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In the globalized market environment, increasingly significant economic and environmental factors within 
complex industrial plants impose importance on the optimization of global production indices; such opti-
mization includes improvements in production efficiency, product quality, and yield, along with reductions 
of energy and resource usage. This paper briefly overviews recent progress in data-driven hybrid intelli-
gence optimization methods and technologies in improving the performance of global production indices 
in mineral processing. First, we provide the problem description. Next, we summarize recent progress in 
data-based optimization for mineral processing plants. This optimization consists of four layers: optimiza-
tion of the target values for monthly global production indices, optimization of the target values for daily 
global production indices, optimization of the target values for operational indices, and automation systems 
for unit processes. We briefly overview recent progress in each of the different layers. Finally, we point out 
opportunities for future works in data-based optimization for mineral processing plants. 
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1. Introduction

The production process of mineral processing is a typical complex 
industrial process. It consists of multiple unit processes that are con-
nected in series, where the outputs of each unit process are the inputs 
for the subsequent unit process [1]. Each unit process has its own task 
and uses different performance indices to evaluate its own product 
quality and production efficiency. The operation of each unit contains 
a higher-level operational optimization system to ensure that the 
operational indices (i.e., quality, efficiency, and consumptions during 
the production phase) fall into their target ranges, and to generate 
the setpoints for the controllers [2,3]. All the unit processes operate 
together to produce the final product. Here, we refer to the perfor-
mance indices of each unit process as the unified technical indices; 
these represent the unit product quality, production efficiency, and so 
forth. The concentrate grade of the final product is called the global 
production index. In practice, the unified technical indices of each unit 
process directly affect the global production indices.

It is well known that local optimization of the unit processes does 

not guarantee plant-wide global optimization. Therefore, research 
has been carried out on coordinating the unified technical indices of 
various unit processes to gradually achieve plant-wide global optimi-
zation of the whole production process [4–8]. Thus, it is important to 
coordinate all these units to optimize the global production indices—
that is, the final production quality, yield, and profit.

In recent years, the concept and practice of operational optimi-
zation and control for industrial processes have attracted increasing 
attention [4–6,9–12]. In the chemical industry, a two-layered system 
consisting of real-time optimization (RTO) and model predictive 
control (MPC) has been widely applied to ensure the optimal oper-
ation of unit processes [13]. A series of variations or an adaptation 
strategy based on RTO is adopted to cope with issues such as the 
RTO requiring a steady-state model [6–8,14]. However, RTO en-
counters many difficulties when it is applied to complex industrial 
processes without mathematical models. In large-scale continuous 
industrial processes such as mineral processing, the physical and 
chemical reactions cause the relationship between the operational 
indices and the controlled variables to be nonlinear and strongly 
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coupled. Moreover, the character of the relationship between the 
operational indices and the controlled variables is uncertain, and 
thus difficult to describe in a mathematical model. Existing ap-
proaches mainly address unit optimization and do not consider cor-
relations between the unit processes. Such approaches lead to local 
optimal operation, which cannot guarantee the global production 
indices optimization of the entire plant.

To solve these problems, many valuable data-driven hybrid intel-
ligent optimization approaches for global production indices opti-
mization have been proposed recently. These approaches aim to op-
timize the whole industrial process under uncertainty. They do not 
need a mathematical model, as they rely on the operator’s experi-
ence in practice and the data produced in the production process. In 
addition, these approaches can adapt to a dynamic environment by 
means of the closed-loop strategy, which is composed of ideas from 
control theory—that is, feedback, prediction-based feedforward, and 
dynamic tuning. These data-driven hybrid intelligent optimization 
approaches have been evaluated by simulations or in practice at 
mineral processing plants.

This paper provides an overview of the recent progress in data- 
based optimization for mineral processing plants. The rest of this 
paper is organized as follows: Section 2 presents the problem de-
scription. Section 3 summarizes the recent progress in data-based 
optimization for mineral processing plants. The paper concludes in 
Section 4, which contains suggestions for possible research direc-
tions in this area.

2. Problem description

The decision-making methods used for complex mineral process-
ing often contain time-scale and space-scale decompositions of the 
global production indices, as shown in Fig. 1. First, the decision-making  

department of the plant determines the monthly global production 
indices, Qj (tm) (where j = 1, 2, …, J, J is the number of global pro-
duction indices, and tm is the monthly time scale), as well as their 
target ranges based on their operational experience. The planning 
and scheduling department then generates the daily global produc-
tion indices, Qj (td) (where j = 1, 2, …, J, and td is the daily time scale), 
according to the monthly global production indices, Qj (tm). Finally, 
the technical department decomposes the daily global production 
indices, Qj (td), into the operational indices, r*

i,j (th) (where, i = 1, 2, …, I, 
and th is the hourly time scale), of each unit process. The operational 
optimal control systems generate the setpoints y* for the control 
loops, and the control systems track the setpoints. The ultimate aim 
is to make the global production indices fall into their target ranges. 
Ref. [12] contains a more detailed description.

3. Data-driven hybrid intelligent modeling and optimization

To realize optimization of the manual-based decision-making pro-
cess described above, Ref. [12] proposes a hierarchical optimization 
structure of different time scales that aims at optimizing the global 
production indices of mineral processing, as shown in Fig. 2. The op-
timization structure consists of four layers: optimization of the target 
values for monthly global production indices, optimization of the 
target values for daily global production indices, optimization of the 
target values for operational indices, and automation systems for unit 
processes. For a detailed description and for the functions of the dif-
ferent layers, refer to Ref. [12]. In this paper, we mainly outline recent 
progress in data-based modeling and optimization approaches.

3.1. Optimization of the global production indices

Optimization of the global production indices involves two layers 

Fig. 1. Problem description of the multiple-layer optimization of mineral processing.
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for mineral processing production planning. Five conflicting global 
production indices, including the iron concentrate output, the con-
centrate grade, the concentration ratio, the metal recovery, and the 
production cost, are considered. At the same time, a gradient-based 
hybrid operator is proposed to make a decision-making set of the 
established multi-objective problem. Similarly, Ref. [10] proposes a 
three-objectives scheduling approach for electric smelting furnaces, 
and Ref. [11] presents a two-level structure that integrates planning 
and scheduling. The proposed method in Ref. [11] is demonstrated to 
be able to provide efficient raw ore combinations for decision-makers. 
Refs. [19,20] present detailed descriptions of similar work in chemical 
processing, such as planning and scheduling for single-stage, multi- 
stage continuous, and multi-product process approaches.

of decomposition decision-making methods regarding the global 
production indices, based on different time scales. The upper-layer  
decision aims to achieve a set of desired production objectives 
(mainly on a monthly time scale), while the lower-layer decision 
aims to achieve a further decomposition within each specific period 
(mainly on a daily time scale) to meet the target production objec-
tives generated by the upper layer.

The optimization of global production indices mainly focuses on 
cost minimization or profit maximization within a certain period of 
time. Refs. [15–18] provide single-objective scheduling methods based 
on global production indices optimization, where the objective is one 
of production rate, concentrate grade, production costs, or profits. Yu 
et al. [9] propose a nonlinear multi-objective programming model 

Fig. 2. The structure of integrated optimization for the automation systems of mineral processing. Xk
* (td) is a real number and represents the quantity of the kth type of raw ore 

that should be used to realize the daily global production indices optimization. Yk
* (td) = 1 or 0, representing whether or not the kth type of raw ore is used to realize the daily glob-

al production indices optimization [12].
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3.2. Operation of the operational indices

Operational indices are a space-scale decomposition of the global  
production indices, and are obtained by the optimization of the 
global production indices; they represent the performance (i.e., 
quality, efficiency, and consumption during the production phase) 
of a unit process. The relationships between the unit processes are 
usually unknown. Therefore, it is important to coordinate the deci-
sions that are made regarding the target operational indices of indi-
vidual unit processes, to realize the optimization of the overall plant 
global production indices. Ref. [21] proposes an approach (Fig. 3)  
that is a typical framework of operational indices optimization. This 
closed-loop dynamic optimization strategy contains four modules: 
optimization of the initial operational indices, a predictive model 
of the global production indices, an a priori evaluation of the global 
production indices and dynamic tuning, and an a posteriori evalua-
tion of the global production indices and dynamic tuning. The func-
tions of each module are described below.
•	Optimization of the initial operational indices. This module 

generates a set of pre-set operational indices, ri, j (where i = 1, 2, 
…, I), and their targets, [ri, min, ri, max], based on the global produc-
tion indices, Qj

 (td) (where j = 1, 2, …, J).
•	A predictive model of the global production indices. This 

module produces a predicted value of the global production in-
dices, Q̂k (t), using the actual operational data at time t.
•	An a priori evaluation of the global production indices and 

dynamic tuning. This module uses the target operational indi-
ces, ri

*(t), and the predictive operational indices, r— (t), to generate 
the compensation value, Δr̂ (t).
•	An a posteriori evaluation of the global production indices 

and dynamic tuning. This module generates another opera-
tional indices compensation value, Δr (T), by determining the 
difference between the actual global production indices, Qj

 (T), 
and the target production value, Q*

j (where t is the sample inter-
val, T is the test interval, T = nt, and n is an integer).

3.2.1. Optimization of operational indices
Refs. [21,22] propose a hybrid optimization approach that in-

tegrates case-based reasoning (CBR) with a multi-objective evolu-
tionary algorithm (MOEA). In this approach, the decision-making for 
the operational indices, which uses CBR, is based on the operational 
experience of onsite process engineers, while the MOEA is the opti-
mization of multiple global production indices. To achieve optimal 
operation, Ref. [23] solves a multi-stage beneficiation process optimi-
zation problem, and proposes a multi-objective operational optimi-
zation approach. Ref. [24] presents an operational indices decision- 
making approach that combines the dynamic multi-objective meth-
od with the CBR method. In practice, operational indices optimiza-
tion is usually a dynamic problem. To solve this problem, Ref. [25] 
presents a dynamic multi-objective approach that considers the 
uncertainties of equipment capacity in the processing.

3.2.2. Prediction of global production indices
The predictive model for the global production indices adopts a 

hybrid model structure that consists of a linear main model and a 
nonlinear compensation model [21,22,24]. The linear main model 
provides the main relationship between the global production indices 
and the operational indices, while the nonlinear compensation mod-
el, which is established by a least-squares support vector machine 
(LSSVM) [26], is used to provide additional corrections for better 
prediction. Moreover, the parameters of the nonlinear compensation 
model are selected by minimizing the probability density function 
(PDF) of the modeling error [1]. This is the first time that the PDF 
control method is introduced to model parameter selection. Ref. [27] 
develops a multiple-models strategy-based prediction model, which 
integrates the fuzzy clustering algorithm with the machine-learning 
algorithm. To achieve online prediction for plant-wide global pro-
duction indices, Ref. [28] proposes a data-based adaptive online pre-
diction model that is achieved by updating the model’s parameters 
online using the statistical properties of the training samples method. 
Ref. [29] presents a robust prediction method that is based on mod-
ifying the weight of the AdaBoost algorithm, which can reduce the 
model’s sensitivity to outliers.

3.2.3. Dynamic tuning approach
Regarding dynamic tuning, a knowledge-based global operation 

Fig. 3. Framework of operational indices optimization. OOC: optimal operational control; PCS: process control system. Qk
* represents the target value of the kth production index. 

Qk is the actual value of the kth production index. Q̂k(t) represents the predictive value of the kth production index [21]. 



187J. Ding et al. / Engineering 3 (2017) 183–187

approach is proposed to minimize the effect on production perfor-
mance that is caused by unexpected variations in the operation of 
a mineral processing plant [30]. An adaptation signal discovered 
from the process operational data is employed to construct a closed-
loop dynamic operation strategy. A rough set-based rule extraction 
approach is developed to generate the compensation rules. Further-
more, a reinforcement learning algorithm is used to compensate for 
uncertainties and correct baseline operational indices online and in 
two different time scales. The learning loops are based on the actor- 
critic architecture [24].

3.3. Optimal operational control/setpoint optimization

Setpoints are the final decisions obtained by further decompo-
sition of the operational indices. In general, setpoint optimization 
should be based on the characteristics of the unit process [31]. For 
example, a hybrid intelligent-control method for a shaft furnace- 
roasting process is proposed [32], which can control the operational 
indices within the desired range by an online adjustment of the 
setpoints of the control loops. Another example of setpoint opti-
mization is an intelligence-based supervisory control strategy for a 
grinding system [33], in which a control loop setpoint optimization 
module, an artificial neural-network-based soft-sensor module, a 
fuzzy logic-based dynamic adjustor, and an expert-based overload 
diagnosis and adjustment module are integrated to perform the 
control tasks. For more setpoint optimization approaches, refer to 
the surveys in Refs. [31,34].

4. Conclusions and further work

Complex industrial processes contain multiple unit processes, 
and the process is often under uncertainty. This requires the opti-
mization of plant-wide global production indices for the whole pro-
duction line that characterize the overall plant performance. For this 
reason, this paper reviews a set of decision-making methods that fo-
cus on the optimization of the global production indices of complex 
industrial processes.

For future progress, it will be important to integrate each de-
partment’s decision-making regarding planning and scheduling, the 
optimization of operational indices, and process optimization and 
control, in order to realize the essential global production indices, as 
presented in Ref. [12]. In addition, the demonstrated effectiveness 
and universality of the data-driven hybrid intelligent optimization 
structure, as proposed in Ref. [21], indicate that efforts should be 
made to improve the performance of each module of the structure.
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