
Engineering 3 (2017) 188–201

Research
Smart Process Manufacturing—Article

Global Optimization of Nonlinear Blend-Scheduling Problems
Pedro A. Castillo Castillo a, Pedro M. Castro b, Vladimir Mahalec a,*
a Department of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
b Center for Mathematics, Fundamental Applications and Operations Research, Faculty of Sciences, University of Lisbon, Lisbon 1749-016, Portugal

a r t i c l e i n f o a b s t r a c t

Article history:
Received 7 December 2016
Revised 16 February 2017
Accepted 20 February 2017
Available online 28 March 2017

The scheduling of gasoline-blending operations is an important problem in the oil refining industry. This
problem not only exhibits the combinatorial nature that is intrinsic to scheduling problems, but also
non-convex nonlinear behavior, due to the blending of various materials with different quality properties.
In this work, a global optimization algorithm is proposed to solve a previously published continuous-time
mixed-integer nonlinear scheduling model for gasoline blending. The model includes blend recipe optimi-
zation, the distribution problem, and several important operational features and constraints. The algorithm
employs piecewise McCormick relaxation (PMCR) and normalized multiparametric disaggregation tech-
nique (NMDT) to compute estimates of the global optimum. These techniques partition the domain of one
of the variables in a bilinear term and generate convex relaxations for each partition. By increasing the num-
ber of partitions and reducing the domain of the variables, the algorithm is able to refine the estimates of
the global solution. The algorithm is compared to two commercial global solvers and two heuristic methods
by solving four examples from the literature. Results show that the proposed global optimization algorithm
performs on par with commercial solvers but is not as fast as heuristic approaches.

© 2017 THE AUTHORS. Published by Elsevier LTD on behalf of the Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords:
Global optimization
Nonlinear gasoline blending
Continuous-time scheduling model
Piecewise linear relaxations

1. Introduction

Computing and implementing an optimal production schedule
can reduce operational costs, increase profit margins, and avoid
deviations from environmental constraints [1]. However, complex
industrial plants can have multiple production, storage, and distri-
bution subsystems, several distinct raw materials and intermediate
and final products, and intricate connections between all these ele-
ments that make scheduling a difficult decision-making process.

Scheduling problems typically deal with four main decisions [1]:
① determining the required tasks to fulfill the corresponding ob-
jectives, requirements, and/or demand targets; ② assigning each
task to a processing unit or resource that is available in the network;
③ defining the sequence in which the tasks will be executed; and
④ timing the tasks—that is, determining when to start and stop
each one (Fig. 1). Optimal scheduling decisions are those that max-

imize or minimize a desired objective such as profit, total cost, lead
time, and so forth. Scheduling software and tools based on mathe-
matical programming is becoming more usual in practice.

The scheduling of gasoline-blending operations is an important
and relevant industrial problem because gasoline accounts for 60%–
70% of the total profit of an oil refinery [2–4]. In a gasoline-blending
system, components from dedicated supply tanks are mixed in
blending tanks or in-line blenders and sent to product tanks. Blend-
ing tanks can either have flow in or out (Fig. 2), resembling batch
operation. In contrast, in-line blenders operate in a continuous
manner (Fig. 3). In addition to the four decisions mentioned earlier,
scheduling blend operations should also involve determining the
blend recipes—that is, the amounts of components to mix such that
products’ quality properties meet given specifications.

The gasoline-blending system studied in this work is described
in Fig. 3. Gasoline blending is carried out by one or more continuous

 * Corresponding author.
 E-mail address: mahalec@mcmaster.ca

http://dx.doi.org/10.1016/J.ENG.2017.02.005
2095-8099/© 2017 THE AUTHORS. Published by Elsevier LTD on behalf of the Chinese Academy of Engineering and Higher Education Press Limited Company.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/ locate /eng

Engineering

189P.A. Castillo Castillo et al. / Engineering 3 (2017) 188–201

blenders. Each blender is connected to the sources of blend compo-
nents. Blended material in some refinery configurations goes to a
storage tank, while in other configurations, it can go directly to the
pipeline. Since there are several grades of gasoline produced (e.g.,
regular, medium, premium), the blender switches from blending
one grade to another. Each switch requires (partial) realignment of
blend feeding lines, which leads to a loss of blending capacity. In
addition, switching to a different range of quality properties often
requires resetting or recalibration of the analyzers used to measure
them.

Some of the most important quality properties of gasoline are
research octane number (RON), motor octane number (MON), Reid
vapor pressure (RVP), density, sulfur, aromatics (Ar), and olefins (Ol)
content. RON, MON, and RVP do not blend linearly; thus, considering
nonlinear blending rules for such quality properties in the sched-
uling model can increase the accuracy of the solution and reduce

quality giveaways [4,5].
Since the 1960s, there has been a significant effort to derive so-

called “blend indices.” These are nonlinear transformations of the
actual quality properties of the blend components, which then, as a
linear combination, can predict the quality of the blend. Even with
this approach, two issues remain:

(1) If a product is blended into a tank, there is always some ma-
terial in the tank (the so-called “tank heel”) left over from
previous blends. Any new blend must include the properties
of the material in the tank in the calculation of the new blend
recipe, which leads to a nonlinear blending model for multi-
period scheduling, even when using blend indices.

(2) Blend properties calculated from these indices are not 100%
accurate, and a cumulative annual quality giveaway of, for ex-
ample, octane can amount to very large cost increments. This
forces the use of nonlinear blending models for the calcula-
tion of, for example, octane numbers.

Mathematical models for scheduling problems are usually for-
mulated as mixed-integer linear programming (MILP). However, for
gasoline blending, nonlinear behavior is intrinsic to the correspond-
ing process and mixed-integer nonlinear programming (MINLP)
needs to be employed for the sake of accuracy. Most nonlinear terms
are non-convex, making convex optimization techniques ineffective.
A global optimization approach is thus required. Before describing
the proposed global optimization method, a brief review of previous
work is presented in the following paragraphs.

1.1. Literature review on refinery scheduling

Scheduling models can be divided into two main categories based
on the treatment of the time domain: discrete- and continuous-
time formulations. In discrete-time models, the time horizon is di-
vided into several time periods of known duration with fixed start
and end time. In continuous-time models, the time horizon is par-
titioned into time slots whose duration will be determined by the

Fig. 1. Main scheduling decisions.

Fig. 2. Batch-blending system. The variable t means time period.

Fig. 3. General scheme of the continuous gasoline-blending system studied in this
work.

190 P.A. Castillo Castillo et al. / Engineering 3 (2017) 188–201

Lotero et al. [17] proposed another formulation of the multi-period
pooling problem. They denominated this discrete-time MINLP for-
mulation as a hybrid of a source-based model (similar to Castro’s
split-fraction model [18]) and a concentration-based model [19].
Redundant constraints were added to improve the linear relaxation,
and the model was solved using a two-stage MILP-NLP approach.
The MILP was a relaxation of the original MINLP model. The NLP
model was obtained by fixing the integer variables of the original
model to the values computed by the MILP. The algorithm adds
integer, optimality, or feasibility cuts to the MILP model at each it-
eration, and stops when the difference between the MILP and NLP
solutions is smaller than a pre-specified tolerance.

Cerdá et al. [20] presented a continuous-time MILP formulation
that uses floating slots dynamically allocated to time periods while
solving the problem. The model included most of the operation-
al constraints found in practice. Cerdá et al. [21] then extended
the model to handle nonlinear blending rules, thus formulating a
continuous-time MINLP model. An approximate MILP formulation
was derived by replacing the nonlinear blending rules with linear
blend indices. The values of the binary variables computed by this
MILP were fixed in the original MINLP, thus becoming an NLP that
was solved to find a near-optimal solution of the original problem.

1.2. Literature review on global optimization

Global optimization of nonlinear non-convex problems has been
a subject of extensive research over the last three decades. Even
though powerful commercial solvers have been developed [22,23],
there has been a continuous stream of advances in the field.

Global optimization algorithms have in common the genera-
tion of a convex relaxation of the problem, which provides a lower
bound to the value of the objective function, and a way to generate
feasible solutions (the upper bound). In addition, they have a meth-
od of bringing the lower and upper bounds together, so that the op-
timality gap can be reduced to ε-tolerance.

Computing a tight lower bound is absolutely critical. This may
involve replacing the original formulation with an equivalent that
preserves the feasible space but has a stronger relaxation (the differ-
ent formulations for the pooling problem are a well-known example
[24]). Another option is to reorganize the model constraints and add
others that, although redundant in the original space, strengthen the
relaxation. This procedure is known as the reformulation lineariza-
tion technique [25]. The disadvantage is that there is no systematic
way of knowing where to act in order to move toward a stronger
relaxation.

A widely used method that guarantees convergence to the global
optimal solution is known as spatial branch-and-bound [26,27]. It
is an essential element of commercial solvers such as BARON [22],
ANTIGONE [23], Couenne [28], and SCIP [29]. Spatial branch-and-
bound works by iteratively reducing the domain of the variables,
one by one, which in turn improves the quality of the convex relaxa-
tion. Note that if the initial relaxation is weak, due to the presence of
many non-convex terms, convergence can be rather slow. It is thus
important to have good branching strategies and bound-tightening
techniques. Optimality-based bound tightening (OBBT) is an exam-
ple of the latter. Although typically applied only at the root node or
up to a limited depth [28], recent results have shown that applying
OBBT in every node may lead to considerably lower optimality gaps
[30]. OBBT involves solving one minimization and one maximiza-
tion problem for each variable (appearing in non-convex terms) in
order to generate tighter lower and upper bounds. It can be solved
sequentially—which has the advantage of generating tighter variable
bounds and the disadvantage of being computationally expensive
when dealing with a large number of variables—or in parallel [31].

Bilinear terms are a common source of non-convexities in process

optimization. While continuous-time models generate problems
with fewer discrete variables than their discrete counterparts, they
are more complex to formulate and often feature many “big-M”
constraints that, due to their weak relaxations [6], compromise
computational performance. More in-depth reviews of scheduling
formulations can be found in Refs. [1,7–9].

Gasoline blending has been studied by many researchers due to
its commercial importance and non-convex features, which makes
it a suitable subject for testing different formulations and algorith-
mic approaches. Operational constraints found in gasoline blending
are related to the presence of multipurpose tanks and non-identical
blenders, to different storage-tank policies (e.g., whether the simul-
taneous receipt and delivery of material is allowed or not), and to
practical aspects such as minimum blend sizes and minimum blend-
er running and setup times. Not all of these constraints are consid-
ered in published scheduling models. In some cases, blend recipes
are assumed to be fixed (i.e., they cannot be optimized). The down-
stream distribution or shipping problem (i.e., timing delivery tasks
to fulfill the demand) is sometimes also part of the blend-scheduling
problem.

Méndez et al. [2] presented both a discrete- and continuous-time
MILP model to schedule gasoline-blending operations. An iterative
method was employed to handle nonlinear blending rules while
preserving the linearity of the models. Several key operational con-
straints were omitted and the distribution problem was not consid-
ered.

Jia and Ierapetritou [10] developed a continuous-time MILP mod-
el to simultaneously schedule gasoline-blending tasks and distribu-
tion operations. The linearity of the model was maintained by using
given preferred recipes. Their model was later extended to schedule
operations of the main processing units in an oil refinery [11].

Glismann and Gruhn [12] used a two-level approach based on
discrete-time models. Blend recipes and production targets were
computed first using a nonlinear programming (NLP) model. Then a
MILP model was employed to solve the short-term scheduling prob-
lem using such recipes and targets. The scheduling model was based
on the resource-task-network (RTN) representation and did not con-
sider multipurpose tanks or the delivery-scheduling problem.

Li et al. [13] formulated a continuous-time MILP model featuring
a common time grid for all units (i.e., blenders and tanks). Li and
Karimi [3] extended and improved this MILP model by using unit-
specific time grids and including most of the operational constraints
found in practice. Both models optimized blend recipes using blend
indices. Based on these two previous works, Li et al. [4] presented a
unit-specific continuous-time MINLP formulation where nonlinear
terms arise from enforcing constant blending rates.

Castillo and Mahalec [14] developed a three-level decompo-
sition algorithm through which recipe optimization can be done
using linear and/or nonlinear blending rules. They considered the
distribution problem, blend-size threshold constraints, parallel
non-identical blenders, swing tanks, and product-dependent setup
times. A discrete-time model was formulated for each level. The first
level optimized the blend recipes, the second level approximated
the production schedule, and the third level computed a detailed
blend-and-delivery schedule. Due to the large size of the schedul-
ing model at the third level for the entire horizon, it was solved in
subintervals. Solutions computed by this approach were better and
the execution times for large problems were two orders of mag-
nitude shorter than those from previous methods [3,13]. In their
subsequent work, Castillo and Mahalec [15] introduced a signifi-
cantly modified version of the continuous-time scheduling model
from Li and Karimi [3] (with a smaller number of binary variables
[16]) for dealing with the third level. Case studies with nonlinear
blend-scheduling problems were solved very close to global opti-
mality with short execution times.

191P.A. Castillo Castillo et al. / Engineering 3 (2017) 188–201

systems engineering. They can be relaxed using the McCormick
envelopes, considering either the full domain of the variables [32]
or a reduced domain following partitioning [33,34]. Simultaneous
domain partitioning involves adding a new set of binary variables
to the problem and guarantees global optimality in the limit of an
infinite number of partitions. Spatial branch-and-bound can thus
be avoided. One critical aspect concerns the scaling of problem size
with the number of partitions. Earlier piecewise relaxation tech-
niques [33] scale linearly, while recent formulations scale logarith-
mically. Examples of the latter are described next.

Misener et al. [35] developed a global optimization algorithm
for the standard pooling problem and concluded that the logarith-
mic scheme is more advantageous for more than eight partitions.
Kolodziej et al. [19] proposed a MINLP formulation for the multi-
period pooling problem, in which nonlinearities arise from using the
dynamic inventories of tanks as blend components. They employed
a radix-based discretization technique that partitions one variable
in every bilinear term to obtain a MILP relaxation. This discretiza-
tion technique is known as multiparametric disaggregation [36].
Castro [37] developed the normalized multiparametric disaggrega-
tion technique (NMDT) [36], which works by discretizing the range
between a variable’s lower and upper bounds (belonging to [0, 1]).
The advantage is that the number of partitions becomes the same
for every discretized variable, even if their domain is different (when
using a global discretization level parameter). NMDT has been suc-
cessfully used to solve multi-period blending problems to global
optimality, both as a stand-alone approach [18,38,39] or integrated
in a spatial branch-and-bound algorithm [30].

Overall, contributions from cited works have enabled optimal
solutions of gasoline blend-scheduling problems up to a certain
model size. However, when dealing with large-scale problems, the
computation and validation of global optimal solutions remain a
difficult challenge.

1.3. Contributions of this work

This work presents a novel deterministic global optimization
algorithm to solve non-convex MINLP or NLP models with nonlin-
earities that are strictly due to bilinear and/or quadratic terms. The
main features of this algorithm are:
•	The use of different linear and piecewise linear relaxation tech-

niques to derive convex relaxations of the original non-convex
model;
•	The collection of different feasible solutions from the convex

relaxation, which provide starting points for a local nonlinear
solver to find feasible solutions of the original model;
•	A dynamic increase in the number of partitions for piecewise

linear relaxations;
•	The reduction of the domain of the variables involved in non-

linear terms by means of an OBBT method; and
•	The parallelization of the steps regarding computation of feasi-

ble solutions and the OBBT method.
The algorithm is tested on different gasoline blend-scheduling

examples. For this class of problems, the results show that the pro-
posed algorithm is on par with or better than two leading commer-
cial global solvers.

The rest of this paper is organized as follows: Section 2 describes
the problem statement and the assumptions made. Section 3 re-
views the scheduling model employed in this work and presents the
nonlinear equations used for octane blending. Section 4 briefly ex-
plains the piecewise linear relaxations employed to compute the es-
timates of the global solution. Section 5 describes the OBBT method
to reduce the domain of the variables involved in nonlinear terms.
Section 6 presents the steps of the global optimization algorithm.
Section 7 contains the data describing the test examples. Section 8

shows the results obtained with the proposed algorithm and pro-
vides a comparison with other methods. The paper ends with con-
clusions in Section 9.

2. Problem statement

Given a blending system (i.e., storage tanks, blenders, and their
interconnections; see Fig. 3), a scheduling horizon, a set of blend
components and their corresponding supply and quality profiles
along the horizon, a set of products and their minimum and max-
imum quality property specifications, a set of delivery orders for
each product, and the initial inventory levels, it is required to deter-
mine the blend recipes, the production and delivery sequences, and
the inventory profiles of all tanks, while minimizing the cost of the
blended materials plus the switching costs (i.e., number of blend
runs, number of tanks delivering the same order, and product tran-
sitions in the swing tanks) and the demurrage costs (i.e., late deliv-
eries).

The following constraints are considered:
(1) If a blender is to produce a product, it must blend at least a

minimum amount.
(2) A blender can produce at most one product at any time. Once

it begins blending, it must operate for some minimum time
before it can switch to another product.

(3) A blender requires a minimum setup time during a product
changeover.

(4) A blender can feed at most one product tank at any time (in-
dustrial practice).

(5) Product tanks can only store one product at any time.
(6) Product tanks cannot receive and deliver material at the same

time.
The assumptions made in this work are:
(1) The flowrate profile of each component from the upstream

process is piecewise constant.
(2) The component quality profile is piecewise constant.
(3) Perfect mixing occurs in each blender.
(4) There is only one tank for a given blend component.
(5) Only swing tanks can change their product service (i.e., change

from storing one product to storing another).
(6) Changeover times between products are negligible for swing

tanks.
(7) For each blender, changeover times between product blend-

ing are product dependent but sequence independent.
(8) Each order involves only one product (any original order in-

volving different products can be disaggregated into orders of
a single product).

(9) All orders are fulfilled during the scheduling horizon.
In summary, this problem considers the scheduling of blending

and delivery operations, recipe determination, and product alloca-
tion of swing tanks along the scheduling horizon.

3. Gasoline blend-scheduling model

The scheduling model employed in this work is the one pre-
sented by Castillo and Mahalec [16]. It employs a continuous-time
formulation, considers nonlinear blending equations, and does not
allow simultaneous receipt and delivery by product tanks. This is
a non-convex MINLP model, and it will be denoted as model P (or
problem P). The main features of the scheduling model are high-
lighted in this section.

The scheduling model uses unit-specific time slots of varying
length to determine when a specific task needs to be executed in
each unit (blenders and tanks in this case). We assign a sufficient-
ly high number of time slots, which will likely be higher than the
number of slots required for blending each grade. This ensures that

192 P.A. Castillo Castillo et al. / Engineering 3 (2017) 188–201

there are sufficient degrees of freedom (enough available switches)
to meet the varying product-delivery schedule.

The start time of a unit slot is equal to the end time of the previ-
ous one. The first unit slot starts at the beginning of the scheduling
horizon, and the end of the last unit slot matches exactly the end
of the horizon. Blending tasks begin at the start of a time slot, but
can finish before its end. Delivery tasks from product tanks can start
and finish within the corresponding slot. It is assumed that com-
ponent tanks are continuously receiving material at some specified
rate (i.e., the supply profile). Time periods are used to delineate the
points where changes occur in the supply rates and/or quality of
blend components. Time slots are assigned to these time periods.
A time slot must end within its assigned period. However, for com-
ponent tanks, the last time slot of a period must end exactly at that
period’s boundary (in order to properly respect the changes in supply
rates and/or quality of blend components). Fig. 4 shows a graphical
representation of these unit-specific time slots for a blending system
with two blend component tanks (CT1, CT2), one blender (B1), and
two product tanks (PT1, PT2). Unit slots 1 and 2 are pre-assigned to
period 1, while slots 3 and 4 are pre-assigned to period 2. Note that
the optimization has determined that slot 3 in the CT2 grid, and slot 4
in the PT1 grid, have zero length.

The objective of the scheduling model is to minimize the blend
cost (i.e., materials cost), the switching cost associated with each
blend run, product changeovers in the swing tanks, the number of
“delivery runs” (i.e., the number of time slots used to deliver a spe-
cific order from a given tank), and the demurrage cost. Delivery runs
are penalized in order to avoid computing delivery schedules that
deliver the same order from several tanks at the same time, and to
minimize intermittent deliveries of the same order from the same
tank.

Binary variables are employed in the model to determine, at each
time slot, the following discrete decisions:
•	Which product tank each blender is feeding (one variable for

each blender-tank connection);
•	What gasoline grade is stored in each product tank (one varia-

ble for each grade-tank pair); and
•	What demand order each product tank is partially or complete-

ly fulfilling (one variable for each tank-order connection).
With these binary variables, other discrete decisions can be mod-

eled with 0–1 continuous variables, such as:
•	What gasoline grade each blender is producing;
•	The status of a blender (running or idle);
•	The transition of a blender from running to being idle, or vice

versa;
•	When a new blend run starts;
•	Product transitions in the blenders; and
•	Product changeovers in the swing tanks.
The scheduling model also considers variable blending rates,

variable delivery rates, blender- and product-specific setup times for
the blenders (i.e., idle times for, e.g., cleaning or sensor recalibration
purposes), maximum delivery rates from blend component tanks
to the blenders, minimum blend size, and minimum running times
for each blender and product. Other constraints include the material
balances, product composition specifications, product quality speci-
fications, and linear and/or nonlinear blending equations.

The difficulty in solving this scheduling model to global optimal-
ity arises from the following factors:
•	The significant number of discrete decisions that can be made,

which are directly related to the number of time slots, gasoline
grades, blenders, product tanks, and demand orders (the com-
binatorial nature of the problem);
•	The inclusion of nonlinear blending equations (the non-convex

nature of the problem); and
•	All the considered operational constraints.
Castillo and Mahalec [16] found that introducing constraints reg

arding minimum blend cost and minimum switching cost can im-
prove the quality of the solution and reduce the execution times for
small- to medium-size problems. The minimum blend cost is com-
puted using the approach delineated in Castillo et al. [40].

The nonlinear blending equations are presented next, since they
were rewritten in such a way that nonlinear terms are only bilinear
or quadratic.

Nonlinear blending equations
Eq. (1) to Eq. (19) are the proposed reformulation of the ethyl

RT-70 model for octane blending [5,41]. Bilinear terms appear in
Eqs. (1), (13), (14), and (18). Quadratic terms appear in Eqs. (15),
(16), (17), and (19). Main sets, subscripts, variables, and parameters
are described next. Set I = {i} consists of the blend components,
BL = {bl} is constituted by the blenders, N1 = {n} is the time slots,
and set QN = {(θ, n)} represents the time slots associated with each
quality profile θ. Variable Vcomp(i, bl, n) indicates the volume of blend
component i to blender bl during slot n. Variable Vblend(bl, n) is the
volume being processed by blender bl during slot n. The volume
fraction of component i going into blender bl during slot n is denot-
ed by variable r(i, bl, n). Parameter Qbc(i, e, θ) represents the value
of quality property e for blend component i and quality profile θ.
sens(i, θ) is a parameter known as the octane number sensitivity; it
is the difference between the octane numbers, that is, RON – MON,
of blend component i and quality profile θ. The values for the ethyl
RT-70 model coefficients are taken from Singh et al. [5] and are as
follows: a1 = 0.03224, a2 = 0.00101, a3 = 0, a4 = 0.0445, a5 = 0.00081,
and a6 = −0.0645 × 10−4.

	 () () ()comp blend, , , , , , ,= ∀ ∈V i bl n r i bl n V bl n i bl n N1� (1)

	
() () ()

()

RON
avg bc, , , , ,

“RON”, , , : ,

θ

θ θ

=

∀ = ∈ ∈
∑ i

r bl n r i bl n Q i e

e bl n nN1 QN
� (2)

	 () () ()
()

MON
avg bc, , , , ,

“MON”, , , : ,

θ

θ θ

=

∀ = ∈ ∈
∑ i

r bl n r i bl n Q i e

e bl n nN1 QN

� (3)

	
() () ()

()
avg bc, , , , ,

“Ol”, , , : ,

θ

θ θ

=

∀ = ∈ ∈
∑ i

Ol bl n r i bl n Q i e

e bl n nN1 QN
� (4)

	
() () ()

()
avg bc, , , , ,

“Ar”, , , : ,

θ

θ θ

=

∀ = ∈ ∈
∑ i

Ar bl n r i bl n Q i e

e bl n nN1 QN �
 (5)

	
�

 (6)
	

() () ()
()

2sq
avg bc, , , , ,

“Ol”, , , : ,

θ

θ θ

 =

∀ = ∈ ∈
 ∑ i

Ol bl n r i bl n Q i e

e bl n nN1 QN

	 () () ()
()

2sq
avg bc, , , , ,

“Ar”, , , : ,

θ

θ θ

 =

∀ = ∈ ∈
 ∑ i

Ar bl n r i bl n Q i e

e bl n nN1 QN
� (7)

Fig. 4. Representation of unit-specific time slots employed in the scheduling model.

193P.A. Castillo Castillo et al. / Engineering 3 (2017) 188–201

	 () () ()avg , , , , , ,θ= ∀ ∈∑ i
sens bl n r i bl n sens i i bl n N1 � (8)

	 () () () ()
()

RON
avg bc, , , , , ,

“RON”, , , : ,

θ θ

θ θ

=

∀ = ∈ ∈

∑ i
sens bl n r i bl n Q i e sens i

e bl n nN1 QN
� (9)

	 () () () ()
()

MON
avg bc, , , , , ,

“MON”, , , : ,

θ θ

θ θ

=

∀ = ∈ ∈

∑ i
sens bl n r i bl n Q i e sens i

e bl n nN1 QN
� (10)

 	

�
 (11)

() () () ()
() ()

() () ()

RON RON RON

sq

pr avg 1 avg avg

2 avg avg

sq
3 avg avg avg

, , , , ,

+ , 2 ,

+ 2 , 2 3 , 4 ,

 “RON”, ,

 

 

= + −

−

 

 

 − ⋅ +

∀ = ∈

 

Q bl e n r bl n a sens bl n rs bl n

a Ol bl n Ol bl n

a Ar bl n Ar bl n Ar bl n

e bl n N1

� (12)

	

() () () ()

() ()

() () ()

MON MON MON

sq

pr avg 4 avg avg

5 avg avg

sq
6 avg avg avg

, , , , ,

+ , 2 ,

+ 2 , 2 3 , 4 ,

 “MON”, ,

 

 

= + −

−

 

 

 − ⋅ +

∀ = ∈

 

Q bl e n r bl n a sens bl n rs bl n

a Ol bl n Ol bl n

a Ar bl n Ar bl n Ar bl n

e bl n N1

	 () () ()RON RON
avg avg avg, , , ,= ∀ ∈rs bl n r bl n sens bl n bl n N1 � (13)

	 () () ()MON MON
avg avg avg, , , ,= ∀ ∈rs bl n r bl n sens bl n bl n N1 � (14)

	 () ()2
avg avg2 , , ,= ∀ ∈Ar bl n Ar bl n bl n N1 � (15)

	 () ()2
avg avg2 , , ,= ∀ ∈Ol bl n Ol bl n bl n N1 � (16)

	 () ()2sq sq
avg avg2 , , ,= ∀ ∈Ar bl n Ar bl n bl n N1 � (17)

	 () () ()sq
avg avg avg3 , , 2 , ,= ∀ ∈Ar bl n Ar bl n Ar bl n bl n N1 � (18)

	 () ()2
avg avg4 , 2 , ,= ∀ ∈Ar bl n Ar bl n bl n N1 � (19)

4. Piecewise linear relaxations

As mentioned in Section 1, the use of piecewise linear relaxations
is becoming more widespread due to the maturity of MILP solvers.
Piecewise McCormick relaxation (PMCR) and the NMDT will be
employed in this work. These techniques replace each bilinear term
in model P with a single variable, thus linearizing the correspond-
ing equations. This single variable is then subject to various linear
constraints, which add extra continuous and binary variables to the
model. If equal to 1, these extra binary variables activate a specific
interval of the domain (i.e., partition) of one of the variables in the

bilinear term (denoted as the discretized variable). The number of
partitions is denoted as NP, and it is assumed that all discretized
variables have the same number of partitions. PMCR has a linear
relation between NP and the number of extra binary variables re-
quired per discretized variable, while NMDT exhibits a logarithmic
relation. For a more detailed explanation of these methods, the
reader is encouraged to review Refs. [16,37].

The resulting MILP model is denoted as model PR and is a relax-
ation of problem P. This means that the optimal solution of model
PR is a valid estimate of the global solution of P (in the minimiza-
tion case, this will be a lower bound, LB). Moreover, an estimate
of the best possible solution of model PR is a valid estimate of the
global optimum of P. Therefore, even if model PR is not solved to
optimality by a MILP solver within a given allocated time, a new
estimate of the global solution can still be found. The larger the
number of partitions, the closer model PR is to model P; see Fig. 5
for an illustration with an example involving a single discretized
variable.

If the relaxation is tight, then its optimal solution will be very
close to the original optimum. Hence, a strategy to find a feasible
solution to the original problem P (in the minimization case, this
will be an upper bound, UB) is to initialize P with the optimal solu-
tion of model PR. Since some MILP solvers, such as CPLEX, can store
multiple feasible solutions to the MILP problem, potentially leading
to different solutions of P due to the different starting points, we use
a multi-start strategy in parallel fashion. Note that, for practical rea-
sons related to the speed and robustness of commercial solvers, it is
more convenient to solve NLP models instead of MINLPs. This is the
reason why the values of the binary variables are fixed, converting
problem P (MINLP) into PF (NLP). The compact notations of models P,
PR, and PF are as follows:

Model P:

	

()0min ,f x y

() { }
() ()

{ }

,

L U

s.t. , 0 0
,

0
, 0, 1

∈

≤ ∀ ∈

= + + + ∀ ∈

≤ ≤ ≤
∈ ∈

∑



m

m ijm i j m m mi j

lylx

f x y m
f x y a x x B x C y d m

x x x
x y

BLT

M
M

Model PR:

	

()R
0min ,f x y

() { }
() ()

()
()

{ } { }

R

R
,

R

R

L U

s.t. , 0 0
,

, , , 0
, , ,

0
, 0, 1 , , , 0, 1

∈

≤ ∀ ∈

= + + + ∀ ∈

≤ ∀ ∈

′ ′ ′ ′ ′= + + + + ∀ ∈

≤ ≤ ≤
∈ ∈ ∈ ∈ ∈

∑

  

m

m ijm ij m m mi j

n

n n n n n n

ly lzlx lw lv

f x y m
f x y a w B x C y d m

g x w v z n
g x w v z H x A w B v C z d n

x x x
x y w v z

BLT

M
M

N
N

Fig. 5. Accuracy of the relaxation (f0
R) with respect to exact representation (f0) of the boundaries of a feasible region increases with the number of partitions (maximization prob-

lem). (a) 10 partitions; (b) 100 partitions.

194 P.A. Castillo Castillo et al. / Engineering 3 (2017) 188–201

	

()R
0min ,f x y

() { }
() ()

()
()

{ } { }

R

R
,

R

R

L U

s.t. , 0 0
,

, , , 0
, , ,

0
, 0, 1 , , , 0, 1

∈

≤ ∀ ∈

= + + + ∀ ∈

≤ ∀ ∈

′ ′ ′ ′ ′= + + + + ∀ ∈

≤ ≤ ≤
∈ ∈ ∈ ∈ ∈

∑

  

m

m ijm ij m m mi j

n

n n n n n n

ly lzlx lw lv

f x y m
f x y a w B x C y d m

g x w v z n
g x w v z H x A w B v C z d n

x x x
x y w v z

BLT

M
M

N
N

Model PF:

	

()F
0min f x

() { }
() ()

F

F
,

L U

s.t. 0 0
ˆ

0
∈

≤ ∀ ∈

= + + + ∀ ∈

≤ ≤ ≤
∈

∑



m

m ijm i j m m mi j

lx

f x m
f x a x x B x C y d m

x x x
x

BLT

M
M

Note that, in this section, set M = {m} represents all the origi-
nal constraints, set N = {n} represents all the constraints required
by the piecewise linear relaxation technique, and set BLT = {(i, j)}
represents all the bilinear terms. Variables x and y are the original
continuous and binary variables, respectively, and v and z are the
extra continuous and binary variables, respectively, required by
the relaxation strategy. Variable wij is the continuous variable that
replaces the bilinear term xi xj. Scalars lx, ly, lw, lv, and lz represent
the size of vectors x, y, w, v, and z, respectively. Parameters xL and xU
are respectively the lower and upper bounds of the x variables. Note
that quadratic terms can be treated as bilinear terms.

5. Tightening bounds on the variables

Model PR becomes tighter (i.e., closer to model P) as the number
of partitions of the discretized variables is increased. However, an
increase in the number of partitions produces an increment in the
size of model PR and, after a certain number of partitions, model PR
can become computationally intractable. Therefore, another tech-
nique is required in order to avoid the necessity of a large number
of partitions. In this work, an OBBT method is employed [34,42]. The
idea is to reduce the domain of the variables involved in nonlinear
terms by computing new bounds of these variables by solving two
optimization problems (a maximization problem and a minimiza-
tion problem per variable). This is done after a new and better feasi-
ble solution to P is computed. After reducing the domain of the vari-
ables, model PR becomes closer to P without increasing the number
of partitions, as shown in Fig. 6.

The mathematical model used in OBBT is denoted as model PRB,
which is constructed as a relaxation of P, but with a different ob-
jective function and an extra constraint. To compute a lower bound
of variable xh, that is, xh

L, the objective function is to minimize this
variable. To compute an upper bound of variable xh, that is, xh

U, the

objective function is to maximize this variable. In order to compute
new bounds, the extra constraint added imposes the condition that
the value of the relaxed version of the original objective function,
that is, f0

R (x, y), must be at least as good as the current best feasible
solution.

Note that models PR and PRB can use different relaxations. In
this work, model PRB employs standard McCormick envelopes [32]
and integrality requirements on variables y are dropped, thus reduc-
ing PRB to linear programming (LP). The lower and upper bounds
of variable xh are updated with the optimal solutions of the corre-
sponding LP model. Compact notation of model PRB is shown below
for a minimization problem.

Model PRB:

	

()L U
h h h hmin max= =x x x x

()
() { }
() ()

()
()

[]

R
0
R

R
,

RB

RB

L U

s.t. ,
, 0 0
,

, 0
,

0
, 0, 1 ,

∈

≤

≤ ∀ ∈

= + + + ∀ ∈

≤ ∀ ∈

′ ′ ′= + + ∀ ∈

≤ ≤ ≤
∈ ∈ ∈

∑

 

m

m ijm ij m m mi j

k

k k k k

lylx lw

f x y UB
f x y m
f x y a w B x C y d m

g x w k
g x w H x A w d k

x x x
x y w

BLT

M
M

K
K

OBBT consists of solving these LP models for all the variables
involved in nonlinear terms, in a parallel framework, to reduce exe-
cution times. Thus, the bounds will generally be weaker than when
solving the problems sequentially. Since the number of instances
to solve can be very large, instances are solved in different blocks.
These blocks are defined by a maximum number of problems to
be solved in parallel. After one block is solved, the corresponding
bounds are updated and then the next block is solved. Fig. 7 shows
the flowchart of the OBBT method. Note that OBBT is applied only
once per variable.

6. Global optimization algorithm

The steps of the proposed global optimization algorithm are
presented next for a minimization problem. Fig. 8 shows the corre-
sponding flowchart. Note that the algorithm can be applied to any
MINLP problem with nonlinearities exclusive to bilinear or quadratic
terms.

(1) Initialize algorithm parameters. Define the number of parti-
tions to be used {NP1, NP2, …, NPlast} and set NP = NP1. Set the

Fig. 6. Accuracy of the relaxation increases when the domain of the variables involved in nonlinear terms is reduced. (a) 10 partitions with x∈ [0, 4.5]; (b) 10 partitions with
x∈ [2.25, 2.7].

195P.A. Castillo Castillo et al. / Engineering 3 (2017) 188–201

lower bound LB = −∞, upper bound UB = +∞, total number of
iterations counter ITtotal = 1, iterations with the same number
of partitions ITsameNP = 1, maximum number of total iterations

max
totalIT , maximum number of iterations with the same number

of partitions max
sameNPIT , maximum total time max

totalTIME , and mini-
mum relative tolerance ε.

(2) Lower bound computation. Solve MILP model PR using the
CPLEX solver with parallel and solution pool options active.
Update LB with the best possible solution from CPLEX, if this
value is greater than the previous LB.

(3) Upper bound computation. Use the solutions stored in the
CPLEX solution pool as starting points for NLP model PF.
Solve NLP model PF instances in parallel using a local non-
linear solver. Update UB if any of the computed solutions is
feasible and has a smaller objective function value than the
previous UB.

(4) Update optimality gap. The following formula is used in this
step: OptGap = (UB – LB)/LB × 100.

(5) Check termination criteria. Stop if OptGap ≤ ε, if ITtotal = max
totalIT , if

the total execution time is equal to or greater than max
totalTIME , or

if the number of partitions has already reached NPlast. Other-
wise, continue to Step 6.

(6) If the upper bound UB did not improve in Step 3, or if ITsameNP
= max

sameNPIT , continue to Step 7. Otherwise, reduce the domain
of the variables involved in nonlinear terms using the OBBT
method described in Section 5; set ITtotal = ITtotal + 1 and ITsameNP
= ITsameNP + 1, and then go back to Step 2.

(7) Increase the number of partitions to the next specified value.
Set ITtotal = ITtotal + 1 and go back to Step 2.

Although the main elements of the algorithm have already been
proposed (e.g., PMCR, NMDT, OBBT), the novelty is related to the way in
which they are implemented. More specifically: ① the CPLEX solution Fig. 7. Flowchart of the OBBT method.

Fig. 8. Flowchart of the global optimization algorithm.

196 P.A. Castillo Castillo et al. / Engineering 3 (2017) 188–201

pool is used to store starting points for model PF, ② instances of
model PF are solved in parallel, ③ OBBT is applied to blocks of var-
iables and in a parallel framework, and ④ no branching strategy
is employed.

7. Case studies

The tests in this paper consist of Examples 4, 8, 12, and 14 from
Li and Karimi [3]. The difference in this work is that the ethyl RT-
70 models are considered for blending RON and MON properties (as
described in Section 3.1) instead of blend indices. RON index corre-
lations from Li et al. [13], shown in Eq. (20) and Eq. (21), were used
to compute the actual RON values from the blend indices given by
Li and Karimi [3]. RBN denotes the research octane number blend
index. MON values were assumed in this work and the correspond-
ing minimum product specifications were set equal to zero; there-
fore, MON constraints will not be active at the optimal solution.
Quality properties of blend components are assumed to be known
(recall Section 2); therefore, Eq. (20) and Eq. (21) are only used to

convert the blend components’ RBN values to RON values before
the optimization runs (i.e., they do not appear in the optimization
problems).

	 11.5 0 85= + ≤ ≤RBN RON RON � (20)

	 ()exp 0.0135 3.422042 85= + >RBN RON RON � (21)

Table 1 describes the size of the blending system examples. In-
formation about the periods, their duration, their corresponding
time slots, and the orders that can be delivered within such periods
is presented in Table 2. RON and MON values and their respective
specifications are shown in Table 3. Table 4 presents the statistics
regarding the size of model P when not using the constraints on the
minimum blend and switching costs. When using such constraints,
four equations are added to the model (minimum blend cost, mini-
mum number of delivery runs, minimum number of blend runs, and
minimum number of product changeovers in the swing tanks). Note
that the size of the blending system and its corresponding schedul-
ing model increase from Example 4 to Example 14.

Table 1
Summary of the blending system examples.

Example ID Number of blenders Number of orders Number of products Number of product tanks Number of quality properties

4 1 15 4 11 9

8 2 20 4 11 9

12 2 35 5 11 9

14 3 45 5 11 9

Table 2
Periods, duration, time slots, and orders that can be delivered in each period.

Example ID Period Duration (h) Slots Orders that can be delivered

4 1 100 1, 2 O1–O7, O12–O15

2 92 3, 4 O8–O11

8 1 80 1, 2 O1–O7, O12–O19

2 70 3, 4 O8

3 42 5, 6 O8–O11, O20

12 1 50 1–3 O1–O7, O12, O13, O15, O19, O33

2 50 4–6 O14–O18, O27, O28, O33

3 50 7–9 O8, O21, O24, O29–O32, O34, O35

4 42 10–12 O8–O11, O20, O22, O23, O25, O26

14 1 50 1–3 O1–O7, O12, O13, O15, O19, O26

2 50 4–7 O14–O18, O26

3 50 8–10 O8, O21, O24, O27–O31, O45

4 42 11–13 O8–O11, O20, O22, O23, O25, O32–O44

Table 3
RON and MON values and specifications.

Property Blend components Product specifications [min, max]

C1 C2 C3 C4 C5 C6 C7 C8 C9 P1 P2 P3 P4 P5

RON 75 90.3 95.6 97.3 83 100 115 118 81 [95, 200] [96, 200] [94, 200] [90, 200] [98, 200]

MON 66 80.8 80.5 91.7 74 100 109 100 72 [0, 200] [0, 200] [0,200] [0, 200] [0, 200]

Table 4
Statistics of model P.

Example ID Number of equations Number of variables Number of binary variables Number of bilinear terms

4 6 207 2 503 433 168

8 9 297 3 323 553 336

12 23 087 8 170 1 317 672

14 32 574 10 693 1 628 1 092

197P.A. Castillo Castillo et al. / Engineering 3 (2017) 188–201

8. Results

All the examples were solved on a computing machine Intel®
Core™ i7-4710HQ central processing unit (CPU), 2.50 GHz, 12 GB
random-access memory (RAM), Windows 10 (8-core). The global
optimization algorithm was implemented in Python 2.7. The Py-
thon script generates general algebraic modeling system (GAMS)
files with the corresponding mathematical models, which are then
solved by employing the GAMS-Python application program inter-
face (API). The selected solvers were CPLEX 12.6 for model PR and
model PRB, and CONOPT 3 for model PF.

The global optimization algorithm termination criteria were as
follows: 0.01% optimality gap or 3600 s (1 h). There was no limit on
the total number of iterations, nor on the iterations with the same
number of partitions. The numbers of partitions in model PR when
using PMCR were {2, 4, 8, 16, 32}, and when using NMDT were {10,
100, 1000}.

The termination criteria for the MILP problems (instances of
model PR) were: an optimality gap of 0.01% or 600 s. The CPLEX
parallel option was active (in deterministic mode) with a maximum
number of threads equal to 8. In addition, the CPLEX solution pool
option was active with a maximum pool capacity of 30 and the
replacement option that generates diverse solutions. Thus, a maxi-
mum of 30 instances of model PF was solved per iteration using the
GAMS parallel computing grid facility. CONOPT 3 default termina-
tion criteria were used.

The termination criteria for the LP problems (instances of model
PRB) were: optimality or 60 s. A maximum number of 100 LP prob-
lems were solved in parallel using the GAMS parallel computing grid
facility.

For comparison purposes, the global commercial solvers BARON
15.9 [33] and ANTIGONE 1.1 [34] were employed to solve the orig-
inal model P using the same termination criteria as the proposed
global optimization algorithm.

Section 8.1 presents the results obtained when not including the
constraints on the minimum blend cost and minimum switching
cost, while Section 8.2 shows the results when such constraints are
added to the model. A comparison with previously published heu-
ristic methods is included in Section 8.3.

8.1. Not using constraints on the minimum blend and switching costs

A comparison of the results obtained by the proposed algorithm
with those obtained by commercial solvers is presented in Table 5.
For simplicity, we refer to our proposed algorithm as GO-PMCR
when it uses piecewise McCormick relaxation to construct model
PR and as GO-NMDT when it employs the NMDT.

ANTIGONE, BARON, and GO-PMCR compute the same solution for
Examples 4 and 8. GO-NMDT computes the same solution for Exam-
ple 4, but the final solution for Example 8 is slightly higher. GO-PMCR
computes better solutions than GO-NMDT and ANTIGONE in all ex-
amples. In this work, this is because GO-PMCR can use more distinct
numbers of partitions (2, 4, 8, 16, 32) than GO-NMDT (10, 100, 1000);
thus, it generates more feasible solutions from the MILP relaxation.

BARON does not find a feasible solution for Examples 12 and 14
within 1 h. Based on the log files generated by commercial solvers,
it seems that BARON relies more on the branching procedure, while
ANTIGONE focuses more on the MILP relaxation and bound-tight-
ening steps (as our proposed algorithm does). Feasible integer solu-
tions for scheduling problems may be found only at deep nodes in
the branch-and-bound tree [43], which can be of significant size
when the number of binary variables is large.

In Examples 4 and 8, the algorithm and the commercial solvers
compute similar optimality gaps. For Examples 12 and 14, BARON
cannot compute an optimality gap (no feasible solution was found),
and GO-PMCR obtains a lower optimality gap than GO-NMDT and
ANTIGONE.

Both commercial solvers and the proposed algorithm did not
solve all four examples to the desired tolerance within 1 h. The
times reported in Table 5 are the times in which the best solution
was found. GO-PMCR and GO-NMDT require shorter times than both
commercial solvers. GO-NMDT is significantly faster than GO-PMCR
only in the small-sized Example 4. Note that, for the number of
partitions selected, the size of the MILP relaxation grows faster with
GO-NMDT than with GO-PMCR. Therefore, MILP relaxations are of-
ten faster to solve to optimality with GO-PMCR. However, GO-PMCR
will require more iterations. Based on the three factors considered
(i.e., best solution found, optimality gap, and time to best solution),
GO-PMCR shows the best performance. Fig. 9 shows the total num-
ber of binary variables in the relaxation of the scheduling model
(i.e., model PR) when using PMCR and NMDT, at each iteration of
the algorithm and for each example. It shows that, for the selected
partition values, PMCR requires fewer binary variables in the first
4–5 iterations than NMDT at any iteration. This is expected since the
partitions when using PMCR are fewer than 8 in those iterations,
and NMDT starts with 10. Note that flat sections in the curves in-
dicate that the OBBT method was applied instead of increasing the
number of partitions.

The major differences between the proposed algorithm and BAR-
ON are:
•	The use of piecewise relaxation methods for bilinear terms in-

stead of standard McCormick envelopes; and
•	Dynamically increasing the number of partitions in order to

tighten the MILP relaxation, instead of implementing a branch-
ing strategy.

These features seem to be adequate for the scheduling problems
presented here. We do not claim that our proposed algorithm will al-
ways be better than BARON when solving a different type of problem.

Our proposed algorithm and ANTIGONE perform similarly, but
differ mainly in the following areas:
•	The use of NMDT as a piecewise relaxation technique;
•	How the number of partitions is increased in each iteration;
•	When and how to apply OBBT; and
•	The use of the CPLEX solution pool to store feasible solutions

from the MILP relaxations and use them as starting points to
solve the NLP problem.

Finally, ANTIGONE and BARON can handle more than just biline-
ar and quadratic terms; in addition, they apply other mathematical

Table 5
Summary of results (not using constraints on the minimum blend and switching costs).

Example ID Best solution found (1000 USD) Optimality gap (%) Time to best solution (s)

ANTIGONE BARON GO-PMCR GO-NMDT ANTIGONE BARON GO-PMCR GO-NMDT ANTIGONE BARON GO-PMCR GO-NMDT

4 4 633 4 633 4 633 4 633 6.90 6.37 6.31 6.37 2 350 930 616 120

8 8 203 8 203 8 203 8 223 9.53 9.53 9.19 9.49 1 708 3 273 714 1 391

12 16 650 NF 15 408 15 440 20.51 NA 14.00 14.22 1 631 3 600 1 411 1 438

14 21 360 NF 21 316 31 639 12.50 NA 12.31 40.92 3 600 3 600 2 911 2 904

NF = not found; NA = not available.

198 P.A. Castillo Castillo et al. / Engineering 3 (2017) 188–201

techniques capable of improving performance (e.g., reformulation-
linearization technique, cutting planes, feasibility-based bound
tightening, different branching strategies, etc.).

8.2. Using constraints on the minimum blend and switching costs

For this case, the results computed by the algorithm and com-
mercial solvers are presented in Table 6. The most notable differenc-
es with respect to Table 5 are the smaller optimality gaps and the
shorter times for Examples 4 and 8.

Both commercial solvers and the algorithm find similar solutions
for Examples 4 and 8. BARON still does not find a feasible solution for
Examples 12 and 14 within the allocated time. GO-PMCR computes
better solutions than GO-NMDT for Examples 12 and 14, which in
turn has better solutions than ANTIGONE. Note that the addition of
bounds caused an increment in the number of solutions for Example 8.
Since the solutions from Section 8.1 are still feasible even with the
inclusion of the constraints regarding minimum blend and switching
costs, this suggests that such constraints are affecting the solvers. This
effect is also observed in ANTIGONE in Examples 12 and 14.

Regarding optimality gaps, most of the same observations as in
Section 8.1 can be made. Similar optimality gaps are computed by all
methods for Examples 4 and 8. For Examples 12 and 14, GO-PMCR
calculates lower optimality gaps than GO-NMDT and ANTIGONE.

Both commercial solvers and the proposed algorithm solve Ex-
ample 4 to the desired tolerance; BARON is the slowest. For Example
12, the time to the best solution required by GO-PMCR is larger than
that required by GO-NMDT; however, it must be considered that
GO-PMCR computes a better solution.

Overall, GO-PMCR shows the best performance once again. For il-
lustration purposes, the blend and delivery schedules computed for
Example 14 by the algorithm using PMCR are shown in Fig. 10 and
Fig. 11, respectively.

8.3. Comparison with heuristic methods

In this section, the proposed algorithm is compared with previ-
ously published heuristic methods [15,21]. Table 7 [15,21] contains
the best solution found by those methods and the time required to
compute such solutions. Note that heuristic methods do not com-
pute an optimality gap since they aim to find close-to-optimal solu-
tions very rapidly, and they do not spend time estimating and refin-
ing the value of the global optimal solution. These heuristic methods
are tailored to the examples used in this work. These methods con-
struct the final solution by decomposing the original problem into
different levels, each one with different accuracy and complexity.
Short execution times are achieved by solving the least complex
level first and then, in each subsequent level, fixing the values of the
most important variables to those from the previous level’s solution.

The objective function of the scheduling model employed in this
work is the same as the one used by Castillo and Mahalec [15]. This
objective function penalizes each individual blend run, even when
the same product is being blended in contiguous blend runs. On the
other hand, Cerdá et al. [21] did not penalize the number of indi-
vidual blend runs, but only penalized the product transitions in the
blenders. We show the adjusted values of the solutions reported by
Cerdá et al. [21]; that is, individual blend runs are penalized.

All methods find the same solution for Example 4. In general, all
the methods compute very similar solutions for the remaining ex-
amples. Solutions from Cerdá et al. [21] have higher costs for Exam-
ples 8, 12, and 14 because they did not originally penalize individual
blend runs. The method from Cerdá et al. [21] might compute sim-
ilar solutions to those from the other methods if it used the same
objective function.

Heuristic methods still require smaller execution times than the
proposed global optimization algorithm. This is expected, because
those methods do not involve as many steps as global optimization
techniques. The proposed global optimization algorithm does not
find solutions of the same quality as quickly as the two selected heu-
ristic methods. To compute feasible solutions in each iteration, our
proposed algorithm needs to first solve a MILP (i.e., model PR). The
solution of the MILP is the most time-consuming step, thus reducing
the speed required to compute new feasible solutions. Moreover, the
small number of partitions at the beginning of the algorithm may
result in weak MILP relaxations, which generate starting points for
the NLP models that are far from the global optimum.

These results indicate the need to improve the corresponding step
to compute feasible solutions, or to simply integrate heuristic meth-
ods into the proposed algorithm.

9. Conclusions

In this work, we presented a global optimization algorithm that Fig. 9. Number of binary variables in model PR at each iteration of the algorithm.

Table 6
Summary of results (using constraints on the minimum blend and switching costs).

Example ID Best solution found (1000 USD) Optimality gap (%) Time to best solution (s)

ANTIGONE BARON GO-PMCR GO-NMDT ANTIGONE BARON GO-PMCR GO-NMDT ANTIGONE BARON GO-PMCR GO-NMDT

4 4 633 4 633 4 633 4 633 0.01 0.01 0.01 0.01 26 296 30 14

8 8 207 8 204 8 206 8 204 0.05 0.02 0.04 0.02 557 1 218 103 140

12 23 590 NF 15 384 15 403 34.80 NA 0.01 0.13 3 333 3 600 2 674 742

14 23  520 NF 21 270 21 360 9.68 NA 0.13 0.55 1 636 3 600 2 574 2 845

NF = not found; NA = not available.

199P.A. Castillo Castillo et al. / Engineering 3 (2017) 188–201

can solve MINLP problems with bilinear and quadratic terms. The
algorithm computes estimates of the global solution by constructing
and solving MILP problems that are relaxations of the original prob-
lem obtained by using either PMCR or NMDT. These methods discre-
tize the domain of one of the variables of a bilinear term into several
partitions, and introduce extra binary and continuous variables into
the model. To improve the estimates of the global optimum, the

number of partitions is increased during the algorithm.
To avoid a rapid increase in the model size due to a large number

of partitions, an OBBT method is used. The MILP relaxation will be
closer to the original problem if the number of partitions stays the
same but the domain of the variables is reduced. The OBBT method
solves several LPs in a parallel setting.

The CPLEX solution pool is active and stores different feasible

Fig. 10. Blend schedule computed for Example 14 by the proposed algorithm using PMCR. Kbbl is short for kilobarrel, 1 kbbl = 158.9873 m3.

Fig. 11. Delivery schedule computed for Example 14 by the proposed algorithm using PMCR.

Table 7
Comparison with heuristic methods.

Example ID Best solution found (1000 USD) Time to best solution (s)

Castillo and
Mahalec [15]

Cerdá et al. [21] Cerdá et al. [21]
adjusted values

GO-PMCR GO-NMDT Castillo and
Mahalec [15]

Cerdá et al. [21] GO-PMCR GO-NMDT

4 4 633 4 613 4 633 4 633 4 633 3 0.4 30 14

8 8 203 8 163 8 223 8 206 8 204 6 7.5 103 140

12 15 403 15 342 15 442 15 384 15 403 17 31.0 2 674 742

14 21 263 21 181 21 301 21 270 21 360 24 21.0 2 574 2 845

200 P.A. Castillo Castillo et al. / Engineering 3 (2017) 188–201

solutions found during the branch-and-bound procedure to solve
the MILP relaxation. These solutions are then used as starting points
for a nonlinear solver to find feasible solutions to the original prob-
lem. This step is also parallelized.

We showed that the proposed algorithm can be used to schedule
gasoline-blending operations, taking into consideration the distri-
bution problem and the most important operational constraints. We
employ a continuous-time MINLP scheduling model [16] where the
ethyl RT-70 models are used for octane blending.

The proposed algorithm was compared with two commercial
solvers and two heuristic methods. The elements under evaluation
were: the best solution found, the corresponding optimality gap,
and the time to best solution. The proposed algorithm with PMCR
showed a better performance than with NMDT. In our large-sized
examples, the proposed algorithm with either PMCR or NMDT per-
formed better than the commercial global solvers. This result shows
that further research on this algorithm may be very promising. Both
selected heuristic methods provided good solutions in shorter ex-
ecution times than the global algorithms. This result indicates that
the step to compute feasible solutions can still be improved.

We tested the performance of the algorithm by solving the sched-
uling model for two scenarios: ① not including lower bounds on the
blend cost and switching costs, and ② including such bounds. The
first problem is harder to solve and is representative of a kind of mod-
el one may write without diligently trying to reduce the search space
as much as possible. Adding a tight lower bound to the blending cost
as a constraint, as well as adding the lower bound to the switching
costs, enables algorithms to search smaller spaces and improves their
performance. This result also indicates that the relaxations are still
not tight enough. Future work will include the derivation and addi-
tion of redundant and symmetry-breaking constraints; the testing
of a different relaxation scheme for quadratic, cubic, and higher
order terms (e.g., outer approximation); and the modification of the
bound-tightening method in order to speed up the algorithm.

Acknowledgements

Support by Ontario Research Foundation, McMaster Advanced
Control Consortium, and Fundação para a Ciência e Tecnologia (In-
vestigador FCT 2013 program and project UID/MAT/04561/2013) is
gratefully acknowledged.

Compliance with ethics guidelines

Pedro A. Castillo Castillo, Pedro M. Castro, and Vladimir Mahalec
declare that they have no conflict of interest or financial conflicts to
disclose.

Nomenclature

Sets and subscripts
BL = {bl}	 Blenders
E = {e}	 Quality properties
I = {i}	 Blend components and corresponding storage tanks
N1 = {n}	 Time slots
QN = {(θ, n)}	 Time slot n is associated with the period with quality

profile θ

Parameters
a1, a2, ..., a6	 Coefficients for the ethyl RT-70 model
Qbc (i, e, θ)	 Value of quality property e of blend component i dur-

ing quality profile θ
sens (i, θ)	 Octane number sensitivity, i.e., octane difference RON

– MON for blend component i during quality profile θ

Continuous variables
Aravg (bl, n)	 Volumetric average of the aromatics content of the

processed material by blender bl during slot n
Arsq

avg (bl, n)	 Volumetric average of the squared value of the aro-
matics content of the processed material by blender bl
during slot n

Ar2avg (bl, n)	 Squared value of Aravg (bl, n)
Ar2sq

avg (bl, n)	 Squared value of Arsq
avg (bl, n)

Ar3avg (bl, n)	 Product of Arsq
avg (bl, n) and Ar2avg (bl, n)

Ar4avg (bl, n)	 Squared value of Ar2avg (bl, n)
Olavg (bl, n)	 Volumetric average of the olefins content of the pro-

cessed material by blender bl during slot n	
Ol sq

avg (bl, n)	 Volumetric average of the squared value of the olefins
content of the processed material by blender bl during
slot n

Ol2avg (bl, n)	 Squared value of Ol sq
avg (bl, n)

Qpr (bl, e, n)	 Value of quality property e of the processed material
by blender bl during slot n

r (i, bl, n)	 Volume fraction of blend component i going into
blender bl during slot n	

r (bl, n)	 Volumetric average of the motor octane number of the
processed material by blender bl during slot n

r (bl, n) 	 Volumetric average of the research octane number of
the processed material by blender bl during slot n

rs (bl, n) 	 Product of r (bl, n) and sensavg (bl, n)
rs (bl, n) 	 Product of r (bl, n) and sensavg (bl, n)
sensavg (bl, n)	 Volumetric average of the octane number sensitivity

of the processed material by blender bl during slot n
sens (bl, n)	 Volumetric average of the octane number sensitivity

times the motor octane number
sens (bl, n) 	 Volumetric average of the octane number sensitivity

times the research octane number
Vblend

 (bl, n)	 Volume being processed by blender bl during slot n
Vcomp

 (i, bl, n)	 Volume of blend component i transferred to blender bl
during slot n

References

[1]	 Harjunkoski I, Maravelias CT, Bongers P, Castro PM, Engell S, Grossmann IE, et al.
Scope for industrial applications of production scheduling models and solution
methods. Comput Chem Eng 2014;62:161–93.

[2]	 Méndez CA, Grossmann IE, Harjunkoski I, Kaboré P. A simultaneous optimization
approach for off-line blending and scheduling of oil-refinery operations. Comput
Chem Eng 2006;30(4):614–34.

[3]	 Li J, Karimi I. Scheduling gasoline blending operations from recipe determination
to shipping using unit slots. Ind Eng Chem Res 2011;50(15):9156–74.

[4]	 Li J, Xiao X, Floudas CA. Integrated gasoline blending and order delivery opera-
tions: Part I. Short-term scheduling and global optimization for single and multi-
period operations. AIChE J 2016;62(6):2043–70.

[5]	 Singh A, Forbes JF, Vermeer PJ, Woo SS. Model-based real-time optimization of
automotive gasoline blending operations. J Process Contr 2000;10(1):43–58.

[6]	 Joly M, Pinto JM. Mixed-integer programming techniques for the scheduling of
fuel oil and asphalt production. Chem Eng Res Des 2003;81(4):427–47.

[7]	 Floudas CA, Lin X. Continuous-time versus discrete-time approaches for sched-
uling of chemical processes: A review. Comput Chem Eng 2004;28(11):2109–29.

[8]	 Sundaramoorthy A, Maravelias CT. Computational study of network-based
mixed-integer programming approaches for chemical production scheduling.
Ind Eng Chem Res 2011;50(9):5023–40.

[9]	 Maravelias CT. General framework and modeling approach classification for
chemical production scheduling. AIChE J 2012;58(6):1812–28.

[10]	 Jia Z, Ierapetritou M. Mixed-integer linear programming model for gasoline
blending and distribution scheduling. Ind Eng Chem Res 2003;42(4):825–35.

[11]	 Jia Z, Ierapetritou M. Efficient short-term scheduling of refinery operations based
on a continuous time formulation. Comput Chem Eng 2004;28(6–7):1001–19.

[12]	 Glismann K, Gruhn G. Short-term scheduling and recipe optimization of blend-
ing processes. Comput Chem Eng 2001;25(4–6):627–34.

[13]	 Li J, Karimi I, Srinivasan R. Recipe determination and scheduling of gasoline
blending operations. AIChE J 2010;56(2):441–65.

[14]	 Castillo PAC, Mahalec V. Inventory pinch based, multiscale models for inte-
grated planning and scheduling—Part II: Gasoline blend scheduling. AIChE J
2014;60(7):2475–97.

[15]	 Castillo PAC, Mahalec V. Inventory pinch gasoline blend scheduling algo-

201P.A. Castillo Castillo et al. / Engineering 3 (2017) 188–201

rithm combining discrete- and continuous-time models. Comput Chem Eng
2016;84:611–26.

[16]	 Castillo PAC, Mahalec V. Improved continuous-time model for gasoline blend
scheduling. Comput Chem Eng 2016;84:627–46.

[17]	 Lotero I, Trespalacios F, Grossmann IE, Papageorgiou DJ, Cheon MS. An MILP-
MINLP decomposition method for the global optimization of a source based
model of the multiperiod blending problem. Comput Chem Eng 2016;87:13–35.

[18]	 Castro PM. New MINLP formulation for the multiperiod pooling problem. AIChE
J 2015;61(11):3728–38.

[19]	 Kolodziej SP, Grossmann IE, Furman KC, Sawaya NW. A discretization-based ap-
proach for the optimization of the multiperiod blend scheduling problem. Com-
put Chem Eng 2013;53:122–42.

[20]	 Cerdá J, Pautasso PC, Cafaro DC. A cost-effective model for the gasoline blend
optimization problem. AIChE J 2016;62(9):3002–19.

[21]	 Cerdá J, Pautasso PC, Cafaro DC. Optimizing gasoline recipes and blending opera-
tions using nonlinear blend models. Ind Eng Chem Res 2016;55(28):7782–800.

[22]	 Tawarmalani M, Sahinidis NV. A polyhedral branch-and-cut approach to global
optimization. Math Program 2005;103(2):225–49.

[23]	 Misener R, Floudas CA. ANTIGONE: Algorithms for continuous/integer global
optimization of nonlinear equations. J Glob Optim 2014;59(2):503–26.

[24]	 Boland N, Kalinowski T, Rigtering F. New multi-commodity flow formulations for
the pooling problem. J Glob Optim 2016;66(4):669–710.

[25]	 Sherali HD, Alameddine A. A new reformulation-linearization technique for bi-
linear programming problems. J Glob Optim 1992;2(4):379–410.

[26]	 Ryoo HS, Sahinidis NV. A branch-and-reduce approach for global optimization. J
Glob Optim 1996;8(2):107–38.

[27]	 Smith EMB, Pantelides CC. Global optimization of nonconvex MINLPs. Comput
Chem Eng 1997;21(Suppl):S791–6.

[28]	 Belotti P, Lee J, Liberti L, Margot F, Wächter A. Branching and bounds tightening
techniques for non-convex MINLP. Optim Methods Softw 2009;24(4–5):597–
634.

[29]	 Achterberg T. SCIP: Solving constraint integer programs. Math Program Comput
2009;1(1):1–41.

[30]	 Castro PM. Spatial branch-and-bound algorithm for MIQCPs featuring multipar-

ametric disaggregation. Optim Methods Softw. Epub 2016 Dec 13.
[31]	 Castillo PC, Castro PM, Mahalec V. Global optimization algorithm for large-

scale refinery planning models with bilinear terms. Ind Eng Chem Res
2017;56(2):530–48.

[32]	 McCormick GP. Computability of global solutions to factorable noncon-
vex programs: Part I—Convex underestimating problems. Math Program
1976;10(1):147–75.

[33]	 Karuppiah R, Grossmann IE. Global optimization for the synthesis of integrated
water systems in chemical processes. Comput Chem Eng 2006;30(4):650–73.

[34]	 Castro PM. Tightening piecewise McCormick relaxations for bilinear problems.
Comput Chem Eng 2015;72:300–11.

[35]	 Misener R, Thompson JP, Floudas CA. APOGEE: Global optimization of standard,
generalized, and extended pooling problems via linear and logarithmic parti-
tioning schemes. Comput Chem Eng 2011;35(5):876–92.

[36]	 Kolodziej S, Castro PM, Grossmann IE. Global optimization of bilinear programs
with a multiparametric disaggregation technique. J Glob Optim 2013;57(4):
1039–63.

[37]	 Castro PM. Normalized multiparametric disaggregation: An efficient relaxation
for mixed-integer bilinear problems. J Glob Optim 2016;64(4):765–84.

[38]	 Castro PM, Grossmann IE. Global optimal scheduling of crude oil blending oper-
ations with RTN continuous-time and multiparametric disaggregation. Ind Eng
Chem Res 2014;53(39):15127–45.

[39]	 Castro PM. Source-based discrete and continuous-time formulations for the
crude oil pooling problem. Comput Chem Eng 2016;93:382–401.

[40]	 Castillo PAC, Mahalec V, Kelly JD. Inventory pinch algorithm for gasoline blend
planning. AIChE J 2013;59(10):3748–66.

[41]	 Healy WC, Maassen CW, Peterson RT. A new approach to blending octanes. In:
Proceedings of the 24th Midyear Meeting of American Petroleum Institute’s Di-
vision of Refining; 1959 May 27; New York, US; 1959. p. 132–136.

[42]	 Castro PM, Grossmann IE. Optimality-based bound contraction with multipar-
ametric disaggregation for the global optimization of mixed-integer bilinear
problems. J Glob Optim 2014;59(2):277–306.

[43]	 Kallrath J. Planning and scheduling in the process industry. OR Spectrum
2002;24(1):219–250.

