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The scheduling of gasoline-blending operations is an important problem in the oil refining industry. This 
problem not only exhibits the combinatorial nature that is intrinsic to scheduling problems, but also 
non-convex nonlinear behavior, due to the blending of various materials with different quality properties. 
In this work, a global optimization algorithm is proposed to solve a previously published continuous-time 
mixed-integer nonlinear scheduling model for gasoline blending. The model includes blend recipe optimi-
zation, the distribution problem, and several important operational features and constraints. The algorithm 
employs piecewise McCormick relaxation (PMCR) and normalized multiparametric disaggregation tech-
nique (NMDT) to compute estimates of the global optimum. These techniques partition the domain of one 
of the variables in a bilinear term and generate convex relaxations for each partition. By increasing the num-
ber of partitions and reducing the domain of the variables, the algorithm is able to refine the estimates of 
the global solution. The algorithm is compared to two commercial global solvers and two heuristic methods 
by solving four examples from the literature. Results show that the proposed global optimization algorithm 
performs on par with commercial solvers but is not as fast as heuristic approaches.
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1. Introduction

Computing and implementing an optimal production schedule 
can reduce operational costs, increase profit margins, and avoid 
deviations from environmental constraints [1]. However, complex 
industrial plants can have multiple production, storage, and distri-
bution subsystems, several distinct raw materials and intermediate 
and final products, and intricate connections between all these ele-
ments that make scheduling a difficult decision-making process.

Scheduling problems typically deal with four main decisions [1]:  
① determining the required tasks to fulfill the corresponding ob-
jectives, requirements, and/or demand targets; ② assigning each 
task to a processing unit or resource that is available in the network;  
③ defining the sequence in which the tasks will be executed; and  
④ timing the tasks—that is, determining when to start and stop 
each one (Fig. 1). Optimal scheduling decisions are those that max-

imize or minimize a desired objective such as profit, total cost, lead 
time, and so forth. Scheduling software and tools based on mathe-
matical programming is becoming more usual in practice.

The scheduling of gasoline-blending operations is an important 
and relevant industrial problem because gasoline accounts for 60%–
70% of the total profit of an oil refinery [2–4]. In a gasoline-blending  
system, components from dedicated supply tanks are mixed in 
blending tanks or in-line blenders and sent to product tanks. Blend-
ing tanks can either have flow in or out (Fig. 2), resembling batch 
operation. In contrast, in-line blenders operate in a continuous 
manner (Fig. 3). In addition to the four decisions mentioned earlier, 
scheduling blend operations should also involve determining the 
blend recipes—that is, the amounts of components to mix such that 
products’ quality properties meet given specifications.

The gasoline-blending system studied in this work is described 
in Fig. 3. Gasoline blending is carried out by one or more continuous 
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blenders. Each blender is connected to the sources of blend compo-
nents. Blended material in some refinery configurations goes to a 
storage tank, while in other configurations, it can go directly to the 
pipeline. Since there are several grades of gasoline produced (e.g., 
regular, medium, premium), the blender switches from blending 
one grade to another. Each switch requires (partial) realignment of 
blend feeding lines, which leads to a loss of blending capacity. In 
addition, switching to a different range of quality properties often 
requires resetting or recalibration of the analyzers used to measure 
them.

Some of the most important quality properties of gasoline are 
research octane number (RON), motor octane number (MON), Reid 
vapor pressure (RVP), density, sulfur, aromatics (Ar), and olefins (Ol) 
content. RON, MON, and RVP do not blend linearly; thus, considering 
nonlinear blending rules for such quality properties in the sched-
uling model can increase the accuracy of the solution and reduce 

quality giveaways [4,5].
Since the 1960s, there has been a significant effort to derive so-

called “blend indices.” These are nonlinear transformations of the 
actual quality properties of the blend components, which then, as a 
linear combination, can predict the quality of the blend. Even with 
this approach, two issues remain:

(1) If a product is blended into a tank, there is always some ma-
terial in the tank (the so-called “tank heel”) left over from 
previous blends. Any new blend must include the properties 
of the material in the tank in the calculation of the new blend 
recipe, which leads to a nonlinear blending model for multi- 
period scheduling, even when using blend indices.

(2) Blend properties calculated from these indices are not 100% 
accurate, and a cumulative annual quality giveaway of, for ex-
ample, octane can amount to very large cost increments. This 
forces the use of nonlinear blending models for the calcula-
tion of, for example, octane numbers.

Mathematical models for scheduling problems are usually for-
mulated as mixed-integer linear programming (MILP). However, for 
gasoline blending, nonlinear behavior is intrinsic to the correspond-
ing process and mixed-integer nonlinear programming (MINLP) 
needs to be employed for the sake of accuracy. Most nonlinear terms 
are non-convex, making convex optimization techniques ineffective. 
A global optimization approach is thus required. Before describing 
the proposed global optimization method, a brief review of previous 
work is presented in the following paragraphs.

1.1. Literature review on refinery scheduling

Scheduling models can be divided into two main categories based 
on the treatment of the time domain: discrete- and continuous- 
time formulations. In discrete-time models, the time horizon is di-
vided into several time periods of known duration with fixed start 
and end time. In continuous-time models, the time horizon is par-
titioned into time slots whose duration will be determined by the 

Fig. 1. Main scheduling decisions.

Fig. 2. Batch-blending system. The variable t means time period.

Fig. 3. General scheme of the continuous gasoline-blending system studied in this 
work.
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Lotero et al. [17] proposed another formulation of the multi-period  
pooling problem. They denominated this discrete-time MINLP for-
mulation as a hybrid of a source-based model (similar to Castro’s 
split-fraction model [18]) and a concentration-based model [19]. 
Redundant constraints were added to improve the linear relaxation, 
and the model was solved using a two-stage MILP-NLP approach. 
The MILP was a relaxation of the original MINLP model. The NLP 
model was obtained by fixing the integer variables of the original 
model to the values computed by the MILP. The algorithm adds 
integer, optimality, or feasibility cuts to the MILP model at each it-
eration, and stops when the difference between the MILP and NLP 
solutions is smaller than a pre-specified tolerance.

Cerdá et al. [20] presented a continuous-time MILP formulation 
that uses floating slots dynamically allocated to time periods while 
solving the problem. The model included most of the operation-
al constraints found in practice. Cerdá et al. [21] then extended 
the model to handle nonlinear blending rules, thus formulating a  
continuous-time MINLP model. An approximate MILP formulation 
was derived by replacing the nonlinear blending rules with linear 
blend indices. The values of the binary variables computed by this 
MILP were fixed in the original MINLP, thus becoming an NLP that 
was solved to find a near-optimal solution of the original problem.

1.2. Literature review on global optimization

Global optimization of nonlinear non-convex problems has been 
a subject of extensive research over the last three decades. Even 
though powerful commercial solvers have been developed [22,23], 
there has been a continuous stream of advances in the field.

Global optimization algorithms have in common the genera-
tion of a convex relaxation of the problem, which provides a lower 
bound to the value of the objective function, and a way to generate 
feasible solutions (the upper bound). In addition, they have a meth-
od of bringing the lower and upper bounds together, so that the op-
timality gap can be reduced to ε-tolerance.

Computing a tight lower bound is absolutely critical. This may 
involve replacing the original formulation with an equivalent that 
preserves the feasible space but has a stronger relaxation (the differ-
ent formulations for the pooling problem are a well-known example 
[24]). Another option is to reorganize the model constraints and add 
others that, although redundant in the original space, strengthen the 
relaxation. This procedure is known as the reformulation lineariza-
tion technique [25]. The disadvantage is that there is no systematic 
way of knowing where to act in order to move toward a stronger 
relaxation.

A widely used method that guarantees convergence to the global 
optimal solution is known as spatial branch-and-bound [26,27]. It 
is an essential element of commercial solvers such as BARON [22], 
ANTIGONE [23], Couenne [28], and SCIP [29]. Spatial branch-and-
bound works by iteratively reducing the domain of the variables, 
one by one, which in turn improves the quality of the convex relaxa-
tion. Note that if the initial relaxation is weak, due to the presence of 
many non-convex terms, convergence can be rather slow. It is thus 
important to have good branching strategies and bound-tightening 
techniques. Optimality-based bound tightening (OBBT) is an exam-
ple of the latter. Although typically applied only at the root node or 
up to a limited depth [28], recent results have shown that applying 
OBBT in every node may lead to considerably lower optimality gaps 
[30]. OBBT involves solving one minimization and one maximiza-
tion problem for each variable (appearing in non-convex terms) in 
order to generate tighter lower and upper bounds. It can be solved 
sequentially—which has the advantage of generating tighter variable 
bounds and the disadvantage of being computationally expensive 
when dealing with a large number of variables—or in parallel [31].

Bilinear terms are a common source of non-convexities in process  

optimization. While continuous-time models generate problems 
with fewer discrete variables than their discrete counterparts, they 
are more complex to formulate and often feature many “big-M” 
constraints that, due to their weak relaxations [6], compromise 
computational performance. More in-depth reviews of scheduling 
formulations can be found in Refs. [1,7–9].

Gasoline blending has been studied by many researchers due to 
its commercial importance and non-convex features, which makes 
it a suitable subject for testing different formulations and algorith-
mic approaches. Operational constraints found in gasoline blending 
are related to the presence of multipurpose tanks and non-identical 
blenders, to different storage-tank policies (e.g., whether the simul-
taneous receipt and delivery of material is allowed or not), and to 
practical aspects such as minimum blend sizes and minimum blend-
er running and setup times. Not all of these constraints are consid-
ered in published scheduling models. In some cases, blend recipes 
are assumed to be fixed (i.e., they cannot be optimized). The down-
stream distribution or shipping problem (i.e., timing delivery tasks 
to fulfill the demand) is sometimes also part of the blend-scheduling  
problem.

Méndez et al. [2] presented both a discrete- and continuous-time 
MILP model to schedule gasoline-blending operations. An iterative 
method was employed to handle nonlinear blending rules while 
preserving the linearity of the models. Several key operational con-
straints were omitted and the distribution problem was not consid-
ered.

Jia and Ierapetritou [10] developed a continuous-time MILP mod-
el to simultaneously schedule gasoline-blending tasks and distribu-
tion operations. The linearity of the model was maintained by using 
given preferred recipes. Their model was later extended to schedule 
operations of the main processing units in an oil refinery [11].

Glismann and Gruhn [12] used a two-level approach based on 
discrete-time models. Blend recipes and production targets were 
computed first using a nonlinear programming (NLP) model. Then a 
MILP model was employed to solve the short-term scheduling prob-
lem using such recipes and targets. The scheduling model was based 
on the resource-task-network (RTN) representation and did not con-
sider multipurpose tanks or the delivery-scheduling problem.

Li et al. [13] formulated a continuous-time MILP model featuring 
a common time grid for all units (i.e., blenders and tanks). Li and 
Karimi [3] extended and improved this MILP model by using unit- 
specific time grids and including most of the operational constraints 
found in practice. Both models optimized blend recipes using blend 
indices. Based on these two previous works, Li et al. [4] presented a 
unit-specific continuous-time MINLP formulation where nonlinear 
terms arise from enforcing constant blending rates.

Castillo and Mahalec [14] developed a three-level decompo-
sition algorithm through which recipe optimization can be done 
using linear and/or nonlinear blending rules. They considered the 
distribution problem, blend-size threshold constraints, parallel 
non-identical blenders, swing tanks, and product-dependent setup 
times. A discrete-time model was formulated for each level. The first 
level optimized the blend recipes, the second level approximated 
the production schedule, and the third level computed a detailed 
blend-and-delivery schedule. Due to the large size of the schedul-
ing model at the third level for the entire horizon, it was solved in 
subintervals. Solutions computed by this approach were better and 
the execution times for large problems were two orders of mag-
nitude shorter than those from previous methods [3,13]. In their 
subsequent work, Castillo and Mahalec [15] introduced a signifi-
cantly modified version of the continuous-time scheduling model 
from Li and Karimi [3] (with a smaller number of binary variables 
[16]) for dealing with the third level. Case studies with nonlinear 
blend-scheduling problems were solved very close to global opti-
mality with short execution times.
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systems engineering. They can be relaxed using the McCormick 
envelopes, considering either the full domain of the variables [32] 
or a reduced domain following partitioning [33,34]. Simultaneous 
domain partitioning involves adding a new set of binary variables 
to the problem and guarantees global optimality in the limit of an 
infinite number of partitions. Spatial branch-and-bound can thus 
be avoided. One critical aspect concerns the scaling of problem size 
with the number of partitions. Earlier piecewise relaxation tech-
niques [33] scale linearly, while recent formulations scale logarith-
mically. Examples of the latter are described next.

Misener et al. [35] developed a global optimization algorithm 
for the standard pooling problem and concluded that the logarith-
mic scheme is more advantageous for more than eight partitions. 
Kolodziej et al. [19] proposed a MINLP formulation for the multi- 
period pooling problem, in which nonlinearities arise from using the 
dynamic inventories of tanks as blend components. They employed 
a radix-based discretization technique that partitions one variable 
in every bilinear term to obtain a MILP relaxation. This discretiza-
tion technique is known as multiparametric disaggregation [36]. 
Castro [37] developed the normalized multiparametric disaggrega-
tion technique (NMDT) [36], which works by discretizing the range 
between a variable’s lower and upper bounds (belonging to [0, 1]). 
The advantage is that the number of partitions becomes the same 
for every discretized variable, even if their domain is different (when 
using a global discretization level parameter). NMDT has been suc-
cessfully used to solve multi-period blending problems to global 
optimality, both as a stand-alone approach [18,38,39] or integrated 
in a spatial branch-and-bound algorithm [30].

Overall, contributions from cited works have enabled optimal 
solutions of gasoline blend-scheduling problems up to a certain 
model size. However, when dealing with large-scale problems, the 
computation and validation of global optimal solutions remain a 
difficult challenge.

1.3. Contributions of this work

This work presents a novel deterministic global optimization 
algorithm to solve non-convex MINLP or NLP models with nonlin-
earities that are strictly due to bilinear and/or quadratic terms. The 
main features of this algorithm are:
•	The use of different linear and piecewise linear relaxation tech-

niques to derive convex relaxations of the original non-convex 
model;
•	The collection of different feasible solutions from the convex 

relaxation, which provide starting points for a local nonlinear 
solver to find feasible solutions of the original model;
•	A dynamic increase in the number of partitions for piecewise 

linear relaxations;
•	The reduction of the domain of the variables involved in non-

linear terms by means of an OBBT method; and
•	The parallelization of the steps regarding computation of feasi-

ble solutions and the OBBT method.
The algorithm is tested on different gasoline blend-scheduling 

examples. For this class of problems, the results show that the pro-
posed algorithm is on par with or better than two leading commer-
cial global solvers.

The rest of this paper is organized as follows: Section 2 describes 
the problem statement and the assumptions made. Section 3 re-
views the scheduling model employed in this work and presents the 
nonlinear equations used for octane blending. Section 4 briefly ex-
plains the piecewise linear relaxations employed to compute the es-
timates of the global solution. Section 5 describes the OBBT method 
to reduce the domain of the variables involved in nonlinear terms. 
Section 6 presents the steps of the global optimization algorithm. 
Section 7 contains the data describing the test examples. Section 8 

shows the results obtained with the proposed algorithm and pro-
vides a comparison with other methods. The paper ends with con-
clusions in Section 9.

2. Problem statement

Given a blending system (i.e., storage tanks, blenders, and their 
interconnections; see Fig. 3), a scheduling horizon, a set of blend 
components and their corresponding supply and quality profiles 
along the horizon, a set of products and their minimum and max-
imum quality property specifications, a set of delivery orders for 
each product, and the initial inventory levels, it is required to deter-
mine the blend recipes, the production and delivery sequences, and 
the inventory profiles of all tanks, while minimizing the cost of the 
blended materials plus the switching costs (i.e., number of blend 
runs, number of tanks delivering the same order, and product tran-
sitions in the swing tanks) and the demurrage costs (i.e., late deliv-
eries).

The following constraints are considered:
(1) If a blender is to produce a product, it must blend at least a 

minimum amount.
(2) A blender can produce at most one product at any time. Once 

it begins blending, it must operate for some minimum time 
before it can switch to another product.

(3) A blender requires a minimum setup time during a product 
changeover.

(4) A blender can feed at most one product tank at any time (in-
dustrial practice).

(5) Product tanks can only store one product at any time.
(6) Product tanks cannot receive and deliver material at the same 

time.
The assumptions made in this work are:
(1) The flowrate profile of each component from the upstream 

process is piecewise constant.
(2) The component quality profile is piecewise constant.
(3) Perfect mixing occurs in each blender.
(4) There is only one tank for a given blend component.
(5) Only swing tanks can change their product service (i.e., change  

from storing one product to storing another).
(6) Changeover times between products are negligible for swing 

tanks.
(7) For each blender, changeover times between product blend-

ing are product dependent but sequence independent.
(8) Each order involves only one product (any original order in-

volving different products can be disaggregated into orders of 
a single product).

(9) All orders are fulfilled during the scheduling horizon.
In summary, this problem considers the scheduling of blending 

and delivery operations, recipe determination, and product alloca-
tion of swing tanks along the scheduling horizon.

3. Gasoline blend-scheduling model

The scheduling model employed in this work is the one pre-
sented by Castillo and Mahalec [16]. It employs a continuous-time 
formulation, considers nonlinear blending equations, and does not 
allow simultaneous receipt and delivery by product tanks. This is 
a non-convex MINLP model, and it will be denoted as model P (or 
problem P). The main features of the scheduling model are high-
lighted in this section.

The scheduling model uses unit-specific time slots of varying 
length to determine when a specific task needs to be executed in 
each unit (blenders and tanks in this case). We assign a sufficient-
ly high number of time slots, which will likely be higher than the 
number of slots required for blending each grade. This ensures that 
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there are sufficient degrees of freedom (enough available switches) 
to meet the varying product-delivery schedule.

The start time of a unit slot is equal to the end time of the previ-
ous one. The first unit slot starts at the beginning of the scheduling 
horizon, and the end of the last unit slot matches exactly the end 
of the horizon. Blending tasks begin at the start of a time slot, but 
can finish before its end. Delivery tasks from product tanks can start 
and finish within the corresponding slot. It is assumed that com-
ponent tanks are continuously receiving material at some specified 
rate (i.e., the supply profile). Time periods are used to delineate the 
points where changes occur in the supply rates and/or quality of 
blend components. Time slots are assigned to these time periods. 
A time slot must end within its assigned period. However, for com-
ponent tanks, the last time slot of a period must end exactly at that 
period’s boundary (in order to properly respect the changes in supply 
rates and/or quality of blend components). Fig. 4 shows a graphical 
representation of these unit-specific time slots for a blending system 
with two blend component tanks (CT1, CT2), one blender (B1), and 
two product tanks (PT1, PT2). Unit slots 1 and 2 are pre-assigned to 
period 1, while slots 3 and 4 are pre-assigned to period 2. Note that 
the optimization has determined that slot 3 in the CT2 grid, and slot 4  
in the PT1 grid, have zero length.

The objective of the scheduling model is to minimize the blend 
cost (i.e., materials cost), the switching cost associated with each 
blend run, product changeovers in the swing tanks, the number of 
“delivery runs” (i.e., the number of time slots used to deliver a spe-
cific order from a given tank), and the demurrage cost. Delivery runs 
are penalized in order to avoid computing delivery schedules that 
deliver the same order from several tanks at the same time, and to 
minimize intermittent deliveries of the same order from the same 
tank.

Binary variables are employed in the model to determine, at each 
time slot, the following discrete decisions:
•	Which product tank each blender is feeding (one variable for 

each blender-tank connection);
•	What gasoline grade is stored in each product tank (one varia-

ble for each grade-tank pair); and
•	What demand order each product tank is partially or complete-

ly fulfilling (one variable for each tank-order connection).
With these binary variables, other discrete decisions can be mod-

eled with 0–1 continuous variables, such as:
•	What gasoline grade each blender is producing;
•	The status of a blender (running or idle);
•	The transition of a blender from running to being idle, or vice 

versa;
•	When a new blend run starts;
•	Product transitions in the blenders; and
•	Product changeovers in the swing tanks.
The scheduling model also considers variable blending rates, 

variable delivery rates, blender- and product-specific setup times for 
the blenders (i.e., idle times for, e.g., cleaning or sensor recalibration 
purposes), maximum delivery rates from blend component tanks 
to the blenders, minimum blend size, and minimum running times 
for each blender and product. Other constraints include the material 
balances, product composition specifications, product quality speci-
fications, and linear and/or nonlinear blending equations.

The difficulty in solving this scheduling model to global optimal-
ity arises from the following factors:
•	The significant number of discrete decisions that can be made, 

which are directly related to the number of time slots, gasoline 
grades, blenders, product tanks, and demand orders (the com-
binatorial nature of the problem);
•	The inclusion of nonlinear blending equations (the non-convex 

nature of the problem); and
•	All the considered operational constraints.
Castillo and Mahalec [16] found that introducing constraints reg

arding minimum blend cost and minimum switching cost can im-
prove the quality of the solution and reduce the execution times for  
small- to medium-size problems. The minimum blend cost is com-
puted using the approach delineated in Castillo et al. [40].

The nonlinear blending equations are presented next, since they 
were rewritten in such a way that nonlinear terms are only bilinear 
or quadratic.

Nonlinear blending equations
Eq. (1) to Eq. (19) are the proposed reformulation of the ethyl 

RT-70 model for octane blending [5,41]. Bilinear terms appear in 
Eqs. (1), (13), (14), and (18). Quadratic terms appear in Eqs. (15), 
(16), (17), and (19). Main sets, subscripts, variables, and parameters 
are described next. Set I = {i} consists of the blend components, 
BL = {bl} is constituted by the blenders, N1 = {n} is the time slots, 
and set QN = {(θ, n)} represents the time slots associated with each 
quality profile θ. Variable Vcomp(i, bl, n) indicates the volume of blend 
component i to blender bl during slot n. Variable Vblend(bl, n) is the 
volume being processed by blender bl during slot n. The volume 
fraction of component i going into blender bl during slot n is denot-
ed by variable r(i, bl, n). Parameter Qbc(i, e, θ) represents the value 
of quality property e for blend component i and quality profile θ. 
sens(i, θ) is a parameter known as the octane number sensitivity; it 
is the difference between the octane numbers, that is, RON – MON, 
of blend component i and quality profile θ. The values for the ethyl 
RT-70 model coefficients are taken from Singh et al. [5] and are as 
follows: a1 = 0.03224, a2 = 0.00101, a3 = 0, a4 = 0.0445, a5 = 0.00081, 
and a6 = −0.0645 × 10−4.
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Fig. 4. Representation of unit-specific time slots employed in the scheduling model.
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4. Piecewise linear relaxations

As mentioned in Section 1, the use of piecewise linear relaxations 
is becoming more widespread due to the maturity of MILP solvers. 
Piecewise McCormick relaxation (PMCR) and the NMDT will be 
employed in this work. These techniques replace each bilinear term 
in model P with a single variable, thus linearizing the correspond-
ing equations. This single variable is then subject to various linear 
constraints, which add extra continuous and binary variables to the 
model. If equal to 1, these extra binary variables activate a specific 
interval of the domain (i.e., partition) of one of the variables in the 

bilinear term (denoted as the discretized variable). The number of 
partitions is denoted as NP, and it is assumed that all discretized 
variables have the same number of partitions. PMCR has a linear 
relation between NP and the number of extra binary variables re-
quired per discretized variable, while NMDT exhibits a logarithmic 
relation. For a more detailed explanation of these methods, the 
reader is encouraged to review Refs. [16,37].

The resulting MILP model is denoted as model PR and is a relax-
ation of problem P. This means that the optimal solution of model 
PR is a valid estimate of the global solution of P (in the minimiza-
tion case, this will be a lower bound, LB). Moreover, an estimate 
of the best possible solution of model PR is a valid estimate of the 
global optimum of P. Therefore, even if model PR is not solved to 
optimality by a MILP solver within a given allocated time, a new 
estimate of the global solution can still be found. The larger the 
number of partitions, the closer model PR is to model P; see Fig. 5 
for an illustration with an example involving a single discretized 
variable.

If the relaxation is tight, then its optimal solution will be very 
close to the original optimum. Hence, a strategy to find a feasible 
solution to the original problem P (in the minimization case, this 
will be an upper bound, UB) is to initialize P with the optimal solu-
tion of model PR. Since some MILP solvers, such as CPLEX, can store 
multiple feasible solutions to the MILP problem, potentially leading 
to different solutions of P due to the different starting points, we use 
a multi-start strategy in parallel fashion. Note that, for practical rea-
sons related to the speed and robustness of commercial solvers, it is 
more convenient to solve NLP models instead of MINLPs. This is the 
reason why the values of the binary variables are fixed, converting 
problem P (MINLP) into PF (NLP). The compact notations of models P, 
PR, and PF are as follows:
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Fig. 5. Accuracy of the relaxation (f0
R) with respect to exact representation (f0) of the boundaries of a feasible region increases with the number of partitions (maximization prob-

lem). (a) 10 partitions; (b) 100 partitions.
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Note that, in this section, set M = {m} represents all the origi-
nal constraints, set N = {n} represents all the constraints required 
by the piecewise linear relaxation technique, and set BLT = {(i, j)} 
represents all the bilinear terms. Variables x and y are the original 
continuous and binary variables, respectively, and v and z are the 
extra continuous and binary variables, respectively, required by 
the relaxation strategy. Variable wij is the continuous variable that 
replaces the bilinear term xi xj. Scalars lx, ly, lw, lv, and lz represent 
the size of vectors x, y, w, v, and z, respectively. Parameters xL and xU 
are respectively the lower and upper bounds of the x variables. Note 
that quadratic terms can be treated as bilinear terms.

5. Tightening bounds on the variables

Model PR becomes tighter (i.e., closer to model P) as the number 
of partitions of the discretized variables is increased. However, an 
increase in the number of partitions produces an increment in the 
size of model PR and, after a certain number of partitions, model PR 
can become computationally intractable. Therefore, another tech-
nique is required in order to avoid the necessity of a large number 
of partitions. In this work, an OBBT method is employed [34,42]. The 
idea is to reduce the domain of the variables involved in nonlinear 
terms by computing new bounds of these variables by solving two 
optimization problems (a maximization problem and a minimiza-
tion problem per variable). This is done after a new and better feasi-
ble solution to P is computed. After reducing the domain of the vari-
ables, model PR becomes closer to P without increasing the number 
of partitions, as shown in Fig. 6.

The mathematical model used in OBBT is denoted as model PRB, 
which is constructed as a relaxation of P, but with a different ob-
jective function and an extra constraint. To compute a lower bound 
of variable xh, that is, xh

L, the objective function is to minimize this 
variable. To compute an upper bound of variable xh, that is, xh

U, the 

objective function is to maximize this variable. In order to compute 
new bounds, the extra constraint added imposes the condition that 
the value of the relaxed version of the original objective function, 
that is, f0

R (x, y), must be at least as good as the current best feasible 
solution.

Note that models PR and PRB can use different relaxations. In 
this work, model PRB employs standard McCormick envelopes [32] 
and integrality requirements on variables y are dropped, thus reduc-
ing PRB to linear programming (LP). The lower and upper bounds 
of variable xh are updated with the optimal solutions of the corre-
sponding LP model. Compact notation of model PRB is shown below 
for a minimization problem.

Model PRB:
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OBBT consists of solving these LP models for all the variables 
involved in nonlinear terms, in a parallel framework, to reduce exe-
cution times. Thus, the bounds will generally be weaker than when 
solving the problems sequentially. Since the number of instances 
to solve can be very large, instances are solved in different blocks. 
These blocks are defined by a maximum number of problems to 
be solved in parallel. After one block is solved, the corresponding 
bounds are updated and then the next block is solved. Fig. 7 shows 
the flowchart of the OBBT method. Note that OBBT is applied only 
once per variable.

6. Global optimization algorithm

The steps of the proposed global optimization algorithm are 
presented next for a minimization problem. Fig. 8 shows the corre-
sponding flowchart. Note that the algorithm can be applied to any 
MINLP problem with nonlinearities exclusive to bilinear or quadratic 
terms.

(1) Initialize algorithm parameters. Define the number of parti-
tions to be used {NP1, NP2, …, NPlast} and set NP = NP1. Set the 

Fig. 6. Accuracy of the relaxation increases when the domain of the variables involved in nonlinear terms is reduced. (a) 10 partitions with x∈ [0, 4.5]; (b) 10 partitions with  
x∈ [2.25, 2.7].
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lower bound LB = −∞, upper bound UB = +∞, total number of 
iterations counter ITtotal = 1, iterations with the same number 
of partitions ITsameNP = 1, maximum number of total iterations 

max
totalIT , maximum number of iterations with the same number 

of partitions max
sameNPIT , maximum total time max

totalTIME , and mini-
mum relative tolerance ε.

(2) Lower bound computation. Solve MILP model PR using the 
CPLEX solver with parallel and solution pool options active. 
Update LB with the best possible solution from CPLEX, if this 
value is greater than the previous LB.

(3) Upper bound computation. Use the solutions stored in the 
CPLEX solution pool as starting points for NLP model PF. 
Solve NLP model PF instances in parallel using a local non-
linear solver. Update UB if any of the computed solutions is 
feasible and has a smaller objective function value than the 
previous UB.

(4) Update optimality gap. The following formula is used in this 
step: OptGap = (UB – LB)/LB × 100.

(5) Check termination criteria. Stop if OptGap ≤ ε, if ITtotal = max
totalIT , if 

the total execution time is equal to or greater than max
totalTIME , or 

if the number of partitions has already reached NPlast. Other-
wise, continue to Step 6.

(6) If the upper bound UB did not improve in Step 3, or if ITsameNP 
= max

sameNPIT , continue to Step 7. Otherwise, reduce the domain 
of the variables involved in nonlinear terms using the OBBT 
method described in Section 5; set ITtotal = ITtotal + 1 and  ITsameNP 
= ITsameNP + 1, and then go back to Step 2.

(7) Increase the number of partitions to the next specified value. 
Set ITtotal = ITtotal + 1 and go back to Step 2.

Although the main elements of the algorithm have already been 
proposed (e.g., PMCR, NMDT, OBBT), the novelty is related to the way in 
which they are implemented. More specifically: ① the CPLEX solution  Fig. 7. Flowchart of the OBBT method.

Fig. 8. Flowchart of the global optimization algorithm.
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pool is used to store starting points for model PF, ② instances of 
model PF are solved in parallel, ③ OBBT is applied to blocks of var-
iables and in a parallel framework, and ④ no branching strategy  
is employed.

7. Case studies

The tests in this paper consist of Examples 4, 8, 12, and 14 from 
Li and Karimi [3]. The difference in this work is that the ethyl RT-
70 models are considered for blending RON and MON properties (as 
described in Section 3.1) instead of blend indices. RON index corre-
lations from Li et al. [13], shown in Eq. (20) and Eq. (21), were used 
to compute the actual RON values from the blend indices given by 
Li and Karimi [3]. RBN denotes the research octane number blend 
index. MON values were assumed in this work and the correspond-
ing minimum product specifications were set equal to zero; there-
fore, MON constraints will not be active at the optimal solution. 
Quality properties of blend components are assumed to be known 
(recall Section 2); therefore, Eq. (20) and Eq. (21) are only used to 

convert the blend components’ RBN values to RON values before 
the optimization runs (i.e., they do not appear in the optimization 
problems).

	 11.5  0 85= + ≤ ≤RBN RON RON � (20)

	 ( )exp 0.0135 3.422042   85= + >RBN RON RON � (21)

Table 1 describes the size of the blending system examples. In-
formation about the periods, their duration, their corresponding 
time slots, and the orders that can be delivered within such periods 
is presented in Table 2. RON and MON values and their respective 
specifications are shown in Table 3. Table 4 presents the statistics 
regarding the size of model P when not using the constraints on the 
minimum blend and switching costs. When using such constraints, 
four equations are added to the model (minimum blend cost, mini-
mum number of delivery runs, minimum number of blend runs, and 
minimum number of product changeovers in the swing tanks). Note 
that the size of the blending system and its corresponding schedul-
ing model increase from Example 4 to Example 14.

Table 1
Summary of the blending system examples.

Example ID Number of blenders Number of orders Number of products Number of product tanks Number of quality properties

4 1 15 4 11 9

8 2 20 4 11 9

12 2 35 5 11 9

14 3 45 5 11 9

Table 2
Periods, duration, time slots, and orders that can be delivered in each period.

Example ID Period Duration (h) Slots Orders that can be delivered

4 1 100 1, 2 O1–O7, O12–O15

2 92 3, 4 O8–O11

8 1 80 1, 2 O1–O7, O12–O19

2 70 3, 4 O8

3 42 5, 6 O8–O11, O20

12 1 50 1–3 O1–O7, O12, O13, O15, O19, O33

2 50 4–6 O14–O18, O27, O28, O33

3 50 7–9 O8, O21, O24, O29–O32, O34, O35

4 42 10–12 O8–O11, O20, O22, O23, O25, O26

14 1 50 1–3 O1–O7, O12, O13, O15, O19, O26

2 50 4–7 O14–O18, O26

3 50 8–10 O8, O21, O24, O27–O31, O45

4 42 11–13 O8–O11, O20, O22, O23, O25, O32–O44

Table 3
RON and MON values and specifications.

Property Blend components Product specifications [min, max]

C1 C2 C3 C4 C5 C6 C7 C8 C9 P1 P2 P3 P4 P5

RON 75 90.3 95.6 97.3 83 100 115 118 81 [95, 200] [96, 200] [94, 200] [90, 200] [98, 200]

MON 66 80.8 80.5 91.7 74 100 109 100 72 [0, 200] [0, 200] [0,200] [0, 200] [0, 200]

Table 4
Statistics of model P.

Example ID Number of equations Number of variables Number of binary variables Number of bilinear terms

4 6 207 2 503 433 168

8 9 297 3 323 553 336

12 23 087 8 170 1 317 672

14 32 574 10 693 1 628 1 092
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8. Results

All the examples were solved on a computing machine Intel® 
Core™ i7-4710HQ central processing unit (CPU), 2.50 GHz, 12 GB 
random-access memory (RAM), Windows 10 (8-core). The global 
optimization algorithm was implemented in Python 2.7. The Py-
thon script generates general algebraic modeling system (GAMS) 
files with the corresponding mathematical models, which are then 
solved by employing the GAMS-Python application program inter-
face (API). The selected solvers were CPLEX 12.6 for model PR and 
model PRB, and CONOPT 3 for model PF.

The global optimization algorithm termination criteria were as 
follows: 0.01% optimality gap or 3600 s (1 h). There was no limit on 
the total number of iterations, nor on the iterations with the same 
number of partitions. The numbers of partitions in model PR when 
using PMCR were {2, 4, 8, 16, 32}, and when using NMDT were {10, 
100, 1000}.

The termination criteria for the MILP problems (instances of 
model PR) were: an optimality gap of 0.01% or 600 s. The CPLEX 
parallel option was active (in deterministic mode) with a maximum 
number of threads equal to 8. In addition, the CPLEX solution pool 
option was active with a maximum pool capacity of 30 and the 
replacement option that generates diverse solutions. Thus, a maxi-
mum of 30 instances of model PF was solved per iteration using the 
GAMS parallel computing grid facility. CONOPT 3 default termina-
tion criteria were used.

The termination criteria for the LP problems (instances of model 
PRB) were: optimality or 60 s. A maximum number of 100 LP prob-
lems were solved in parallel using the GAMS parallel computing grid 
facility.

For comparison purposes, the global commercial solvers BARON 
15.9 [33] and ANTIGONE 1.1 [34] were employed to solve the orig-
inal model P using the same termination criteria as the proposed 
global optimization algorithm.

Section 8.1 presents the results obtained when not including the 
constraints on the minimum blend cost and minimum switching 
cost, while Section 8.2 shows the results when such constraints are 
added to the model. A comparison with previously published heu-
ristic methods is included in Section 8.3.

8.1. Not using constraints on the minimum blend and switching costs

A comparison of the results obtained by the proposed algorithm 
with those obtained by commercial solvers is presented in Table 5. 
For simplicity, we refer to our proposed algorithm as GO-PMCR 
when it uses piecewise McCormick relaxation to construct model 
PR and as GO-NMDT when it employs the NMDT.

ANTIGONE, BARON, and GO-PMCR compute the same solution for 
Examples 4 and 8. GO-NMDT computes the same solution for Exam-
ple 4, but the final solution for Example 8 is slightly higher. GO-PMCR 
computes better solutions than GO-NMDT and ANTIGONE in all ex-
amples. In this work, this is because GO-PMCR can use more distinct 
numbers of partitions (2, 4, 8, 16, 32) than GO-NMDT (10, 100, 1000); 
thus, it generates more feasible solutions from the MILP relaxation.

BARON does not find a feasible solution for Examples 12 and 14 
within 1 h. Based on the log files generated by commercial solvers, 
it seems that BARON relies more on the branching procedure, while 
ANTIGONE focuses more on the MILP relaxation and bound-tight-
ening steps (as our proposed algorithm does). Feasible integer solu-
tions for scheduling problems may be found only at deep nodes in 
the branch-and-bound tree [43], which can be of significant size 
when the number of binary variables is large.

In Examples 4 and 8, the algorithm and the commercial solvers 
compute similar optimality gaps. For Examples 12 and 14, BARON 
cannot compute an optimality gap (no feasible solution was found), 
and GO-PMCR obtains a lower optimality gap than GO-NMDT and 
ANTIGONE.

Both commercial solvers and the proposed algorithm did not 
solve all four examples to the desired tolerance within 1 h. The 
times reported in Table 5 are the times in which the best solution 
was found. GO-PMCR and GO-NMDT require shorter times than both 
commercial solvers. GO-NMDT is significantly faster than GO-PMCR  
only in the small-sized Example 4. Note that, for the number of 
partitions selected, the size of the MILP relaxation grows faster with 
GO-NMDT than with GO-PMCR. Therefore, MILP relaxations are of-
ten faster to solve to optimality with GO-PMCR. However, GO-PMCR 
will require more iterations. Based on the three factors considered 
(i.e., best solution found, optimality gap, and time to best solution), 
GO-PMCR shows the best performance. Fig. 9 shows the total num-
ber of binary variables in the relaxation of the scheduling model 
(i.e., model PR) when using PMCR and NMDT, at each iteration of 
the algorithm and for each example. It shows that, for the selected 
partition values, PMCR requires fewer binary variables in the first 
4–5 iterations than NMDT at any iteration. This is expected since the 
partitions when using PMCR are fewer than 8 in those iterations, 
and NMDT starts with 10. Note that flat sections in the curves in-
dicate that the OBBT method was applied instead of increasing the 
number of partitions.

The major differences between the proposed algorithm and BAR-
ON are:
•	The use of piecewise relaxation methods for bilinear terms in-

stead of standard McCormick envelopes; and
•	Dynamically increasing the number of partitions in order to 

tighten the MILP relaxation, instead of implementing a branch-
ing strategy.

These features seem to be adequate for the scheduling problems 
presented here. We do not claim that our proposed algorithm will al-
ways be better than BARON when solving a different type of problem.

Our proposed algorithm and ANTIGONE perform similarly, but 
differ mainly in the following areas:
•	The use of NMDT as a piecewise relaxation technique;
•	How the number of partitions is increased in each iteration;
•	When and how to apply OBBT; and
•	The use of the CPLEX solution pool to store feasible solutions 

from the MILP relaxations and use them as starting points to 
solve the NLP problem.

Finally, ANTIGONE and BARON can handle more than just biline-
ar and quadratic terms; in addition, they apply other mathematical 

Table 5
Summary of results (not using constraints on the minimum blend and switching costs).

Example ID Best solution found (1000 USD) Optimality gap (%) Time to best solution (s)

ANTIGONE BARON GO-PMCR GO-NMDT ANTIGONE BARON GO-PMCR GO-NMDT ANTIGONE BARON GO-PMCR GO-NMDT

4 4 633 4 633 4 633 4 633 6.90 6.37 6.31 6.37 2 350 930 616 120

8 8 203 8 203 8 203 8 223 9.53 9.53 9.19 9.49 1 708 3 273 714 1 391

12 16 650 NF 15 408 15 440 20.51 NA 14.00 14.22 1 631 3 600 1 411 1 438

14 21 360 NF 21 316 31 639 12.50 NA 12.31 40.92 3 600 3 600 2 911 2 904

NF = not found; NA = not available.
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techniques capable of improving performance (e.g., reformulation- 
linearization technique, cutting planes, feasibility-based bound 
tightening, different branching strategies, etc.).

8.2. Using constraints on the minimum blend and switching costs

For this case, the results computed by the algorithm and com-
mercial solvers are presented in Table 6. The most notable differenc-
es with respect to Table 5 are the smaller optimality gaps and the 
shorter times for Examples 4 and 8.

Both commercial solvers and the algorithm find similar solutions 
for Examples 4 and 8. BARON still does not find a feasible solution for 
Examples 12 and 14 within the allocated time. GO-PMCR computes 
better solutions than GO-NMDT for Examples 12 and 14, which in 
turn has better solutions than ANTIGONE. Note that the addition of 
bounds caused an increment in the number of solutions for Example 8.  
Since the solutions from Section 8.1 are still feasible even with the 
inclusion of the constraints regarding minimum blend and switching 
costs, this suggests that such constraints are affecting the solvers. This 
effect is also observed in ANTIGONE in Examples 12 and 14.

Regarding optimality gaps, most of the same observations as in 
Section 8.1 can be made. Similar optimality gaps are computed by all 
methods for Examples 4 and 8. For Examples 12 and 14, GO-PMCR  
calculates lower optimality gaps than GO-NMDT and ANTIGONE.

Both commercial solvers and the proposed algorithm solve Ex-
ample 4 to the desired tolerance; BARON is the slowest. For Example 
12, the time to the best solution required by GO-PMCR is larger than 
that required by GO-NMDT; however, it must be considered that 
GO-PMCR computes a better solution.

Overall, GO-PMCR shows the best performance once again. For il-
lustration purposes, the blend and delivery schedules computed for 
Example 14 by the algorithm using PMCR are shown in Fig. 10 and 
Fig. 11, respectively.

8.3. Comparison with heuristic methods

In this section, the proposed algorithm is compared with previ-
ously published heuristic methods [15,21]. Table 7 [15,21] contains 
the best solution found by those methods and the time required to 
compute such solutions. Note that heuristic methods do not com-
pute an optimality gap since they aim to find close-to-optimal solu-
tions very rapidly, and they do not spend time estimating and refin-
ing the value of the global optimal solution. These heuristic methods 
are tailored to the examples used in this work. These methods con-
struct the final solution by decomposing the original problem into 
different levels, each one with different accuracy and complexity. 
Short execution times are achieved by solving the least complex 
level first and then, in each subsequent level, fixing the values of the 
most important variables to those from the previous level’s solution.

The objective function of the scheduling model employed in this 
work is the same as the one used by Castillo and Mahalec [15]. This 
objective function penalizes each individual blend run, even when 
the same product is being blended in contiguous blend runs. On the 
other hand, Cerdá et al. [21] did not penalize the number of indi-
vidual blend runs, but only penalized the product transitions in the 
blenders. We show the adjusted values of the solutions reported by 
Cerdá et al. [21]; that is, individual blend runs are penalized.

All methods find the same solution for Example 4. In general, all 
the methods compute very similar solutions for the remaining ex-
amples. Solutions from Cerdá et al. [21] have higher costs for Exam-
ples 8, 12, and 14 because they did not originally penalize individual 
blend runs. The method from Cerdá et al. [21] might compute sim-
ilar solutions to those from the other methods if it used the same 
objective function.

Heuristic methods still require smaller execution times than the 
proposed global optimization algorithm. This is expected, because 
those methods do not involve as many steps as global optimization 
techniques. The proposed global optimization algorithm does not 
find solutions of the same quality as quickly as the two selected heu-
ristic methods. To compute feasible solutions in each iteration, our 
proposed algorithm needs to first solve a MILP (i.e., model PR). The 
solution of the MILP is the most time-consuming step, thus reducing 
the speed required to compute new feasible solutions. Moreover, the 
small number of partitions at the beginning of the algorithm may 
result in weak MILP relaxations, which generate starting points for 
the NLP models that are far from the global optimum.

These results indicate the need to improve the corresponding step  
to compute feasible solutions, or to simply integrate heuristic meth-
ods into the proposed algorithm.

9. Conclusions

In this work, we presented a global optimization algorithm that Fig. 9. Number of binary variables in model PR at each iteration of the algorithm.

Table 6
Summary of results (using constraints on the minimum blend and switching costs).

Example ID Best solution found (1000 USD) Optimality gap (%) Time to best solution (s)

ANTIGONE BARON GO-PMCR GO-NMDT ANTIGONE BARON GO-PMCR GO-NMDT ANTIGONE BARON GO-PMCR GO-NMDT

4 4 633 4 633 4 633 4 633 0.01 0.01 0.01 0.01 26 296 30 14

8 8 207 8 204 8 206 8 204 0.05 0.02 0.04 0.02 557 1 218 103 140

12 23 590 NF 15 384 15 403 34.80 NA 0.01 0.13 3 333 3 600 2 674 742

14 23  520 NF 21 270 21 360 9.68 NA 0.13 0.55 1 636 3 600 2 574 2 845

NF = not found; NA = not available.
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can solve MINLP problems with bilinear and quadratic terms. The 
algorithm computes estimates of the global solution by constructing 
and solving MILP problems that are relaxations of the original prob-
lem obtained by using either PMCR or NMDT. These methods discre-
tize the domain of one of the variables of a bilinear term into several 
partitions, and introduce extra binary and continuous variables into 
the model. To improve the estimates of the global optimum, the 

number of partitions is increased during the algorithm.
To avoid a rapid increase in the model size due to a large number 

of partitions, an OBBT method is used. The MILP relaxation will be 
closer to the original problem if the number of partitions stays the 
same but the domain of the variables is reduced. The OBBT method 
solves several LPs in a parallel setting.

The CPLEX solution pool is active and stores different feasible 

Fig. 10. Blend schedule computed for Example 14 by the proposed algorithm using PMCR. Kbbl is short for kilobarrel, 1 kbbl = 158.9873 m3.

Fig. 11. Delivery schedule computed for Example 14 by the proposed algorithm using PMCR.

Table 7
Comparison with heuristic methods.

Example ID Best solution found (1000 USD) Time to best solution (s)

Castillo and 
Mahalec [15]

Cerdá et al. [21] Cerdá et al. [21] 
adjusted values

GO-PMCR GO-NMDT Castillo and 
Mahalec [15]

Cerdá et al. [21] GO-PMCR GO-NMDT

4 4 633 4 613 4 633 4 633 4 633 3 0.4 30 14

8 8 203 8 163 8 223 8 206 8 204 6 7.5 103 140

12 15 403 15 342 15 442 15 384 15 403 17 31.0 2 674 742

14 21 263 21 181 21 301 21 270 21 360 24 21.0 2 574 2 845
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solutions found during the branch-and-bound procedure to solve 
the MILP relaxation. These solutions are then used as starting points 
for a nonlinear solver to find feasible solutions to the original prob-
lem. This step is also parallelized.

We showed that the proposed algorithm can be used to schedule 
gasoline-blending operations, taking into consideration the distri-
bution problem and the most important operational constraints. We 
employ a continuous-time MINLP scheduling model [16] where the 
ethyl RT-70 models are used for octane blending.

The proposed algorithm was compared with two commercial 
solvers and two heuristic methods. The elements under evaluation 
were: the best solution found, the corresponding optimality gap, 
and the time to best solution. The proposed algorithm with PMCR 
showed a better performance than with NMDT. In our large-sized 
examples, the proposed algorithm with either PMCR or NMDT per-
formed better than the commercial global solvers. This result shows 
that further research on this algorithm may be very promising. Both 
selected heuristic methods provided good solutions in shorter ex-
ecution times than the global algorithms. This result indicates that 
the step to compute feasible solutions can still be improved.

We tested the performance of the algorithm by solving the sched-
uling model for two scenarios: ① not including lower bounds on the 
blend cost and switching costs, and ② including such bounds. The 
first problem is harder to solve and is representative of a kind of mod-
el one may write without diligently trying to reduce the search space 
as much as possible. Adding a tight lower bound to the blending cost 
as a constraint, as well as adding the lower bound to the switching 
costs, enables algorithms to search smaller spaces and improves their 
performance. This result also indicates that the relaxations are still 
not tight enough. Future work will include the derivation and addi-
tion of redundant and symmetry-breaking constraints; the testing 
of a different relaxation scheme for quadratic, cubic, and higher 
order terms (e.g., outer approximation); and the modification of the 
bound-tightening method in order to speed up the algorithm.
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Nomenclature

Sets and subscripts
BL = {bl}	 Blenders
E = {e}	 Quality properties
I = {i}	 Blend components and corresponding storage tanks
N1 = {n}	 Time slots
QN = {(θ, n)}	 Time slot n is associated with the period with quality 

profile θ

Parameters
a1, a2, ..., a6	 Coefficients for the ethyl RT-70 model
Qbc (i, e, θ)	 Value of quality property e of blend component i dur-

ing quality profile θ
sens (i, θ)	 Octane number sensitivity, i.e., octane difference RON 

– MON for blend component i during quality profile θ

Continuous variables
Aravg (bl, n)	 Volumetric average of the aromatics content of the 

processed material by blender bl during slot n
Arsq

avg (bl, n)	 Volumetric average of the squared value of the aro-
matics content of the processed material by blender bl 
during slot n

Ar2avg (bl, n)	 Squared value of Aravg (bl, n)
Ar2sq

avg (bl, n)	 Squared value of Arsq
avg (bl, n)

Ar3avg (bl, n)	 Product of Arsq
avg (bl, n) and Ar2avg (bl, n)

Ar4avg (bl, n)	 Squared value of Ar2avg (bl, n)
Olavg (bl, n)	 Volumetric average of the olefins content of the pro-

cessed material by blender bl during slot n	
Ol sq

avg (bl, n)	 Volumetric average of the squared value of the olefins 
content of the processed material by blender bl during 
slot n

Ol2avg (bl, n)	 Squared value of Ol sq
avg (bl, n)

Qpr (bl, e, n)	 Value of quality property e of the processed material 
by blender bl during slot n

r (i, bl, n)	 Volume fraction of blend component i going into 
blender bl during slot n	

r  (bl, n)	 Volumetric average of the motor octane number of the 
processed material by blender bl during slot n

r  (bl, n) 	 Volumetric average of the research octane number of 
the processed material by blender bl during slot n

rs  (bl, n) 	 Product of r  (bl, n) and sensavg (bl, n)
rs  (bl, n) 	 Product of r  (bl, n) and sensavg (bl, n)
sensavg (bl, n)	 Volumetric average of the octane number sensitivity 

of the processed material by blender bl during slot n
sens  (bl, n)	 Volumetric average of the octane number sensitivity 

times the motor octane number
sens  (bl, n) 	 Volumetric average of the octane number sensitivity 

times the research octane number
Vblend

 (bl, n)	 Volume being processed by blender bl during slot n
Vcomp

 (i, bl, n)	 Volume of blend component i transferred to blender bl 
during slot n
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