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Recently developed fault classification methods for industrial processes are mainly data-driven. Notably,
models based on deep neural networks have significantly improved fault classification accuracy owing to
the inclusion of a large number of data patterns. However, these data-driven models are vulnerable to
adversarial attacks; thus, small perturbations on the samples can cause the models to provide incorrect
fault predictions. Several recent studies have demonstrated the vulnerability of machine learning meth-
ods and the existence of adversarial samples. This paper proposes a black-box attack method with an
extreme constraint for a safe-critical industrial fault classification system: Only one variable can be per-
turbed to craft adversarial samples. Moreover, to hide the adversarial samples in the visualization space, a
Jacobian matrix is used to guide the perturbed variable selection, making the adversarial samples in the
dimensional reduction space invisible to the human eye. Using the one-variable attack (OVA) method, we
explore the vulnerability of industrial variables and fault types, which can help understand the geometric
characteristics of fault classification systems. Based on the attack method, a corresponding adversarial
training defense method is also proposed, which efficiently defends against an OVA and improves the
prediction accuracy of the classifiers. In experiments, the proposed method was tested on two datasets
from the Tennessee–Eastman process (TEP) and steel plates (SP). We explore the vulnerability and cor-
relation within variables and faults and verify the effectiveness of OVAs and defenses for various classi-
fiers and datasets. For industrial fault classification systems, the attack success rate of our method is close
to (on TEP) or even higher than (on SP) the current most effective first-order white-box attack method,
which requires perturbation of all variables.

� 2022 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In the field of fault classification, numerous data-driven
machine learning methods have been proposed and have achieved
good accuracy [1,2]. Some of them are derived from traditional
learning machines, such as support vector machines (SVMs) for
multi-fault classification [3], linear dynamic systems (LDSs) for
handling the dynamic fault classification problem [4], transfer
learning based on linear discriminant analysis [5], and ensemble
methods, such as SVM-forest [6]. Deep learning has been exten-
sively researched for fault classification. Owing to the rapid
increase in the collected data size and computation capacity,
model performance can be improved. Some examples of such
improved methods include deep convolutional neural networks
(CNNs) with time–frequency representation [7], bidirectional deep
recurrent neural networks (RNNs) for sequential fault detection
[8], and sparse stacked auto-encoders (AEs) considering dynamic
information [9].

Despite the high classification accuracy of machine learning,
recent research studies have shown an intriguing weakness that
widely exists among these classifiers: Small imperceptible pertur-
bations on input samples will cause the classifiers to output incor-
rect predictions with high confidence [10–12]. Many previous
studies have investigated adversarial attacks of deep models for
image classification. In 2013, Szegedy et al. [13] first discovered
this property of deep networks. A meaningful work is the fast gra-
dient sign method (FGSM) by Goodfellow et al. [14], which used
the increasing gradient direction of samples to craft adversarial
samples and trained robust deep neural networks (DNNs) with
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y ‘‘resp.” is the abbreviation of ‘‘respectively,” which means the value inside
brackets can respectively substitute the value outside, so as the resp. in the following.
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them. Based on FGSM, some methods iterate more than once to
calculate the perturbations on the adversarial samples and achieve
better performances, such as project gradient descent (PGD) [15],
free adversarial training (FreeAT) [16], and you only propagate
once (YOPO) [17]. Unlike the abovementioned approaches that
modify every pixel, Su et al. [18] claimed that they could success-
fully fool three different networks with the tested images where a
single pixel per image was changed. Papernot et al. [19] also cre-
ated an adversarial attack by restricting the number of pixels of
the perturbations.

Likewise, some studies have studied the safety issues of conven-
tional classifiers. Barreno et al. [20] examined the security of a
Bayesian-based method for spam detection software. Biggio et al.
[21] attacked SVM classifiers. Hu and Tan [22] used generative
adversarial networks to synthesize adversarial samples and suc-
cessfully attack malware detectors in the form of random forest,
linear regression, and decision trees.

As for the defense against adversarial samples, the most com-
mon method is adversarial training that adds adversarial samples
during the training process, making the model more robust and
regularized [13,14,23]. Another method is to modify networks
using contractive or denoising networks [24] or masking gradients
to adversaries [25]. Alternatively, training an auxiliary model to
detect adversaries is also an effective defense method [26].

Because the industrial fault classification system is highly
safety-critical, where misclassification may lead to severe unde-
sired outcomes [27,28], it is vital to study the issue of adversarial
attacks and defense on industrial systems. Therefore, this study
proposes a black-box attack method on an industrial fault classifi-
cation system by perturbing only one variable, which is called a
one-variable attack (OVA). The major motivations and distinguish-
ing features of our attack method are as follows:

(1) Attack scenarios: In this study, we mainly consider the sit-
uation in which industrial fault diagnosis systems are under mali-
cious attacks. One of the possible attack scenarios is that a
malicious hacker gains access to the industrial system, either
through physical approaches to real-world sensors or through elec-
tronic technologies connected to the smart diagnosis system. Per-
turbing an industrial manufacturing process, by changing the
components in streams for instance, will cause serious damage to
the entire system, but this is difficult to detect. Hence, this study
investigates the most concealed attack method for intelligent fault
diagnosis systems, where a hacker can set a tiny offset on a single
sensor, such as temperature or visual measurement. According to
our experimental results, these undetectable OVAs seriously threa-
ten fault diagnosis systems.

(2) One-variable: Unlike process faults that may be related to
multiple sensors in industrial systems [29], malicious attacks are
more likely to occur on a single sensor measurement; thus, one
variable, rather than multiple sensors, is perturbed simultaneously.
Furthermore, from a theoretical perspective, OVAmakes it easier to
provide the geometric boundaries in the fault classifier input space
by analyzing each fault variable separately, which provides a dee-
per insight into the fault classification system.

(3) Black-box: In adversarial learning, the black-box attack
mode can only access the output of classification models and does
not require any internal information of models, such as structures
or parameters. The black-box attack property allows for very gen-
eral results that can be applied to different circumstances, where
the innermost fault classification models are not usually accessible
for security reasons. With the black-box property, OVA is also cap-
able of attacking indifferentiable classifiers without any gradient
information.

Furthermore, this study adopts a selection order that can make
the perturbations invisible in the dimensional reduction visualiza-
tion space, which is a standard way to observe abstract industrial
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data. This is achieved by using the Jacobian matrix of the reduction
mapping on variables, and the variables with smaller derivatives
have a higher priority to be perturbed.

There is also an adversarial training method to defend against
adversarial attacks. The proposed defense method trains classifica-
tion models using adversarial samples that perturb the partial gra-
dient directions. Our defense method is robust in detecting OVA,
and at the same time it improves the classification accuracy, which
is hardly achieved by some existing adversarial training methods.

In summary, the main contributions of this study are as follows:
� A black-box OVA method, which is more applicable to actual
industrial fault classification scenarios, is proposed. An OVA
perturbs only a single variable and attacks different types of
fault classifiers without internal information, and the produced
adversarial samples are undetectable.
� Insight into industrial variables and fault classification is pro-
vided by evaluating the vulnerability and geometry of variables
and faults using an OVA.
� An adversarial training method to defend against OVAs, which
provides a robust classification system with higher accuracy,
is presented.
To the best of our knowledge, this is the first time that adversar-

ial attack and defense methods have been proposed and analyzed
for industrial fault classification systems. The remainder of this
study is organized as follows, Section 2 presents the OVA method
and the corresponding evaluation results. In Section 3, the vulner-
ability and robustness of industrial data are explored at the vari-
able and fault levels, and an intuitive illustration of classification
boundaries provides an insight into fault classification systems.
In Section 4, the defense method against OVA is introduced. Finally,
the conclusions are presented in Section 5.
2. One-variable attack

In this section, the methodology and evaluation of OVA are pre-
sented in detail. For the overall intuitive illustration, based on the
Tennessee–Eastman process (TEP) dataset (see Section 2.2 for data-
set details), Fig. 1, which is a plot of data points of some fault types,
reports the attacked variables with corresponding classification
results. The figure shows that the OVA method can threaten fault
classifiers by perturbing only one variable of the samples with high
confidence. Taking the DNN classifier for samples of fault 6 as an
example (subfigures on the left), attacking variable 20 (resp.y 17)
with 10% (resp. 20%) value offset misled the fault classifier to incor-
rectly predict them as fault 17 (resp. 8), with a nearly 100% confi-
dence. Meanwhile, it can be seen that the drift of crafted
adversarial samples is subtle and unnoticeable in the low-
dimension visualized space, which is attributed to the perturbed
variable searching order proposed by us.
2.1. Methodology

The OVA approach crafts adversarial examples by attacking
original samples with perturbation vectors, which are constrained
below certain values in specific norm measurements. First, classi-
fiers for the industrial data are trained, and the classifier with
the best generalization on the test set, which is denoted as f , is
chosen to be attacked. The n-dimensional fault samples
x ¼ x1; x2; :::; xnð Þ correctly predicted by f are perturbed. It should
be noted that the focus was on the samples that were correctly
classified in the test set. The perturbation is defined as



Fig. 1. OVA samples visualized. The light blue points present whole samples of a certain fault type, the orange points are for the original samples, and the greens are for the
adversarial samples that perturb one variable on the original samples (some point pairs are so close that they overlap). The comments at the bottom of each figure give the
attacked variable with the original and targeted value. The legends show the original and targeted predictive fault type and the confidence of the classifiers. The rows
correspond to two-dimensional (2D) reduction skills (principal component analysis (PCA, top) and AE (bottom)); and columns correspond to different classifiers (DNN,
k-nearest neighbor (kNN, k = 7), SVMs).
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g ¼ g1; g2; :::; gnð Þ of the same size as the input samples. Thus, the
OVA is

f xþ gð Þ–f xð Þ ð1Þ

subject to kgk0 ¼ 1; and kgk1 � e

where e is a hyperparameter and kgkp (p ¼ 0 or 1) is the lp norm of
g. The l0 norm counts the total number of nonzero elements of a
vector, which is used to constrain the number of variables to be
modified. The l1 norm controls the distance between the adversarial
and original samples below hyperparameter e, which can be
adjusted in the interval [0, 1]. To better evaluate the deviation of
adversarial samples, the distortion in the perturbation ratio form
is replaced with the absolute value e in a part of later experiments.
For the perturbed variable xpert, the distortion is defined as the ratio
of perturbation in the original variable value, which can be formu-
lated as follows:

Distortion ¼ e=xpert ð2Þ
To make the displacement of the adversarial samples in the

visual space as small as possible, we calculate the column l1 norm
of the Jacobian matrix on a dimensional reduction mapping
function to guide the priority during the variable search. The
Jacobian matrix consists of the first partial derivatives between
the input and output of a multivariate function. For the dimen-
sional reduction visualization mapping function z ¼ FðxÞ;
F : R

n ! R
m (m ¼ 2 or 3), the Jacobian matrix JF and its column

l1 norm v can be written as

JF ¼

@z1
@x1

� � � @z1
@xn

@z2
@x1

� � � @z2
@xn

@z3
@x1

� � � @z3
@xn

2
664

3
775 ð3Þ

v ¼ kJFk1�col ¼
P3

i¼1
@zi
@x1

� � � P3
i¼1

@zi
@xn

h i
ð4Þ

Sorting the elements of v in ascending order yields a variable-
order sequence for searching during the attack. The variable of the
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smaller gradient with respect to the low-dimensional space is first
perturbed to attack the classifiers, which guarantees that the gen-
erated adversarial samples drift the least in the visualization space.

Algorithm 1 shows the procedure for OVA.

Algorithm 1. One-variable attack for fault classification.

d is the predefined distortion; vs is the index vector
indicating the variable position in ascending order by
sorting v (e.g. vsð0Þ denotes the position index of the
minimal variable, while vsðn� 1Þ denotes that of the
maximal one);

Input: x; f ; d;vs

Output: adversarial samples x�

initial x�  x; i ¼ 0
repeat
k ¼ vsðiÞ
e ¼ d� x kð Þ
x� kð Þ ¼ x kð Þ � e
clip x� kð Þ to [0, 1]
i ¼ iþ 1

until f x�ð Þ–f xð Þor i ¼ n
2.2. Evaluation

To comprehensively verify the effectiveness of an OVA on
industrial fault classification systems, we chose two industrial
datasets: the TEP [30] and steel plates (SP) [31]. TEP is a public
benchmark dataset for the development, study, and evaluation of
industrial processes. The TEP dataset consists of 52 variables, 28
fault types, and one normal working condition. A flowchart of
the TEP is presented in Fig. 2. In the experiments, we chose the data
of the first 21 fault types along with the normal working condition,
each of which had approximately 500 samples. The SP dataset
came from the research by Semeion [31], Research Center of
Sciences of Communication, seeking to correctly classify the type
of surface defects in stainless SP. There are a total of 1941 samples



Fig. 2. The flow chart of TEP [30]. FI: flow indicator; Stm: steam; Cond: condenser; LI: level indicator; PI: pressure indicator; TI: temperature indicator; JI: power indicator of
compressor; SC: synchrocyclotron; XA, XB, XC, XD, XE, and XF: analysis of Component A, B, C, D, E, and F, respectively; CWS: chilled water supply; CWR: chilled water return.
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and seven fault types without the normal type in the SP dataset.
Table 1 summarizes the attributes and fault types in the SP dataset.
The 27 attributes of SP dataset can be categorized into two types
according to their source. Using visual skills, the geometric shape
of the steel defect and its outline were extracted. In addition, the
intrinsic properties of the steel and conveyer are also described.
Practically, visual sensors are easier to be attacked, and small per-
turbations may have a significant impact on the measurements.
Hence, the SP dataset was chosen for the evaluation of OVA in fault
classification systems.

In the experiments, we first normalized all the samples to range
from 0 to 1 and split the dataset into a test set and a training set in
a ratio of 3:7. Then, the training set was used to train the classifiers,
and the correctly predicted samples in the test set were selected to
be perturbed to attack the classifiers. We selected three types of
classifiers: DNN representing the deep learning model, SVM, and
k-nearest neighbor (kNN), for the conventional machine learning
models. Table 2 reports the classification results, including the
classification accuracy and confidence. Classification accuracy is
the major metric to measure how many test samples are correctly
predicted, and the confidence can indicate how confident the clas-
sifier f is on its predictions, which can be formulated as
Table 1
Summary of the SP fault dataset [31].

Attributes type Attributes details

Visual location (X, Y) min, max, perimeter
Visual luminosity min, max, sum
Visual areas pixels, sigmoid, log
Visual index edges, empty, square, outside, orien
Steel type, thickness
Conveyer length
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Accuracy ¼
PN

i¼1I f xðiÞ
� � ¼ yðiÞ

n o

N
ð5Þ
Confidence ¼
Pc

i¼1Prf ðyðiÞjxðiÞÞ
c

ð6Þ

where N is the sample number in the test set, I is the indicator func-
tion, and fx ið Þ; yðiÞg is a pair of samples and their true labels. Confi-
dence is calculated on the correctly predicted test set, the sample
number of which is c ¼ N � accuracy.
2.2.1. Effectiveness of the attacks
In this section, we study the extent to which an OVA can mis-

lead fault classification. The results were obtained by experiments
with two industrial fault data and three classifiers. Because the
order of variable search is not the focus of this subsection (that will
be discussed in the following subsection), all OVA experiments are
performed with a constant random sequence of searching vari-
ables. The following metrics were used for the adversarial attack
evaluation:
Fault types

1. pastry; 2. Z-scratch; 3. K-scratch; 4. stains;
5. dirtiness; 6. bumps; 7. others

tation



Table 2
Classification results on the test set.

Dataset Accuracy (%) Confidence (%)

DNN kNN SVM DNN kNN SVM

TEP 75.8 57.4 56.2 81.7 62.0 54.0
SP 78.4 68.6 69.1 85.6 70.9 69.5
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� Success rate: In an adversarial attack, the success rate is the
proportion of the number of successfully attacked samples
among c attackable samples (defined in Eq. (6)), which can be
formulated as
Success rate ¼
Pc

i¼1I f x ið Þþgð Þ–y ið Þf g
c

ð7Þ

� Confidence: Confidence in adversarial attacks is slightly differ-
ent from that in classification. The confidence here is computed
based on the incorrect predictive probability of successfully
perturbed samples. A higher confidence means that the classi-
fier predicts the adversarial input samples to be the incorrect
fault types with a higher probability. The formulation is
Confidenceadv ¼
Ps

i¼1Prf ðf x ið Þþgð Þ x ið Þþgj
s

ð8Þ

where s ¼ c � success rate. In the following, all confidence met-
rics in the reported figures are defined in Eq. (8) for the adversar-
ial attacks.
First, we verify that, for the classifiers of two different industrial

datasets, only one variable of the samples needs to modified. In this
case, the classifiers can successfully attack and predict the wrong
fault types with relatively high confidence. Fig. 3 shows the results.

According to the success rate, DNN is the most vulnerable
among the three classifiers mainly because of the depth characteri-
stics of deep models, which lead to significant amplification of
Fig. 3. OVA results. The figures show two metrics, (a, b) success rate and (c, d) confidence
varies from 0 to unlimited, where the unlimited stands for perturbing the variable to th
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small perturbations. For TEP, even when the distortion is relatively
small, the success rate is considerable (10% distortions (resp. 20%)
yielded a success rate of 36.5% (resp. 62.6%)). On the other hand,
the other two traditional classifiers are slightly more robust than
DNN but still succumb to OVA, especially when distortion reaches
a high level. The confidence metric indicates that the DNN is gen-
erally more vulnerable to threats. The probability output by kNN
and SVM is nearly 50%, despite the increase in distortion and differ-
ent datasets. On the contrary, the confidence of DNN overwhelms
the other two in most cases. However, for SP, when the distortion
is less than 20%, the exception is that the confidence of SVM is
higher than that of DNN. This interesting observation indicates that
although only a very small number of samples can be attacked, the
successfully attacked samples gain high confidence in SVM. In the
comparison of the two industrial datasets, TEP is much more vul-
nerable than SP for all three classifiers. The main reason is that
the classifiers on SP are much more confident and accurate (as
shown in Table 2), which corresponds to more robust models.
Therefore, larger perturbations are required to successfully attack
the classifiers for SP. This rule is confirmed by the inner data anal-
ysis in Section 3.

Next, we compare our methods with some competitive attack
methods in the adversarial field, FGSM, and PGD. Both are white-
box methods, and they calculate the adversarial samples based on
the gradient. Because they perturb all variables, for fair
of two datasets, (a, c) TEP and (b, d) SP with regard to the distortion. The distortion
e maximal bounds [0, 1]. y

y For the variables less than 0.5, the maximal distortions are greater than 100%. For
example, the maximal distortion on the variable of value 0.2 is 400% ((1 � 0.2)/0.2).
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competition, the l2 norm of the distance between the adversary and
the original is used as the limitation of perturbations. The attack
results are compared under perturbations with the same l2 norm,
and the DNN classifier is attacked. According to Figs. 4(a) and (b),
for industrial fault classification, with the identical deviation dis-
tance limitation, perturbing only one variable can obtain a similar
or even higher attack success rate than perturbing every variable.
Compared with PGD, which is considered the strongest first-order
attack method [15], OVA has a significant advantage in the success
rate with the SP dataset. However, the confidence value of OVA
was not better than that of the other two methods.

2.2.2. Effectiveness of variable searching order
This subsection demonstrates how the search order of variables

during an attack can influence the distribution of adversaries in the
visualization space. The experiments attack the DNN classifier
without distortion limitation and apply two-dimensional (2D)
reduction skills: principal component analysis (PCA) and AE. Ran-
dom and Jacobian-based variable searching orders are compared,
as shown in Fig. 5. Searching variables from the smallest gradient
direction of reduction mapping can merge the adversarial samples
into the original distribution, whereas random search makes the
adversaries visually distinguishable.

In addition, the average l2-distances between the adversaries
and the original are calculated to compare two variable searching
methods. As can be seen from Table 3, for the Jacobian-based vari-
able search, the deviation distances in the visualization space sig-
nificantly decrease.

3. Industrial data vulnerability analysis

The previous results on different classifiers and datasets show
that industrial fault classification systems can be attacked with
only one variable and that OVA is a general and competitive attack
method. Furthermore, we explore the vulnerability of industrial
data at the variable and fault levels. Our goal is to provide insight
into how the variables and their fault types affect the vulnerability
of the overall model.
Fig. 4. Comparison of adversarial attack methods on the DNN classification model. The fig
TEP and (b, d) SP with regard to the l2 norm of the perturbations.
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All the vulnerability insights are analyzed (with all the reported
figures in this section) under the scenario of OVA on the DNN clas-
sifier and the TEP dataset. DNN and TEP are the most mainstream
classifiers and industrial datasets, and this combination is
representative.
3.1. Fault variable study

Unlike in the previous section, we consider all variables in all
correctly predicted fault samples to explore which variables and
fault types are vulnerable. First, a set of the perturbation limit val-
ues e 2 f0:01; 0:02; :::; 0:19; 0:2; 0:3; :::; 1:0g (the hyperparame-
ter in Eq. (1)) is designed to test the minimum perturbation on a
certain variable, which can successfully attack the classifier.
Because the attack success rate rises rapidly under the smaller
limit values of perturbation, we designed a smaller test e value
space (0.01) when less than 0.2.

The average minimum perturbation of each variable with
regard to faults is shown in Fig. 6, where a small perturbation value
indicates that a slight change in these variables can make the clas-
sifier predict incorrectly on this fault sample, and vice versa.
Because some variables of fault samples cannot be successfully
attacked, the attack success rate of fault variables is also reported
in Fig. 7, which indicates that perturbing this variable leads to
the vulnerability of the sample partitions. Two heat maps are nega-
tively correlated, and they illustrate the vulnerability of the vari-
ables per fault type. Because the success rate with maximal
perturbation tends to represent the variables that are difficult to
attack, the success rate with a relatively small perturbation (0.1)
limitation is also plotted in Fig. 8, which emphasizes the vulnerable
variables. Moreover, the average minimal perturbations along the
rows and columns in Fig. 6 are computed with respect to variables
and faults, which are plotted in Fig. 9.

From the rows of the three heat maps from Figs. 6–8 and Fig.
9(a), fault 7 is the most robust in the classification of TEP, whereas
faults 15, 16, and 21 are easier to craft adversarial samples. This is
correlated with the confidence of the classifier in these faults. DNN
has much more confidence for fault 7 and less confidence for
ures show two metrics, (a, b) success rate and (c, d) confidence of two datasets, (a, c)



Fig. 5. Visualization of adversarial samples using the random and Jacobian-based variable searching order. Blue points represent the overall dataset distribution, and orange
points represent the generated adversaries. The left half is the fault data from the TEP with PCA reduction, and the right half is the SP dataset with AE reduction. The upper
row is adversaries using the random search, and the bottom is using the Jacobian-based search.

Table 3
Distances between adversarial and original samples in the reduced dimensional
space.

Searching method TEP–PCA TEP–AE SP–PCA SP–AE

Random 0.1095 0.1725 0.1356 0.3521
Jacobian-based 0.0068 0.0702 0.0203 0.1342
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vulnerable fault types. This conforms to the DNN’s confusion
matrix on the TEP test set (Fig. S1 in Appendix A), where vulnerable
faults are also difficult to classify.

Based on the columns of the three heat maps and Fig. 9(b), vari-
ables 17 and 48 are much more vulnerable than others, whereas
variables 3 and 26 are relatively more robust to perturbations. This
corresponds to the loss gradient of the classifier for each variable.
The heat map is shown in Appendix A Fig. S2. The gradients from
the loss function of the DNN to variables 17 and 48 are much more
significant than the others, which implies that perturbations on
these variables will significantly impact the classifier.

3.2. Fault pair study

This subsection analyzes vulnerability at the fault level. Let the
fault pair A–B be defined as: Fault A is the true fault type and fault
B is the wrong type that an attacked classifier predicts. This means
Fig. 6. Average minimum successful perturbation for the fault variables. The points with d
variables that cannot be attacked even once, at maximal perturbation.
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that, given the perturbed samples (of fault A) and an attack, the
classifier gives the wrong diagnosis as fault B. As before, the
experiments were performed with the TEP and DNN classifier.

The metrics are the minimum successful perturbation and the
success rate, the results of which are calculated based on the
original target fault pairs. We search all variables of all fault sam-
ples that can be attacked and record the smallest perturbation e
that can fool the classifier, the results of which are shown in
Fig. 10(a). For the success rate of attacked samples, if fault A can
be attacked to fault B on different variables, each sample of fault
A only counts once for the number of successful attacks. Fig.
10(b) represents this in 0.1 perturbation limit to show the vulner-
able fault pairs. For the success rate of attacked variables, it counts
all the variables in one sample when the attack is successful, as
shown in Fig. 10(c). As in Section 3.1, the average minimal pertur-
bations are also computed for a rigorous analysis of the original
and targeted fault pairs, as shown in Fig. 10(d).

For the original faults, the robustness and vulnerability are ana-
lyzed in Section 3.1, with respect to the variables. From the fault
pair perspective, the result is very similar, and the only difference
is that fault 4 becomes the hardest to be misclassified as most
other faults.

For targeted faults, faults 10 and 11 are more vulnerable to
being targeted, whereas faults 5 and 6 are less targeted. Combined
arker colors indicate the variables are harder to attack. The black points indicate the



Fig. 7. Success rate with maximal perturbation for the fault variables. The points with lighter color indicate the variables are harder to attack.

Fig. 8. Success rate with 0.1 perturbation for the fault variables. The points with lighter color indicate the variables are harder to attack.

Fig. 9. Average minimal perturbations (Avg Min Pert) of (a) fault and (b) variable, which are the mean values along the rows and columns in Fig. 6.
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with the classifier confusion matrix (Fig. S1), an interesting con-
nection can be found: The robust and vulnerable faults are the
faults with the highest and lowest classification accuracy in the
test set, respectively. One possible geometric interpretation is that,
for these vulnerable faults, the classification area is smaller, and
they are closer to the boundaries, while the robust faults are far
away from the boundaries, which makes them more difficult to
attack.
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Furthermore, some intriguing patterns were discovered:
(1) Asymmetry: Intuitively, if fault A is easily attacked as fault

B, fault B should be perturbed as fault A as well, which means fault
pairs A–B and B–A are equally vulnerable, and the heat maps
should be symmetric about the diagonal. The symmetric
pattern conforms to intuitive expectations because vulnerable
pairs are commonly closer in the input space. However, in fact,
only a small number of the fault pairs in the three heat maps are



Fig. 10. (a) Average minimum successful perturbation of the fault pairs. It is the mean of the smallest e between the original–target fault pairs. The points with darker colors
indicate the fault pairs are harder to attack. The black points indicate the fault pairs that cannot be attacked even once at maximal perturbation. (b) Success rate with 0.1
perturbation of fault pairs. Success rate is the percentage of the successfully attacked samples between the original–target fault pairs to the total number of original fault
samples. The points with lighter color indicate the fault pairs are harder to attack. (c) Success variable rate with unlimited perturbation. A successful perturbed variable
counts once. The points with lighter color indicate the fault pairs are harder to attack. (d) Average minimal perturbations of original and targeted fault pairs, from the rows
and columns in Fig. 10(a).

Y. Zhuo, Y.A.W. Shardt and Z. Ge Engineering 19 (2022) 240–251
symmetrical, and a large number of asymmetrical patterns exist,
such as original–target pairs 21–20, 21–17, 5–12, and so on. Such
asymmetry is intriguing; it shows that some faults like fault 21
resemble many other faults, such as faults 20 and 17, but not vice
versa.

(2) Concentration: An examination of the two heat maps
shows that, like the original fault, fault 4 is robust overall, and
the transition between it and most other faults is difficult. How-
ever, according to the previous section, the attack success rate of
fault 4 is not very low, so the targets of fault 4 are concentrated
on one fault, fault 11. This is more evident when calculating the
success variable rate, that is, what percentage of variables in a
fault can be attacked to other faults, as shown in Fig. 10(c). The
value of fault pair 4–11 is 30.98, which means that each sample
of fault 4 has nearly 31 variables (total 50) that can be perturbed
to make the DNN classifier predict fault 11. It can be noted that
for the original fault 4, the largest target fault 11 accounts for
68.55% of the total.

The most straightforward interpretation of these two patterns is
given from a geometrical perspective of classification in the follow-
ing subsection.
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3.3. Geometrical interpretation of fault classification

This section explains, using a geometric approach, why OVA
works and why correlations between faults and variables are as
shown in the previous two subsections. Based on the geometric
approach, a deeper insight into the industrial fault classification
system is also provided.

The primary approach in this section is to draw classification
boundaries to demonstrate the geometric characteristics of fault
classification. Owing to the limited number of visual dimensions,
the changes in the classification boundary are only drawn for
two variables of a specific type of fault. Because the values of the
other variables will affect the shape of the classification boundary,
the values of the remaining variables are represented by the mean
value of this fault.

First, for variables 0 and 46, the DNN decision boundaries of
faults 20 and 21 are drawn, as shown in Fig. 11. Because the values
for the other variables are approximated by means, there are some
offsets on the positions of the fault point. In fact, the fault samples
were correctly classified using the classifier. A comparison of these
two results gives the following points:
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(1) Why can a perturbation in a single variable successfully
attack a fault classification system? From the Fig. 11, the output
of the classifier is varied along one variable. In particular, for fault
21 (the left of Fig. 11), both horizontal and vertical perturbed sam-
ples can make the classifier incorrectly predict at least three differ-
ent fault categories.

(2) Why do different faults have different vulnerabilities for the
same variable? Compared to fault 21, fault 20 is easier to classify
for the classifier, and its output confidence is also higher; hence,
the classification area is broader, and the sample is farther from
the classification boundary. On the other hand, the confidence of
the classifier for fault 21 is lower, the classification area is nar-
rower, and the samples are very close to the classification bound-
ary. This means that only slight perturbations can make the
classifier output a wrong prediction for the samples of fault 21,
whereas the samples of fault 20 are more robust to perturbations.
This is consistent with the heat maps in Section 3.1, and the confu-
sion matrix (Fig. S1).

(3) Why are fault pairs asymmetric? The major reason is that
the input space for classification is high dimensional, and the fault
samples only occupy a small part of the whole space, whereas the
classification area of some faults is vast, occupying a large area in
the space. This means that, despite the distance between different
faults being extremely far, in some areas of the input space, the
classification boundaries of these two types of faults may be adja-
cent. In the two figures, for the samples of fault 21, they are close to
the fault 20 decision area in the projection on these two variables.
The classification boundaries of the two types of faults are adjacent
in some parts of the space, but not the part of the space that is close
to the samples of fault 20. Projecting a z-axis onto Fig. 11 reveals
that the decision area of fault 20 expands on that z-axis and
squeezes the areas of faults 21, 3, 18, and 14. The samples of the
fault 20 cluster somewhere on the z-axis, so it is not adjacent to
fault 21 in the projection onto variables 0 and 46. In practice, the
z-axis represents the other variables.

Next, we consider Fig. 12, which seeks to explain why some
fault pairs are highly vulnerable. From the sample of fault pairs
4–11, on the eight variables of the four subfigures, the decision
area of fault 4 is closely surrounded by fault 11. Therefore, we
can assume that in the higher-dimensional input space, a large part
of the fault 4 decision area is also surrounded by fault 11. There-
fore, the adversarial samples for fault 4 have a high probability of
being mistakenly classified as fault 11.

Finally, the robust and vulnerable variables were studied from a
gradient perspective. The sample distribution of fault 5 is drawn
against variables 2 and 48, and the gradient of the classification
loss as a function of these two variables is calculated at each point,
Fig. 11. DNN classification boundaries for faults (a) 21 and (b) 20 as a function of variabl
the classification area of different faults, where the number shows its fault type.
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as shown in Fig. 13. The loss value of the DNN is calculated by the
cross-entropy between the output and ground truth, which mea-
sures the difference between two probability distributions. In
terms of the gradient value, variable 48 is an order of magnitude
higher than variable 2. In the direction starting from the position
of the samples, the change in the gradient along the direction of
variable 48 is significantly greater than that of variable 2, and there
is almost no gradient along variable 2. This means that applying a
perturbation to variable 48 can make the output of the classifier
change more drastically, and it is easier to obtain the wrong output
of the classification, which also verifies the results in Section 3.1. In
addition, by combining the gradient map and the classification
boundary, it can be found that the closer the fault is to the classi-
fication boundary, the higher the gradient becomes. This means
that the samples near the decision boundary are more vulnerable
and vice versa, which is consistent with the geometric interpreta-
tion in Section 3.2.
4. One-variable defense

To defend the adversaries generated by the OVA and improve
the robustness of the DNN, we propose an adversarial training
method to add adversarial samples during the training process of
the DNN to train a classifier that is more robust to perturbations.
Unlike most existing adversarial training methods, which perturb
the training samples on every variable to obtain adversarial train-
ing samples, our method only adds perturbation to the variables
with higher gradients. The adversarial training methods are only
suitable for iterative training models, such as DNN, so SVM and
kNN are not used for our defense method.

To achieve this, a gradient table of the average gradient for the
variables of each fault is calculated at each epoch during the train-
ing process, which is a graph similar to Fig. S2. Only the fault vari-
ables ranked in the top K position in the table are selected for
perturbation to generate the adversaries, where K is an adjustable
hyperparameter to control the partition of perturbed variables dur-
ing adversarial training. The sign function was used to determine
the direction of the selected variables. The perturbation was
applied along the direction of the ascending gradient.

A more robust classifier can be obtained by adding adversarial
samples with the same label as the original samples during model
training. Fig. 14 shows the success rate of OVA for the three classi-
fiers, the original DNN, the DNN with FGSM training, and the DNN
with the proposed method (OVA-training). In the experiments, K
was set to 50%, which means that the fault variables with the high-
est half of the gradient are perturbed in the proposed method.
es 0 and 46. Red points are samples of a certain fault type. Different colors represent



Fig. 12. DNN classification boundaries of fault 4 as a function of eight variables.

Fig. 13. DNN classification boundaries for fault 5 as a function of variables 2 and 48, and the corresponding gradient. The gradient is from a classifier’s cross-entropy loss of
fault 5 to variables 2 and 48, respectively, and three-dimensional (3D) and 2D projections of the gradient contour are plotted.

Fig. 14. Success rate and test accuracy for different training methods: (a) TEP and (b) SP.
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The results on the two datasets show that the proposed method
can effectively reduce the success rate of OVA. However, compared
with FGSM, the OVA-training is not as robust when distortion
increases, but we gain high accuracy on the test set, 0.63% (resp.
0.16% in the SP) higher than that of the plain DNN model, and
2.27% (resp. 1.76%) higher than that of the DNN with FGSM adver-
sarial training. This is mainly because of the global variable selec-
tion across the different faults. Adding perturbation to each
variable reduces the attack success rate, but as a trade-off, the test
accuracy decreases due to some perturbations in the high-
confidence variables. Our method only adds the perturbations on
the variables that are difficult to classify, so as to help the model
learn more explicit boundaries for those variables, which in turn
improves the accuracy of the test set. Meanwhile, because the
attack method is on only one variable, reducing the perturbed vari-
ables during adversarial training does not decrease robustness.

5. Conclusions

This study examined the security of industrial fault classifica-
tion systems. An OVA was proposed to attack the fault classifica-
tion models by perturbing only a single variable. The results
showed that perturbing only one variable was sufficient to attack
industrial fault classifiers. The attack success rate was high even
when the perturbation was limited to a small value. In the TEP,
10% (resp. 20%) distortion on a single variable perturbed 36.5%
(resp. 62.6%) of the samples to successfully attack the classification
systems of DNNs.

Exploiting the OVA method, this study also explored the geom-
etry of an industrial fault classification model, represented by
DNNs. The classification boundaries and gradients were plotted
to provide insight into the vulnerability and robustness of indus-
trial fault classification systems. Finally, to minimize the impact
of adversarial attacks, an adversarial training method using some
of the variables was proposed. This resulted in a trade-off between
a small decrease in robustness under large perturbations to give a
much higher prediction accuracy (0.63% higher than the DNNwith-
out adversarial training and 2.27% higher than the DNN with all
variable adversarial training).
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