DPCR loading matrices [7].

The rest of this paper is arranged as follows: In Section 2, the 
problem and the proposed solution are discussed. In Section 3, the 
proposed optimality assessment strategy for steady-state modes 
is described. In Section 4, the assessment method for transitions 
is studied. In Section 5, the mode detection method for multiple 
operating mode processes is described. In Section 6, the proposed 
approach is tested on a Tennessee Eastman (TE) process. Finally, 
conclusions are presented.

2. Problem statement and proposed solution

General process operations have multi-modal characteristics 
with non-Gaussian behavior in each steady-state mode. An overview 
of these systems is given in Fig. 1. It is considered that the change 
of operating modes is caused by known governing factors such as 
product demand. In addition, each steady-state operating mode 

consists of different operating regions that are caused by uncertain 
process variations. The optimality level is altered based on the oper-
ating position in the system.

In this paper, the goal is to assess online operating process per-
formance based on routine operating process data by characterizing 
the data—that is, by estimating operating mode and operating re-
gion (or transition grade), predicting the OI value, and diagnosing 
the cause of poor performance. The proposed framework includes 
offline training and online assessment. An overview of the proposed 
framework and methods is given in Fig. 2 and Fig. 3, and the details 
are described in the following sections.

3. Steady-state modes: Definition

Steady-state modes are the main operating conditions of pro-
cesses during which no essential change occurs in the critical pro-
cess variables, flowsheet configuration, product demand, and so on. 
The MPPCR model is utilized to estimate the model of the training 
dataset. In the next step, based on the detected model, the local OI 
values of each operating region are obtained. Furthermore, based on 
process knowledge, some classes for optimality values are defined, 
and the obtained operating regions are assigned with various corre-
sponding classes.

3.1. Data modeling

Suppose X = [x(1), x(2), …, x(n)] T ∈ R n×p and Y = [y(1), y(2), …, 
y(n)] T ∈ R n×1 are the available datasets of the process variables and 
OI, respectively, where n is the number of data points and p is the 
number of process variables. Since operating modes consist of sev-
eral operating regions, the MPPCR model is employed to build a pre-
dictive model for which the input is X and the output is Y.

3.2. Analysis of optimality index

The Gaussian distribution for the OI in each operating region k is 
estimated in the modeling part. As a result, the local OI [1] in each 
operating region is equal to the mean value of the obtained Gaussian  
distribution for y:

               ( ) ( ) ,k k y kOI E y f y y dy µ= = =∫    � (1)

3.3. Non-optimum cause detection

In order to find causal variables in the presence of non-optimum 
or poor performance, one can utilize a probabilistic contribution 

Fig. 1. An overview of general process operations.
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modes between two steady-state modes. In this paper, it is assumed 
that the change of operating modes is supervised. As a result, criti-
cal process variables governing the change of operating modes are 
measured, albeit with noise in each process, and are often called 
scheduling variables.

4.1. Transition grades analysis

Dynamic principal component analysis (DPCA) is employed in 
order to consider the autocorrelation in the variables as well as 
their time-varying features by incorporating time-lagged informa-
tion in the data matrix. The loading matrix of each transition based 
on its scheduling variables is found, and the similarity indices are 
computed. Srinivasan et al. [7] have provided the details of this 
method. Suppose that S and T are two transitions with the same ini-
tial and final steady-state modes. If their similarity index is larger 
than a user-defined threshold θT, they belong to the same transition 
grade.

4.2. Transition predictive modeling

DPCR is built based on the complete training dataset. For each 
transition, when DPCA is built, the regression step is applied on the 
estimated latent variables. The estimation of OI in the online assess-
ment, based on the estimated grade, equals the average of the esti-
mated values of each transition model in the grade.

5. Mode detection

In order to extend the proposed algorithm to multi-mode systems, 
a mode detection step should be considered to detect the steady-
state modes and transitions, and the methods discussed in Sections 

analysis technique based on the missing variable approach. This 
method has been applied for fault detection [5,8], outlier detection 
[9], and so forth. In this paper, we adopt this method with a mod-
ification for causality detection in optimality assessment. In the 
modified method, the best region is called the reference or bench-
mark region for probabilistic causality analysis. A new data point 
with non-optimum performance is detected when its Mahalanobis 
distance from the reference region, M2, is larger than the confidence 
bound that is the β-fractile of the chi-square distribution with r  
degrees of freedom (χr

2 (β)). In this method, the contribution of each 
single variable equals the difference between M2 and the expected 
value of M2, E(M2), when the considered variable is treated as a miss-
ing variable. We propose the following algorithm to find a group of 
causal variables based on the SFFS method [10]: The complete set, 
xnew = Y = { yj | j = 1, 2, …, p}, includes all measured variables of xnew. 
The aim is to find the minimum number of missing variables that 
have the recalculated value of E(M2) less than the confidence bound. 
Supposing that we have selected a subset of k that is missing vari-
ables Xk, the criterion function in this problem is as follows:

                                    ( ) ( )2 2
kk Y XJ X M E M= −      � (2)

where EY|Xk
(M2) is the expected value of M2 conditioning on missing 

the selected subset, that is, Xk. The algorithm starts with k = 1 and is 
as follows:

Step 1: Find k features from Y that is called Xk by using the SFFS 
algorithm that maximizes J(Xk).

Step 2: If EY|Xk
(M2) is less than the confidence bound, Xk is the final 

set of causes; otherwise, k = k + 1 and go to Step 1.

4. Transitions

Transitions mainly happen in processes with multiple operating 

Fig. 2. An overview of the proposed framework and methods for 
offline training.

Fig. 3. An overview of the proposed framework and methods for online assessment.
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3 and 4 should then be employed for performance assessment.  
Mode detection consists of labeling the operating modes and build-
ing the predictive classifier based on the estimated labels.

5.1. Operating modes labeling

Quiñones-Grueiro et al. [6] recently proposed an offline mode 
detection method based on a local kernel density estimation for a 
monitoring application. This method is based on the density-based 
clustering (DENCLUE) method, and is adopted here to integrate the 
process sequence information in order to improve the accuracy. In 
this paper, the abovementioned offline mode detection is employed 
and modified for optimality assessment. This algorithm provides an 
efficient procedure for operating modes labeling, without the re-
quirement of knowing the number of modes as a priori knowledge. 
The proposed extensions to the abovementioned method are as fol-
lows:

(1)	In order to find the exact start and end time of the transitions, 
each transition part is segmented into shorter length win-
dows to investigate the dynamics more clearly.

(2)	Initial and final steady-state modes of each transition are 
compared based on the distance criterion. If they are similar 
to each other and represent the same operating mode, the de-
tected transition is considered to be a noise effect rather than 
a real transition.

(3)	The initial and final windows of steady-state modes are com-
pared with each other based on the distance criterion in order 
to detect final steady-state modes and transitions.

5.2. Online mode detection

In online assessment, the corresponding operating mode of each 
new data point is estimated in order to select the proper model. As 
a result, a predictive classifier is built based on the estimated labels 
in the offline mode detection step. Fraley and Raftery [11] have inte-
grated the classification method of MDA with model-based cluster-
ing (Mclust) in a method that is called Mclust discriminant analysis 
(MclustDA), which is capable of classifying non-Gaussian classes. 
The classification model of each operating mode, including steady-
state modes and transition grades, is built based on the MclustDA 
method. Note that in this paper, it is assumed that all the operating 
modes are known in offline training. However, new modes that have 
not been studied before may appear in online mode detection. One 
possible solution to detect new operating modes is to compute the 
joint probability of the conditional probability of the new data point 
in each operating mode and the posterior probability of each oper-
ating mode. When the joint probability has an insignificant value, it 
states that a new operating mode has appeared [12].

For online prediction of the operating modes, process knowledge 
is incorporated in order to increase the accuracy of the prediction [4]. 
In other words, instead of computing posterior distributions of all 
operating modes for each data point, the posterior of related operat-
ing modes is computed as follows:

(1) If the current operating mode of the data point belongs to 
steady-state mode i, for the next point, the posterior probabili-
ty of mode i and all the transitions from mode i are predicted.

(2) If the current data point is in the grade p of transition ij, that 
is, {ij}p, the posterior probability of {ij}p and steady-state mode 
j are computed. Finally, the data point is classified to the 
operating mode with the highest posterior probability. Note 
that considering a single data point may lead to an incorrect 
solution in noisy environments. In that case, it is suggested 
to evaluate a window of the data points that provides a more 
robust estimation of the operating mode change.

6. Tennessee Eastman benchmark process

The TE benchmark process has been broadly used for the evalu-
ation of many methods in process control, soft sensor design, mon-
itoring, and so forth. The model was first developed by Downs and 
Vogel [13], based on the industrial process of the Eastman Chemical 
Company. In order to have a stable process, the decentralized con-
trol strategy is applied on the open-loop process that was developed 
by Ricker [14].

Three different operating modes are simulated based on the set 
points summarized in Table 1. In addition, two uncertainties are 
added in each operating mode, as expressed in Table 2. OI is selected 
to be the operation cost. The offline training data projected into two 
variables of the A and C feed (stream 4) and recycle flow (stream 8) 
are shown in Fig. 4. To clarify, the approximate boundary of each op-
erating mode is shown in the figure.

The defined levels for the OI values are stated in Table 3. Note 
that optimality levels are defined as being worse at a higher level. 
The local OI values and levels are given in Tables 4–6.

Online assessment
The computed classification error for online mode detection 

is 0.0104, which indicates a high accuracy of mode detection. OI 
values are predicted, and the comparison plot of predicted and 
real values for the OI is given in Fig. 5. Since the employed models 
vary along the process, the corresponding models are stated in the 
figure. In addition, root mean square error (RMSE) and R2 values 
are computed as 0.3723 and 0.8475, respectively, indicating a high 
accuracy in predicting the OI values. The offline mode detection, 
online mode detection, and prediction results are summarized in 
Table 7.

The estimated OI levels are given in Fig. 6. According to Fig. 6, 
the process starts with optimal operation and then jumps to level 2 
optimality. The 1219th sampling data point is selected as an exam-
ple to find the cause of non-optimality. Based on the previous esti-
mations, this data point belongs to operating region 1 of operating 
mode 1. Based on Table 4, operating region 3 has the lowest OI 
level in mode 1; therefore, it is selected as the reference mode or 
benchmark for non-optimum cause detection. The distance of this 
data point from the reference mode is 195.11, that is, greater than 
the 0.95-fractile of the chi-square distribution with 22 (number 
of process variables) degrees of freedom ( χ2

22
 ( 0.95) = 33.924). Nine 

causal variables that can be validated based on process knowledge 
are detected, and their contribution percentage is given in Fig. 7. 
When these nine variables are assumed to be missing, the distance 
from the reference mode becomes 33.66, that is, less than χ

2
22

 ( 0.95), 
which indicates that the process is steered to the optimum perfor-
mance.

Table 1
Properties of stable operating modes.

Mode G/H Reactor level (%) Reactor temperature (°C)

1 50/50 65 122.9

2 10/90 50 130.0

3 40/60 55 135.0

“G” and “H” are the main products of the TE process.

Table 2
Process uncertainties.

Process variable Type

1 B composition (stream 4) Step

2 Reactor pressure Step
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Fig. 4. Two-dimensional plot of the offline training data. kscmh: kilo standard cubic meters per hour.

Table 3
Defined OI levels.

OI range ($·h–1) OI level

100–140 1

141–180 2

181–220 3

Above 221 4

Table 4
Local OI levels (mode 1).

Operating region Local OI ($·h–1) OI level

1 142.78 2

2 179.43 2

3 120.09 1

Table 5
Local OI levels (mode 2).

Operating region Local OI ($·h–1) OI level

1 205.67 4

2 259.01 3

3 186.62 3

Table 6 
Local OI levels (mode 3).

Operating region Local OI ($·h–1) OI level

1 309.51 4

2 250.49 4

3 275.11 4

Fig. 5. Comparison of predicted and real values of OI.
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7. Conclusions

In this paper, a novel framework for operating optimality assessment  
in non-Gaussian multi-mode processes is established. The proposed 
method is capable of detecting operating modes, transitions, and 
regions, and providing a model for a prediction of process operation 

performance. In addition, a causality detection method is introduced 
for diagnosing poor or non-optimum behavior. An application on 
the TE benchmark process is presented, and confirms the applicabil-
ity of the proposed method.
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Results
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ARI: adjusted Rand index; FM index: Fowlkes-Mallows index.
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