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a b s t r a c t

An increasing number of drivers are relying on digital map navigation systems in vehicles or
mobile phones to select optimal driving routes in order to save time and improve safety. In the
near future, digital map navigation systems are expected to play more important roles in trans-
portation systems. In order to extend current navigation systems to more applications, two funda-
mental problems must be resolved: the lane-level map model and lane-level route planning. This
study proposes solutions to both problems. The current limitation of the lane-level map model
is not its accuracy but its flexibility; this study proposes a novel seven-layer map structure, called
as Tsinghua map model, which is able to support autonomous driving in a flexible and efficient
way. For lane-level route planning, we propose a hierarchical route-searching algorithm to acceler-
ate the planning process, even in the presence of complicated lane networks. In addition, we
model the travel costs allocated for lane-level road networks by analyzing vehicle maneuvers in
traversing lanes, changing lanes, and turning at intersections. Tests were performed on both a grid
network and a real lane-level road network to demonstrate the validity and efficiency of the pro-
posed algorithm.

� 2019 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

A digital map navigation system assists drivers or intelligent
vehicles to select the optimal route, given an origin and a des-
tination [1,2]. The first application of a vehicle navigation sys-
tem, in a BMW passenger car, can be traced back to 1994.
Since then, the benefits in travel efficiency provided by naviga-
tion systems have been widely accepted. At present, most vehi-
cle navigation systems are based on road-level maps with
limited and low-precision information [3]. In recent research,
the development of advanced driver-assistance systems and
autonomous driving technology requires increasing assistance
from digital maps. In the literature, many intelligent driving
functions have been developed based on the use of digital
maps.

These map-supported intelligent driving functions can be
further categorized into two groups as follows:

Road-level map-supported functions. These functions are
usually designed to assist human drivers, and the required
accuracy is usually approximately 10 m. For example, the elec-
tronic horizon program uses road slope angles to adjust the driving
strategy to save energy [4]. The curve speed warning system in
Refs. [4,5] is another example of a map-enabled active safety
system. The common point of these systems is that the required
information is stored in a road-level map, which ignores the lane
details.

Lane-level map-supported functions. These functions can
acquire lane-level details of the environment from digital maps
in order to enhance the vehicle’s intelligence. When a map reaches
the lane level, the navigation system can offer further driving assis-
tance with greater accuracy. A representative example of lane-level
map-supported driving system was displayed in the Defense
Advanced Research Projects Agency (DARPA) 2007 Urban Chal-
lenge, in Bohren et al.’s work, a road network definition file was
created to describe lane-level driving conditions [6].

This study aims to develop a lane-level map-supported
route-planning system, which is designed to support autonomous
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driving. The target uses of conventional navigation systems are
human drivers, who are responsible for choosing the trajectory
in real time. However, when the target user is an autonomous
vehicle, it is essential for the navigation system to provide more
detailed guidance to help the vehicle accomplish its driving
tasks. As illustrated in Fig. 1, road-level navigation can only pro-
vide assistance in mission planning. Due to the limited accuracy
of a road-level map, the generated road-level trajectory is more
like a series of driving mission instructions than a specific trajec-
tory that an autonomous vehicle can follow. Such guidance is
accurate enough for human drivers. However, in order to drive
autonomously, it is necessary to know more about the exact
positions where the vehicle should continue going straight or
turn. As a result, autonomous vehicles supported by road-level
navigation must be equipped with a powerful real-time percep-
tion and decision-making system, which greatly increases the
onboard computation burden. In contrast, lane-level navigation
is able to provide a reference trajectory that can actually be fol-
lowed by an autonomous vehicle in the absence of other vehicles
or obstacles. The key difference between lane-level navigation
and road-level navigation is the ability of the former to provide
an exact trajectory as the input of control, without the help of
an environment perception system. Although a lane-level naviga-
tion system cannot replace a real-time perception and decision
system, it can greatly release its computation burden and reduce
the risk of system failure. Researchers at Carnegie Mellon
University have also mentioned the importance of lane-level
navigation in their behavioral planning framework [7], in which
a traffic-free reference path is required to facilitate the control of
vehicle motion.

A lane-level navigation system consists of three major parts:
a lane-level map, lane-level localization, and lane-level route
planning. With a differential global position system (DGPS) with
real-time kinematic (RTK) technology, the global navigation
satellite system (GNSS) localization accuracy can reach the cen-
timeter level in open areas. In the case of a lost signal,
camera-based or LiDAR-based feature-matching technology could
be employed to obtain an accurate position. In our previous
study, we employed an inertial measurement unit (IMU) as sup-
plement to the global positioning system (GPS) in order to
improve the accuracy and robustness of the localization. In par-
ticular, we employed the kinematic bicycle model and the
unscented Kalman filter (UKF) algorithm to fuse the measure-
ments from GPS and IMU, as shown in Eq. (1):

Production model :

_X
_Y
_vx

_/
€/

2
6666664

3
7777775
¼

sin /ð Þ �vx

cos /ð Þ �vx

ax�gsin hð Þ
_/

0

2
6666664

3
7777775
þd noiseð Þ

Measurement model :

Xgps

Ygps

vgps

vwheel

/gps

_/gyro

2
6666666664

3
7777777775

¼

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

2
666666664

3
777777775

X

Y

vx

/
_/

2
6666664

3
7777775
þd noiseð Þ

ð1Þ

where Xgps;Ygps;vgps;vwheel;/gps;
_/gyro are the measurements of the

GPS receiver and IMU; X and Y are the states of vehicle position;
vx is the speed along x-axis; / is the clockwise angle between the
north and the vehicle direction; _/ is the angular velocity; g is the
acceleration of gravity; h is road pitch angle; and d is the noise
vector.

More details about localization can be found in the literature
and will not be discussed here. This study focuses on the other
two parts: the lane-level map and the lane-level route planning,
in order to find answers to these two questions: ① What does a
so-called lane-level map look like? and ② How is a lane-level
map used to generate lane-level route planning?

The definitions of a lane-level map, high-definition (HD) map, or
high-precision map are still ambiguous. In general, all these con-
cepts refer to a map that is more accurate and more suitable for
autonomous driving than a conventional map. In this study,
‘‘lane-level” means that the accuracy is greater than 0.5 m and
the differences between different lanes are distinguishable. The
lane-level map is becoming a hot research topic, particularly
because the measurement of accurate map data is becoming much
easier. With the development of high-precision localization sen-
sors and other advanced equipment for data collection, including
inertia measurement units and LiDAR, it is possible to establish
an enhanced map for the navigation and localization of vehicles
[8–10]. With the multi-sensor fusion technique, lane-level accu-
racy localization has become accessible to many developers [11].
Betaille et al. [12,13] have created an enhanced map for lane-
level vehicle navigation that uses a series of shape points to

Fig. 1. Different strategies for autonomous driving with road-level navigation and lane-level navigation, respectively.
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represent several lane types. Schindler et al. [14] have used circular
arc splines to generate a high-precision map that includes road
markings, landmarks, and other additional attributes. Liu et al.
[15] and Guo et al. [16] have designed a lane-level map-
generation method based on sensors and an open street map.

Current studies on lane-level maps mainly generate geometrical
representations for lanes with high accuracy. However, the current
limitation of lane-level maps is not accuracy but flexibility. Lane-
level maps contain a great deal of detailed lane information, such
as the slope angle, curvature, and position of all lanes, most of
which is not necessary for a given navigation task. For better effi-
ciency, a lane-level map should be more flexible in providing
detailed lane information only when necessary. In this study, a
multi-layer digital map model is developed to make the digital
map more flexible.

Lane-level route planning is more challenging than road-level
route planning in two aspects: the evaluation of travel cost and
the optimization of efficiency. The conventional road network is
usually simplified as the shortest path problem in graph theory,
which is conventionally solved by Dijkstra’s, A*, and other algo-
rithms [17]. However, in practical navigation applications, these
algorithms should be modified to consider the particular proper-
ties associated with real road networks [3]. Many road-level
route-planning algorithms have been developed in the literature;
an overview is given in Ref. [18]. When it comes to the lane level,
however, the navigation task is not only to find the shortest path;
more factors should be considered, such as the position of lane
changing. Without a comprehensive evaluation method, it is diffi-
cult to find the optimal path, but relatively easy to find an unfeasi-
ble path. The efficiency of route planning is another key aspect that
should be considered.

One feasible strategy to achieve efficient lane-level route plan-
ning is proposed in Ref. [19], and is based on a hierarchical lane-
oriented three-dimensional (3D) road network model. Three candi-
date routes are first calculated on the roadway centerline network
using the k-shortest path algorithm. Next, the optimal route is cal-
culated on the roadway-based network, and the navigable route is
finally determined on the lane-level network. This strategy is sim-
ple and feasible. However, it is possible to lose the distinctive accu-
racy that could be obtained from lane-level networks. For example,
the first three candidate routes may not cover the optimal route if
distinct lane features are ignored in the first routing stage. In this
study, we design a new travel cost based on the detailed informa-
tion provided by the lane-level map. In particular, a refined model
of travel costs that considers interaction turning and lane changing
is achieved, and the optimal route associated with vehicle maneu-
vers at the lane level is determined. A new lane-level route-
planning algorithm is then developed based on the new travel cost
models.

The rest of this paper is organized as follows: The next section
starts by introducing the architecture of the map model we are
proposing, and then explains the relationship between road-level
and lane-level maps. Refined modeling of the lane-level travel
costs is discussed in Section 3. Next, the lane-level route-
planning algorithm is proposed. Experiments are performed on
both a grid network and a real lane-level digital map, and the
results are presented in Section 5. Finally, we provide conclusions
and directions for further research in Section 6.

2. Adaptive accuracy map model

2.1. Map architecture

Owing to the development of LiDAR and other high-precision
sensors, digital map accuracy is now able to reach the centimeter

level, which has led to an explosion of map data. Several new
map standards such as OpenDRIVE [20] and NDS (i.e., navigation
data standard) [21] are employed for lane-level routing. How-
ever, the overwhelming level of complexity and the confidential-
ity of these new standards make it difficult for them to be
practically used at present. Thus, an applicable map model that
can take full advantage of high-precision map data is essential.
Note that a map with higher accuracy does not necessarily mean
improved navigation. For different navigation goals, the required
accuracy can be relatively different. In order to make the digital
map capable of supporting all types of navigation in an efficient
way, we propose a seven-layer map model, called as Tsinghua
map model (TM model), which is illustrated in Fig. 2. Each layer
contains different types of data, and is dedicated to different
navigation tasks.

Layer 1: Road layer. This layer is designed for road-level mis-
sion planning; it provides road-level information that can be used
in global road-level route planning [17]. This layer represents con-
ventional static digital map data.

Layer 2: Traffic information layer. This layer is designed for
dynamic road-level navigation; it provides road-level dynamic
traffic data on events such as traffic jams and road construction
that can be used in congestion avoidance and dynamic global path
planning.

Layer 3: Road–lane connection layer. This layer is designed for
lane-level route planning, providing a topological connection
between the road-level network and lane-level network. It can
help to topologically project the road-level path into the lane-
level path. As it has no detailed information on each lane, this layer
is relatively small, and is able to find potential lanes quickly.

Layer 4: Lane layer. This layer is designed for lane-level naviga-
tion, and provides high-definition lane-level geometry, lane-level
traffic rules, road-signs, and other lane-related information. Layers
3 and 4 can be combined to obtain lane-level optimal trajectory
planning that considers the road slope, curvature, and traffic rules.

Layer 5: Map feature layer. This layer is designed for self-
localization lane-level navigation; it provides high-definition fea-
ture data, which can be used for map-based localization or
perception.

Layer 6: Dynamic objects container layer. This layer is
designed for dynamic local trajectory planning, and provides
dynamic information on moving obstacles observed by other vehi-
cles or infrastructure. It works as a standardized interface for the
fusion of multiple sensors (LiDAR, camera, vehicle-to-everything
(V2X), etc.) in different vehicles. With information from other road
users, the dynamic situation can be considered to generate safe
local trajectory.

Layer 7: Intelligent decision support layer. This layer is
designed for autonomous driving, and provides driving knowledge
data. An intelligent driving support system can be embedded into
this layer in order to learn a driver’s logic and driving behaviors.

One significant benefit of using the seven-layer map is the pos-
sibility to load data in a flexible way. For road-level navigation, the
data from Layers 1 and 2 are enough. For lane-level navigation with
RTK GPS, Layers 3 and 4 should be added. If the GPS does not work,
Layer 5 can help to localize the vehicle. For cooperative driving,
Layer 6 should be added to obtain information transferred by
V2X communication. For autonomous driving, Layer 7 provides
decision-making support.

With the proposed TM model, the use of map data is more
flexible, map information would be invoked only when it is
required by the navigation task. In the following subsection,
the lane-level map model is introduced. It should be noted here
that Layers 5, 6, and 7 are designed for map-based localization,
perception, and decision-making, which are outside the scope
of this study.
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2.2. The lane-level map model

The lane-level road network should contain the geometric and
topological details of roads and intersections at the lane level, as
represented by Layer 4 in Fig. 2. A variety of lane-level map models
have been proposed in the literature to expand a digital map with
detailed lane information, including refined representations of the
lane geometry and intersection geometry. Lane geometry is usually
represented by clothoids [13], arc splines [14], or cubic Hermite
splines (CHSs) [10], while road intersections are described using
a topological method [15,19,22]. In comparison with adding more
detailed information into the map, it is equally important to make
the map more flexible and efficient. For the design of an efficient
lane-level navigation system, we propose the construction of a
lane-level map model with a four-layer structure, comprised of
Layers 1, 2, 3, and 4, as shown in Fig. 2.

The mathematical representation of each layer in Fig. 3 is intro-
duced in the following paragraphs.

2.2.1. Road layer
Without loss of generality, we consider that the road network is

composed of a set of roads rj
� �a

j¼1 and a set of intersections cif gbi¼1,

a and b are the numbers of the roads and intersections,
respectively. The road layer is usually expressed as follows:

W ¼ rj
� �a

j¼1; cif gbi¼1

� �

ci ¼ Pc;i; Ec;i; Tc;i
� � ð2Þ

where W is the representation of the road layer; Pc,i is the set of
road-level nodes entering the ith intersection and Ec,i is the set of
road-level nodes leaving this intersection. Tc,i is the road-level traf-
fic matrix indicating the topological connection between two nodes.

Ti ¼

Pc;j;1 . . . Pc;j;n

Ec;j;1

..

.

Ec;j;m

ti;1;1 . . . ti;n;1

..

. . .
. ..

.

ti;1;m . . . ti;n;m

2
664

3
775

ð3Þ

where m and n are the number of the nodes leaving and entering
the intersection, respectively. The element ti;n;m identifies whether
a vehicle can drive from the entering node Pc;j;n to the leaving node
Ec;j;m, and ti;n;m ¼ f i;mið Þ, in which f i denotes whether (= 1) or not
(= 0) a vehicle may drive from Pc;j;n to Ec;j;m and mi is the way of pas-
sage, such as turning left, turning right, going straight, or perform-
ing a U-turn.

The road-level road is expressed as follows:

ri ¼ Pr;i; Er;i;Q r;i

� � ð4Þ

where Pr is the set of road-level nodes entering this road intersec-
tion, and Er is the set of road-level nodes leaving this road intersec-
tion. Qr comprises the road class kr and the road length lr.

2.2.2. Traffic information layer
Traffic information is essential for the routing algorithms in

order to avoid traffic jams and improve global traffic efficiency.
Global traffic dynamics can be obtained through an analysis of
floating vehicle data. In this study, the traffic situation is repre-
sented by the vector of the recorded average speed.

V r ¼ V r t0ð Þ; . . . ;V r tið Þ; . . . ;V r tkð Þ½ � ð5Þ

where V r tið Þ is the average speed during the time interval
ti; ti þ Dt½ �, tk is the time of last recorded speed.

Fig. 2. A seven-layer adaptive accuracy map architecture for autonomous driving. V2X: vehicle-to-everything; POI: point of interest.
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The history of the average speed data can be used as experience
data to estimate the travel cost. It can be also be used to predict the
future travel speed.

V̂ r ¼ V̂ r tkþ1ð Þ; . . . ; V̂ r tkþið Þ; . . . ; V̂ r tkþnð Þ
h i

ð6Þ

where V̂ r tkþið Þ is the predicted speed during the time interval
tk þ iDt; ti þ iþ 1ð ÞDt½ �.

2.2.3. Road–lane connection layer
The role of this layer has already been explained in the previous

subsection. This layer can be regarded as a connection layer
between the road-level information and the lane-level informa-
tion, which connects the upper and lower layer. This layer is the
key to a flexible and accurate architecture, as it provides channels
to load high-precision data and preserves the advantages of con-
ventional maps. Thus, the connection layer is expressed as follows:

Pr; Erð Þ ¼ Plane;1; Plane;2; . . . ; Plane;n; Elane;1; Elane;2; . . . ; Elane;m
� � ð7Þ

where Plane;n and Elane;m represent the lane-level entering and leaving
nodes, respectively. Each lane-level node contains the location of
the node and the traffic direction of the node, noted as uN; vNð Þ.

2.2.4. Lane layer
The lane layer contains more accurate and complete

information.

W lane ¼ rlane;j
� �alane

j¼1 ; clane;i
� �blane

i¼1

� �
ð8Þ

where W lane represents the lane-level layer; alane and blane are the
numbers of traffic lane and lane-level intersections; rlane;j represents
a traffic lane belonging to one physical road, where the lane is
defined as follows:

rlane;j ¼ Slane; s; cs; ce;Q laneð Þ ð9Þ
where Slane is the parameter set of the lane shape, which is defined
by the CHS. The lane curve can be expressed by a parametric func-
tion f CHSðu; SlaneÞ, in which u is the position of the vehicle. s denotes
the lateral sequence number of the lane in the set of lanes belonging
to the same road. The sequence is determined so that number 1 is

assigned to the rightmost lane. cs and ce are the indices of the start
and end intersections, respectively, according to the traffic direction
of the lane. Q lane comprises the lane attributes such as the total
length L and the speed limit V limit, along with other geometric and
traffic attributes, such as the traffic sign B uð Þ. B uð Þ ¼ 1 indicates that
a stop sign is located at f CHS u; Slaneð Þ.

The lane-level intersection clane;i is defined similarly to the road-
level intersection, as follows:

clane;i ¼ Plane;i; Elane;i; T lane;i
� � ð10Þ

where T lane;i is the lane-level traffic matrix, which represents the
geometric and topological characteristics of the joint between the
entering and exiting lanes (i.e., ki and kj) at the intersection. The
joint lane is defined as follows:

tij ¼ St; ki; kj;Qt ; f m
� � ð11Þ

where St is the parameter set of a possible trajectory of a vehicle
traveling from lane ki to kj and is also defined by CHS. ki and kj
are the indices of the entering and exiting lanes. Qt comprises attri-
butes associated with the joint lane, such as length L and traffic light
Bs. Bs ¼ 1 means that the traffic associated with the joint lane is
controlled by a traffic light. f m describes whether the lane ki to kj
can feasibly be connected. Note that the lane-level traffic restraints
at the intersections are inherently described by the traffic matrix.

3. Modeling of lane-level travel cost

Given detailed information on the lane-level road network, a
more refined model based on travel costs can be achieved. In gen-
eral, the cost in terms of travel time can be categorized into three
types: ① static, ② dynamic, and ③ statistic [23]. Static cost
depends on the stationary properties of the road network, whereas
dynamic and statistic costs are affected by other traffic partici-
pants. In this study, we focus on the static cost in order to explore
the improvement in cost modeling derived from the refined road
network data. There are many aspects to route planning, such as
travel distance, time, fuel consumption, and various mixed indica-
tors. Here, we focus on time; all the costs appearing in this study
are travel time. Details will be discussed below.

Fig. 3. The four-layer lane-level map model for lane-level navigation.
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3.1. Travel cost of lane changing

The travel time along a single lane can easily be estimated
according to the lane attributes, as follows:

f cost rlaneð Þ ¼ L=V limit ð12Þ
where L and V limit are involved in Eq. (9). However, in most cases, a
driver may not follow a single lane but may make lane changes. The
cost of a lane change is discussed as follows. A lane change is gen-
erally performed because of the different properties of two lanes.
(Note that dynamic factors are not considered in this study.) We
consider two common scenarios in which lane changes could occur.

3.1.1. Lanes with different speed limits
In this case, a vehicle traveling in a lane with a lower speed limit

is assumed to make a lane change as soon as possible in order to
travel at a higher speed. We assume that the lane change is per-
formed at the beginning of the lanes; accordingly, a transit edge
is added between two start points, as shown in Fig. 4(a).

The cost of the transit edge should consider the delays derived
not only from the extra length traveled but also from the acceler-
ating course. The cost can be obtained by the following equation:

f cost rlane;i ! rlane;j
� � ¼ Vi � Vj

� �2
2avVi

þ Ds
Vi

ð13Þ

where av is the vehicle acceleration andDs is the extra length caused
by lane changing, which can be approximated by the lane width.

3.1.2. Lanes with different traffic constraints
A vehicle traveling on a lane with a higher speed limit may also

change to other lanes in order to make a turn to follow the traffic
constraint assigned to that lane. As shown in Fig. 4(b), this lane
change may generally be made close to the intersection ahead,
and is therefore described by a transit edge between the end nodes
of the two lanes. The additional cost is obtained and expressed as
follows:

f cost rlane;i ! rlane;j
� � ¼ Vi � V trafficð Þ2

2avVi
þ Ds

Vi
ð14Þ

where V traffic is the speed limit caused by the traffic restraints, rather
than the speed limit road sign.

Figs. 4(c) and (d) show the transit edges that model the possible
lane changes. In the case where a road contains more than two
lanes, transit edges between two adjacent lanes should be
generated.

3.2. Travel cost at an intersection

The cost of turns at intersections also plays an important role in
the entire cost of a route, particularly in urban areas. This issue has
been considered in previous studies [23]; however, it can be
improved using detailed data on intersections, which are described
at the lane level. The turning cost should include not only the tra-
vel length at the intersection, but also the reduction in speed. The
vehicle movement across an intersection can be divided into three
sections, as shown in Fig. 5.

3.2.1. Approaching an intersection
In general, a vehicle decelerates when approaching an intersec-

tion. The time delay due to deceleration can be obtained by the
following:

f cost cappro
� � ¼ Vi � vcð Þ2

2avVi
ð15Þ

where vc is the vehicle speed at the end of the entering lane. It
should be affected by various traffic features assigned at that point.
vc is equal to zero if the road sign is ‘‘stop.” In most cases, vc is equal
to the turning speed vt, which will be discussed below.

3.2.2. Turning at an intersection
The time of turning at an intersection can be divided into two

parts: the time of waiting for signals and the time of turning
behavior. The time of waiting for signals is a subject that is more
related to road traffic management. In this study, the focus is on
the modeling of driving behaviors; therefore, we simplify the prob-
lem by assuming that the signal waiting time is given as twait. After
entering an intersection, a vehicle accelerates from vc to the
turning speed vt and travels along the joint lane. The travel time
is calculated by the following:

f cost cturnð Þ ¼ v t � vcð Þ2
2avVi

þ LT
v t

þ twait ð16Þ

where LT is the length of the joint lane. The turning speed is affected
by several factors that are associated with the turning type and the
intersection configurations. Thus, we define a model for turning
speed that considers the influence of the attributes of an
intersection:

v t ¼ vb 1� jrminð Þ ð17Þ
where vb is the base speed obtained by min(Vi, Vj), and j is the aver-
age curvature of the joint lane, which can be calculated along the
joint lane curve [24]. rmin is the minimum turning radius (e.g.,
6 m for a typical passenger car).

Fig. 4. Modeling of lane change cost. (a) Lane change due to different speed limits
(km�h�1); (b) lane change due to different traffic constraints; (c) transit edges
between lanes with different speed limits, represented by e in the figure; (d) transit
edges between lanes with different traffic constraints.

Fig. 5. Modeling the turning cost. vc: the vehicle speed at the end of the entering
lane; vt: the turning speed.
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3.2.3. Leaving the intersection
When leaving the intersection, the vehicle accelerates to reach

the speed of the exiting lane. The time delay can be obtained by
the following:

f cost cleaveð Þ ¼ Vj � v t
� �2
2avVj

ð18Þ

Finally, the total travel cost at the intersection is calculated by
the following:

f cost cinterð Þ ¼ f cost cappro
� �þ f cost cturnð Þ þ f cost cleaveð Þ ð19Þ

4. Lane-level route planning

Now we consider the route-planning problem on the lane-level
road network. The detailed attributes assigned to separate lanes
enable us to determine the optimal route while considering vehicle
maneuvers at the lane level, as shown in Fig. 6.

First, we add nodes at the start and end points of each lane. The
whole road network can therefore be summarized as a directed
graph.

G ¼ U; Eð Þ ð20Þ

where U is the set of nodes uif g and E is the set of edges eif g.
According to the road network topology, an edge is derived from
either an entering lane lanei connecting its start node ustart elanei

� �

(simplified as us
i ) and end node uend elanei

� �
(simplified as ue

i ), or a
joint lane tij connecting the end node ue

i of the entering lane lanei
and the start node us

j of the exiting lane lanej:
Next, the weight function f cost eð Þ is defined to specify a weight

to each edge. The weight indicates the cost of traversing a lane
or making a turn in terms of a specified metric, such as distance
or travel time. In this paper, we focus on the most natural metric,
the travel time. The detailed modeling of the lane and turn costs
has already been described in Section 3.

The route planning aims to find the optimal route
P ¼ e1; . . . ; ep

� �
satisfying the following:

min c Pð Þ ¼
Xp

i¼1

f cost eið Þ ð21Þ

where ei 2 E, for all lanes in the searching area, and c Pð Þ is the total
cost along the route P.

As discussed earlier, the route-planning problem may be solved
using classical algorithms such as Dijkstra’s or the A* algorithm.
However, employing these algorithms directly on a lane-level road
network is not practical due to the significant increase in complex-
ity in routing. Various heuristic rules and hierarchy structures have
been exploited to realize efficient routing in large networks [25]. In
this study, we also propose a hierarchical route-planning method
that provides a lane-level routing result with improved efficiency.
The second reason why we propose this algorithm is that many
algorithms have been available for road-level route planning for
decades, which may be convenient for us. Thus, we regard this
lane-level route-planning problem as a process of determining a
lane-level route from a predetermined starting point to a predeter-
mined destination point. At first, we plan a route on the road level,
as shown in Fig. 7(a); next, lane-level costs are calculated on lane-
level layers; and finally, lane-level nodes making up the route are
determined, as shown in Fig. 7(b).

4.1. Route planning on the road-level layer

Assuming that nodes O and D are the predetermined origin and
destination, respectively, the route planning on the road level, Nr,
can be formulated as a search for road-level intersection
sequences.

Nr ¼ O;N1;N2; . . . ;Ni; . . . ;Nk;Dð Þ ð22Þ
where Ni represents the road-level intersection node, k is the
number of nodes.

Our road-level map model is similar to the conventional map
model for navigation. The A* algorithm is employed in this
navigation step [18].

4.2. Route planning on the lane-level layer

Path refinement should be realized based on the obtained road-
level intersection sequences, according to our proposed hierarchi-
cal route-planning method. The lane-level route planning can be
divided into two steps: ① selecting lane-level nodes based on
road-level routing results, and ② connecting lane-level nodes
according to the lane-level travel cost.

4.2.1. Selection of lane-level route nodes
According to the lane-level map model introduced in Section 2,

each road intersection has lane-level nodes entering and exiting
the area. The map data in the road-lane connection layer are

Fig. 6. The optimal route on the lane-level road network (represented by the red line). Traffic restrictions and speed limits (km�h�1) associated with traffic lanes should be
taken into consideration in determining the optimal route.
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designed to support the selection of lane-level route nodes from
road-level route nodes. After obtaining the output of the road-
level route planning, such as N1;N2; . . . ;Nk, the simplest way to
obtain the refined nodes is to read all the lane-level nodes in
N1;N2; . . . ;Nk; however, this will bring in unrelated nodes and
reduce the efficiency of route searching.

To eliminate unrelated lane-level nodes, we propose the extrac-
tion of lane-level nodes according to the following methods, as
shown in Fig. 8.

First, only the lane-level nodes that can connect two consecu-
tive road-level nodes are selected. For a road-level intersection
node Ni, its entering lane-level nodes should be connected to the
last road-level intersection node Ni�1. Similarly, its exiting lane-
level nodes should be connected to the next road-level intersection
node Ni;iþ1. The entering and exiting lane-level nodes of Ni are
denoted as Ni;i�1 and Ni;iþ1, obtained by the following equations:

Ni;i�1 ¼ Pc Ni;Ni�1ð Þ ð23Þ

Ni;iþ1 ¼ Ec Ni;Niþ1ð Þ ð24Þ

where Pc represents the road-level entering node and Ec represents
the road-level exiting node, both determined by the road-level
route planning result.

Second, the constraints introduced by the traffic rules or road
conditions should be considered. Imagine that in an intersection,

Fig. 7. Hierarchical route planning based on the multi-layer map. (a) Road-level
route planning; (b) lane-level route planning.

Fig. 8. An illustration of the method of selecting lane-level route nodes.
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the left turning is determined by the road-level nodes sequence,
and this road-level node includes three lane-level entering nodes.
According to the traffic rules, the lane-level nodes that are most
to the left are the only feasible lane-level nodes. To consider similar
situations in the route planning, it is necessary to use the traffic
matrix to eliminate unfeasible nodes. The data stored in the traffic
matrix are explained by Eqs. (10) and (11). Given the specific travel
task, from Ni;i�1 to Ni;iþ1, the traffic matrix in Ni can be further sim-
plified as t Ni;i�1;Ni;iþ1

� �
:

t Ni;i�1;Ni;iþ1
� � ¼ t Ni;i�1;Ni;iþ1

� �[
t Ni;i�1;n;Ni;iþ1;m
� �

;

if f m Ni;i�1;n;Ni;iþ1;m
� � ¼ 1 ð25Þ

Only the feasible entering and exiting lanes are included in the
traffic matrix. In this way, the number of nodes to be searched is
reduced. Suppose that in the routing node Ni, the number of feasi-
ble entering and exiting lanes are n and m, respectively; then the
traffic matrix in Ni can be formulated as the following equation.

ð26Þ
The pseudocode of the selection rule is also listed in Algorithm 1.

Algorithm 1. Pseudocode: Selection of lane-level route nodes

1 Nr is known, set NP ¼ £
2 for i ¼ 2; . . . ; k� 1
3 set Ni;i�1 ¼ £; Ni;iþ1 ¼ £,
4 Ni;Ni�1 ! Pc ! Ni;i�1; Ni;Niþ1 ! Ec ! Ni;iþ1

5 set t Ni;i�1;Ni;iþ1
� � ¼ £

6 for x ¼ 1; . . . ;ni;i�1

7 for y ¼ 1; . . . ;ni;iþ1

8 if f x Ni;i�1;x;Ni;iþ1;y
� � ¼ 1

9 t Ni;i�1;Ni;iþ1
� � ¼ t Ni;i�1;Ni;iþ1

� � [ Ni;i�1;x;Ni;iþ1;y
� 	

10 else Ni;i�1 ¼ Ni;i�1=Ni;i�1;x; Ni;iþ1 ¼ Ni;iþ1=Ni;iþ1;y

11 find the lane-level node which has no link in this road
node then delete it;

12 end if;
13 end for;
14 end for;
15 NP ¼ NP [ Ni;i�1;Ni;iþ1; t Ni;i�1;Ni;iþ1

� �� 	
16 end for;
17 return NP

Np: the route planning result on the lane level, which is a set of lane-level nodes.

4.2.2. Route planning on selected lane-level nodes
After the potential route nodes are selected, the main differ-

ences between the road-level and lane-level route planning are
mainly the travel cost model, as described in Section 3, and the
direction of searching. Our lane-level direct graph is unidirectional,
because the global direction is given by the route planning at the
road level. Learning from conventional path-finding algorithms,
we designed a stepwise algorithm to find the series of optimal
lane-level nodes, as illustrated in Fig. 9. For each step, the calcula-
tion of the costs from the start point to the current point is com-
pleted; then the last lane-level node from which the minimum
cost can be realized is stored, denoted as Pf Ni;i�1;m

� �
. Thanks to

the unidirectional graph, it is not necessary to estimate the cost
from the current node to the destination, which makes the

algorithm more efficient. Details about lane-level path finding
are provided in Algorithm 2.

Algorithm 2. Pseudocode: Route planning on the lane-level
layer

1 set i ¼ 1; j ¼ k (number of road-level nodes in addition to O
and D), N0;1 ¼ Oð Þ; Nkþ1;k ¼ Dð Þ; Nl ¼ £

2 while i < j
3 for Ni;i�1;x 2 Ni;i�1

4 g Ni;i�1;x
� � ¼ 1; Pf Ni;i�1;x

� � ¼ £,
5 for Ni�1;i;y 2 Ni�1;i

6 g0 Ni;i�1;x
� � ¼ g Ni�1;i;y

� �þ tlc Ni�1;i;y;Ni;i�1;x
� �

7 if g0 Ni;i�1;x
� �

< g Ni;i�1;x
� �

8 g Ni;i�1;x
� � ¼ g0 Ni;i�1;x

� �

9 Pf Ni;i�1;x
� � ¼ Ni�1;i;y

� �
10 end if;
11 end for;
12 end for;
13 for Ni;iþ1;z 2 Ni;iþ1

14 g Ni;iþ1;z
� � ¼ 1; Pf Ni;iþ1;z

� � ¼ £,
15 for Ni;i�1;x 2 Ni;i�1

16 g0 Ni;iþ1;z
� � ¼ g Ni;i�1;x

� �þ tlc Ni;i�1;x;Ni;iþ1;z
� �

17 if g0 Ni;iþ1;z
� �

< g Ni;iþ1;z
� �

18 g Ni;iþ1;z
� � ¼ g0 Ni;iþ1;z

� �

19 Pf Ni;iþ1;z
� � ¼ Ni�1;i;z

� �
20 i ¼ iþ 1;
21 end if;
22 end for;
23 end for;
24 if i ¼ j; return path Nl ¼ D; Pf Dð Þ; Pf Pf Dð Þ� 	

; . . . ;O
� �

;
25 end if;
26 end

g: travel cost from start to previous node; g0: travel cost from start to current node;
tlc: travel cost of this step.

5. Experimental validation

5.1. Simulation tests on a grid network

We performed simulation tests on a grid network in order to
evaluate the effectiveness of the proposed route-planning algo-
rithm. As shown in Fig. 10, a 5 km grid network containing eight
roads in the horizontal direction and eight roads in the vertical
direction was built. All roads between every two adjacent intersec-
tions were bidirectional, and three parallel lanes were included in
each direction in one road, as shown in Fig. 11. The traffic rule we
designed on the three entering lanes in an intersection was left,
straight, and straight/right from the innermost lane to the outer-
most lane. The lane parameters are given in Table 1. The start point
and destination point, indicated by red circles, were located as
shown in Figs. 10 and 11.

Given the road-level map data in Fig. 10 and the lane-level
map data in Fig. 11, we applied the method described in Sections
2 and 3 to find the optimal route in an efficient way. To better
present the effectiveness of our proposed method, the direct
lane-level routing algorithm was also performed, which involved
directly searching for routes in the lane-level map without the
hierarchical process. The routing results of our proposed method
are illustrated by red lines in Figs. 12 and 13, where the former
presents the road-level routing results and the latter presents
the lane-level routing results. In Fig. 12, it can be seen that the
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chosen path avoids all black lanes when it can choose to do
so—for example, at Point 3 of Fig. 12. This is because the black
lanes are the slowest lanes, with a speed limit of 40 km�h�1. In
Fig. 13, it can be seen that the proposed algorithm has success-
fully chosen the correct lanes to both respect the traffic rules
and run on the fastest lane. For example, at Point 2 of Fig. 13,
the planned path has changed to the outer lane to turn right; at
Point 3 of Fig. 13, the planned path has changed into the inner
lane after passing the intersection in order to reduce the travel
time. This result reveals that the multi-layer map model is
efficient for hierarchical lane-level route planning, and that the
proposed planning method and lane-level cost model is capable
of finding the lane-level optimal route in a road network.

To demonstrate the improved efficiency of our proposed
method, we compared the computation time of different routing
algorithms in Table 2. The computation time of the proposed hier-
archical routing algorithm can be divided into three parts: initial-

izing the directed graph, road-level routing, and lane-level
routing refinement. In comparison, the computation time of the
direct lane-level routing algorithm contains two parts: initializing
the directed graph, and lane-level routing. The time cost of initial-
izing a directed graph decides the map model’s ability to support
routing algorithms. As shown in Table 2, our proposed method
uses much less time to generate the directed graph than the direct
lane-level routing: Our time cost is only 2% of the method of the
direct lane-level routing. This is due to the complexity of the
lane-level map data. Table 2 also shows that the core routing time
cost of our proposed method is 41.5% less than that of the direct
lane-level routing. Although the hierarchical routing method
divides the routing into two steps, the computation burden is
much lower than that of the direct routing method. In conclusion,
the simulation test validated the proposed hierarchical routing as
having better efficiency in supporting lane-level navigation than
the direct routing method.

Fig. 9. The proposed stepwise algorithms to find optimal route nodes.

Fig. 10. Setup of the simulation test: A road-level map, where traffic situations are indicated by different travel speeds for each road.
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5.2. Tests on a real road network

Tests were also performed on small areas of the real road net-
work in order to validate our travel cost model and the hierarchical

routing algorithm. In our previous study, a lane-level digital map of
a small urban area in Milan was built [25], as shown in Fig. 14. The
map contains 44 lanes and 16 intersections. Yellow lines with a
gray background indicate parallel lanes where lane changes are
permitted (i.e., lanes that are separated by dashed lane markings).

The travel cost of a determined route can be calculated accord-
ing to the digital map and verified against the real travel time. Two
routes were selected, as shown in Fig. 14. One route, indicated by
green lines, is 906 m long and contains eight intersections, three
traffic lights, and four yield signs. The other route, indicated by
blue lines, is 1132 m long and contains nine intersections, four traf-
fic lights, and three yield signs. We drove an experimental car over
the selected routes several times during off-peak hours. The travel
time for each trip was recorded and compared against the modeled
travel cost. The results are shown in Table 3. It can be seen that in
some trips, the travel time values were significantly larger than
others (i.e., the first trip of Route 1 and the third trip of Route 2).
This was due to unexpected traffic delays such as vehicle queuing

Fig. 11. Setup of the simulation test: A lane-level map, where traffic situations are indicated by different travel speeds for each lane.

Fig. 12. Road-level routing result: The proposed method has chosen the fastest routes. (See Fig. 10 for an explanation of the speed limit of each road.)

Table 1
Setup of parameters in the simulation test.

Parameters Value

Lane numbers in one road 3
Lane width 4 m
Intersection width 14 m
Average speed limit of road: vx Randomly chosen from {80 km�h�1,

60 km�h�1, 40 km�h�1}
Speed limit of each lane Inner: vx + 20 km�h�1; middle: vx; outer: vx

– 20 km�h�1

Allowed behavior Inner: only left; middle: only forward;
outer: forward or right
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at an intersection. These delays were caused by dynamic traffic fac-
tors that are not considered in this study. Therefore, we ignored
these values and derived the average time of multiple trips as
the real travel time. The real travel times were found to be very
close to the modeled costs, demonstrating the effectiveness of
the cost-modeling approaches.

Lane-level route-planning tests were also performed on a lane-
level digital map of a small urban area in Huizhou City, as shown in
Fig. 15, where different color lines represent lanes with different
speed limits. The routing results are shown by the red lines in
Fig. 16. In general, the real map data are less complicated than
the simulation data, as they have fewer intersections and lane
nodes. It is clear that the proposed method has chosen the correct
lanes to arrive at the destination. Table 4 compares the routing
time costs of different routing methods in this urban area. The
routing efficiency has been improved by 54.8%, compared with
direct lane-level routing.

6. Conclusions and further research

This study aimed to develop a lane-level map-supported route-
planning algorithm. First, the architecture of a seven-layer flexible
and accurate digital map was proposed to explain how the digital
map can enable navigation applications from road level to lane
level. Next, refined modeling of travel costs (e.g., the cost of
traversing a lane, making a lane change, or making a turn) was
achieved by analyzing the vehicle movement on the lane-level
road network. A graph for routing can be built by assigning the
costs to the network. In order to accelerate the routing process, a
hierarchical routing was implemented on both road-level and
lane-level graphs in order to efficiently determine the optimal
route. Simulation tests were performed to demonstrate the accu-
racy and effectiveness of the complete hierarchical routing algo-
rithm. Tests were also performed on a real lane-level map to
verify the cost modeling.

HD lane-level maps are believed to play a significant role in the
development of autonomous driving vehicles. Many map data pro-
viders have already developed high-accuracy map data acquisition

Fig. 13. Lane-level routing result: The proposed method has chosen the correct lane with respect to the traffic rules. (See Fig. 11 for an explanation of the speed limit.)

Fig. 14. Tests of the travel cost modeling on a real road network. Lanes are
represented by lines, whose colors denote the various speed limits, the limit of
yellow lanes is 90 km�h–1 and the limit of other lanes is 50 km�h–1. Dashed curves
indicate joint lanes that model non-signal-controlled turns, while dotted curves
indicate joint lanes with signal controls. The stop and yield signs are separately
indicated by red and yellow circles.

Table 2
Time costs of different routing methods in the simulation test.

Proposed hierarchical routing Direct routing on lane-level map

Directed graph over
road-level map

Road-level routing Road-level to lane-level
routing

Directed graph over
lane-level map

Lane-level routing

Number 224 (node) 768 (edge) 54 (node) 672 (node) 3072 (edge)
Time cost (s) 0.012 0.029 0.002 0.603 0.053
Core routing time cost (s) 0.031 0.053
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equipment dedicated to the construction of HD maps. However,
many problems remain to be addressed before wide-scale applica-
tion is possible—such as the high cost of constructing and using an

HD map. At present, a centimeter-level HD map can only be con-
structed using expert data, which is usually acquired by means
of multi-layered LiDAR and is very difficult to update online. In
future, AI technology will be employed to extract useful informa-
tion from user data, which is likely to reduce the construction cost
of HD maps. Meanwhile, the computation cost of using an HD map
is equally problematic. The multi-layer map data structure and the
hierarchical routing algorithms described in this study have the
potential to reduce the computation cost.

To increase the utility of lane-level route planning in practical
navigation applications, further research will expand the current
work in two directions: ① More refined modeling of uncertain tra-
vel costs will be performed. In this study, we model the travel costs
in a deterministic way; however, the uncertainties associated with

Fig. 15. Illustration of real lane-level map data of Huizhou City. The color of the lane indicates the speed limit of the lane.

Fig. 16. Illustration of lane-level routing results over real map data of Huizhou City.

Table 3
Test results of the travel cost modeling.

Real travel time (s) Modeled cost (s)

1 2 3 4 5 Average

Route 1 — 141.3 142.1 163.6 166.0 153.2 149.3
Route 2 151.5 154.4 — 150.1 156.3 153.1 150.1

"—" indicates anomalies caused by unexpected traffic delays that are not included in this study; thus, these values were excluded from the averages.

Table 4
Time costs of different routing methods in a real road test.

Proposed hierarchical
routing

Direct routing on
lane-level map

Road-level
routing

Lane-level
refinement

Lane-level
routing

Node number 67 14 190
Time cost (s) 0.012 0.002 0.031
Total time cost (s) 0.014 0.031
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traffic conditions, weather, and other factors could also be
included. The inclusion of uncertain information would lead to a
more refined representation of costs using, for example, fuzzy
numbers [26]. A balance should be obtained between routing
complexity and efficiency. ② A further speed increase will be
established for large road networks. This study addresses the
lane-level route-planning problem on small or medium-sized road
networks. Further speed-up techniques are required if the routing
is performed on a large network. A simple strategy exists, which
replaces bounded costs with their average values and applies
advanced speed-up techniques such as contraction hierarchies
[27]. The feasibility of this strategy will be verified in further
studies. Furthermore, various existing speed-up techniques may
be modified so that an optimal routing can be achieved directly
on large lane-level road networks.
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