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Method development has always been and will continue to be a core driving force of microbiome science. 
In this perspective, we argue that in the next decade, method development in microbiome analysis will be 
driven by three key changes in both ways of thinking and technological platforms: ① a shift from dissect-
ing microbiota structure by sequencing to tracking microbiota state, function, and intercellular interaction 
via imaging; ② a shift from interrogating a consortium or population of cells to probing individual cells; 
and ③ a shift from microbiome data analysis to microbiome data science. Some of the recent method- 
development efforts by Chinese microbiome scientists and their international collaborators that underlie 
these technological trends are highlighted here. It is our belief that the China Microbiome Initiative has 
the opportunity to deliver outstanding “Made-in-China” tools to the international research community, by 
building an ambitious, competitive, and collaborative program at the forefront of method development for 
microbiome science.

© 2017 THE AUTHORS. Published by Elsevier LTD on behalf of the Chinese Academy of Engineering and  
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND  

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Method development has been a core driving force of microbi-
ome science. From the discovery of the role of 16S rRNA genes as 
markers for taxonomy, to the introduction of the metagenomics 
approach, and then to the revelation of “microbial dark matter” via 
single-cell sequencing, the emergence of each new core technolo-
gy has had wide-ranging and profound impacts on the plethora of  
microbiome-related fields and industries. As a result, novel tech-
nologies for microbiome analysis have been the top priority for past 
national and international microbiome projects [1–3]. However, the 
analytical methods and tools for analyzing microbial consortia, such 
as functional imaging, omics-based interrogation, and cell culture, 
have been quite primitive compared to those for pure cultures. As a 

result, for example, real-time monitoring of microbiota function in 
situ is still difficult, and the rational design and assembly of robust 
microbiotas to operate in natural environments remain challenging. 
Microbiome data mining across distinct disciplines or application 
areas has also faced enormous challenges, in that technological 
platforms for the emerging frontier of microbiome data science 
have just started to emerge. Therefore, challenges and opportunities 
abound in the field of microbiome analysis.

We believe that microbiome analysis has been undergoing a 
revolution, driven by three key shifts in ways of thinking and tech-
nological platforms (Fig. 1). The first shift is from dissecting micro-
biota structure by sequencing to tracking microbiota state, function, 
and intercellular interaction via imaging. Improvement in temporal 
resolution is crucial to dynamics tracking of the state or function 
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of the microbiota (e.g., at the transcriptional or metabolic level),  
before any change in the structure of the microbiota takes place. 
The second shift is from interrogating a consortium or population 
of cells to probing individual cells. Such enhancement in spatial 
resolution is important for a mechanistic understanding of the func-
tional heterogeneity of the microbiota and of its implications for 
phenomena such as antimicrobial resistance. The third shift is from 
microbiome data analysis to microbiome data science, in which a 
local perspective such as a comparison of microbiomes within a 
single project is complemented by a global or bird’s eye perspective 
in which any new data are compared with all microbiomes known 
to date (or relevant subsets of these microbiomes). This allows a 
real-time and updated appreciation of the nature and degree of the 
new data’s contribution to the currently characterized structural and 
functional space of microbiotas on Earth.

2. From dissecting microbiota structure by sequencing to tracking  
microbiota state, function, and intercellular interaction via  
imaging: The emergence of label-free, function-based imaging 
technologies for the microbiota 

In many chronic diseases, a change in disease status is associat-
ed with a series of microbiota structure changes. However, each of 
these events is a consequence of, and underpinned by, many chang-
es in the microbiota state. Being able to detect and describe such state 
changes is fundamental to the understanding of the mode of action 
and microevolution of the microbiota. However, the metagenomic 
approach can typically only profile the phylogenetic structure (via 
phylogenetic markers such as 16S/18S rRNA genes) or functional 
gene structure (via shotgun sequencing). On the other hand, meth-
ods such as interrogating the metatranscriptome, metaproteome, 
or meta-metabolome face tremendous challenges in real-time 
monitoring of microbiota state because of their destructive nature, 
tedious operation, and significant cost. Furthermore, the sheer or-
ganismal and functional complexity and general lack of functional 
biomarkers in the microbiome have presented major technical 
hurdles in imaging and tracing microbiota function. For example, 

fluorescence-based microspectroscopy, despite wide applications in 
cell biology, has seen fewer successes in characterizing microbiota 
function, because most microbes cannot be labeled with probes that 
target specific function unless specific functional biomarkers are 
known a priori. As a result, label-free, rapid, function-based microbi-
ome imaging tools that are applicable to most or all types of cells in 
a microbiota are urgently needed.

One of the most defining features of a microbiome is the pres-
ence of a network of intricate yet profound inter-species inter-
actions. These networks are the foundation of the function and 
evolution of the microbiota. However, the most commonly used 
microbiome analysis tools today, such as metagenomics, metatran-
scriptomics, meta-metabolomics, DNA/RNA-based stable isotope 
probing (SIP), and culturomics approaches, cannot directly reveal 
the metabolic interactions among the members of a microbiome.

A new class of label-free, single-cell-level functional imaging tools  
called “ramanome” was recently proposed for the “instant photogra-
phy” of a microbial community [4]. The ramanome is a collection 
of single-cell Raman spectra (SCRS) acquired from individual cells 
within an isogenic population (ramanome) or consortium (meta- 
ramanome) [4]. Each SCRS consists of over 1500 Raman bands, which 
individually or collectively correspond to the resonance frequency 
of chemical bonds from the metabolites in a given cell. These bands 
can be used to model the profile and relative abundance of meta
bolites in the cell. Because the metabolite profile is sensitive to the 
physiological state, environmental changes, and genetic background 
of a cell, each SCRS is conceptually equivalent to a digital portrait 
photo of ~1500 pixels, from which phenotypic features of an individ-
ual human face can be recognized. Because it is an imaging approach, 
obtaining the ramanome can be non-destructive to the cell and does 
not require external labeling or preexisting biomarkers; in addition, 
it usually takes only seconds to image each cell. Thus, a ramanome 
can be considered as a single-cell-resolution metabolome that can 
be measured and monitored with high throughput and low cost. 
Such “group photos” of individual cells in a population or consortium  
can directly, and in a “landscape-like” manner, reveal or model the 
state and function of the community at single-cell resolution. For ex-

Fig. 1. Microbiome analysis methodology is undergoing three key shifts in ways of thinking and technological platforms.
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phenotypes in a label-free, landscape-like, and rapid manner [23], 
RACS can serve as a general-purpose instrument for sorting and iso-
lating cells of specific functions from a microbiota.

Single-cell sequencing directly coupled to FACS or RACS can 
interpret the microbiota mode of action at single-cell resolution, 
thus addressing the core challenges encountered by metagenom-
ic sequencing. Methods for amplifying genomic DNA from single 
cells, such as multiple displacement amplification (MDA), have 
revealed novel Bacteria and Archaea from several extreme environ-
ments [24], discovered oil-degrading pathways from deep-sea hot 
springs [25], distinguished pathogens at the resolution of individual 
strains [26], and unveiled the interaction and co-evolution between  
① marine planktonic microalgae and their symbiotic viruses [27],  
② human bacterial symbionts and parasitic viruses [28], and  
③ nitrogen-fixing cyanobacteria and photosynthetic microalgae [29]. 
The more recently developed MALBAC (short for multiple annealing 
and looping-based amplification cycles) method exhibited a lower 
amplification bias than MDA for mammalian single cells [30,31]; 
however, performance in microbial single cells did not seem to im-
prove, and contaminating reads derived from the amplification of 
environmental DNA were significant [32]. Therefore, methods that 
have low amplification bias and robust protection against contami-
nation, but that are also easily and reliably coupled to the upstream 
steps of microbial cell isolation or sorting, are urgently needed. Re-
cently, we developed a facile device called “FOCOT” (short for Facile 
One-Cell-One-Tube), which couples between microbial single-cell 
isolation and genome sequencing based on integrated dynamic 
microdroplet arrays that feature microdroplet generation with an 
automatic energy supply, precise manipulation and merging of mi-
crodroplets, and recovery of intra-droplet contents [33]. Its ability 
to efficiently couple microbial single-cell isolation to sequencing 
reactions, with low probability of contamination and in the absence 
of expensive and bulky equipment, can potentially enable portable, 
onsite, and real-time single-cell analysis under conditions with 
limited resources or in extreme environments. On the other hand, a 
technique that does not require microfluidic chips for microdroplet 
preparation, called cross-interface emulsification (XiE), was intro-
duced as a way to generate nano-liter microdroplets for single-cell 
genomic DNA amplification reactions coupled to upstream FACS [34]. 
These new techniques are expected to facilitate the development 
of mobile instruments or even hand-held devices for reliable and 
higher-throughput amplification and sequencing of marker genes or 
genomic DNA from individual cells that are functionally sorted from 
the microbiota.

Cultivating microbes, whether before or after cell sorting, has 
always been an important strategy for detection and functional vali-
dation, and is also essential for the isolation and mass production of 
functional elements from a microbiota. Recent studies have shown 
that many soil or gut microbes that have been considered to be 
unculturable are now culturable in the laboratory, via multi-round 
optimization of growth conditions and devices that allow in situ or 
ex vivo culture [35,36]. However, the large-scale cultivation of mem-
bers of microbiotas, the so-called culturomics approach, has mainly 
depended on plating the microbial consortium all together on a liq-
uid or solid medium—an approach that can be problematic, because 
slow-growing or rare species are outgrown by other members of 
the microbiota. Several solutions have been proposed, such as tak-
ing advantage of microdroplet-based cultivation at the single-cell 
level [37,38]. For example, an easy-to-use method for the microflu-
idics-based cultivation of microbes, called the microfluidic streak 
plate (MSP), achieves a culturable diversity higher than that from 
traditional plating. It does so because parallel cultures of individual 
microbial cells in microdroplets made of lipid medium or agar can 
minimize competition for nutrients while allowing cross feeding  
[39]. Droplet-based cultivation can also serve the purpose of rapid 

ample, our recent work suggested that the ramanome can quantita-
tively distinguish bacterial species [5], measure the general metabol-
ic activity of cells or probe the catabolic activity targeting a specific 
substrate [6], model the intracellular levels of triacylglycerols (TAG) 
[7] and starch [8], and distinguish cellular drug responses based on 
the mechanism of cytotoxicity [4]. In a recent elaboration, reverse- 
labeling Raman-imaging technology was introduced, which demon-
strated that the ramanome can trace metabolic interactions such as 
cross feeding within a bacterial consortium [9]. As each individual 
Raman peak or combination of peaks in an SCRS can potentially 
describe a phenotype, the number of states or functions that can be 
described by a ramanome is very large; moreover, just as a 1500-pixel 
digital portrait photo provides a combination of many features, these 
cellular functions can potentially be unveiled simultaneously. Thus, 
the ramanome/meta-ramanome can define, measure, and monitor 
the functional profile and phenotypic heterogeneity of a microbial  
community, and can serve as a generally applicable new type of 
phenome data that is complementary to existing omics tools such as 
metagenomics, metatranscriptomics, and meta-metabolomics.

3. From interrogating a consortium or population of cells to 
probing individual cells: Microbiota analysis at the deepest level

By sequencing the collective genetic materials of a microbial 
consortium, metagenomic approaches can provide a comprehen-
sive view of the organismal structure and functional potential of a 
microbiota [10,11]. Metagenomic datasets are usually characterized 
by enormous volume, high genetic heterogeneity, and extreme 
bias in relative organismal abundance. Therefore, questions such 
as how to optimize and standardize ecosystem-specific sample 
pretreatment methods, how to take advantage of new sequencing 
techniques, how to improve sequencing and assembling strate-
gies, and how to mine microbiome big data are of high priority. 
Notable progress in tackling these challenges has been made in 
several areas by microbiome tool developers based in China. This 
progress includes the classification and analysis of organismal pro-
files based on short sequences [12], a method for sequencing 16S 
rRNA gene flanking region sequences (RiboFR-Seq) [13], a gene- 
reconstruction algorithm based on machine learning and path topol-
ogy (inGAP-CDG) [14], and the metaSort method [15] for experimen-
tally and computationally reducing the organismal complexity of a 
complex microbiome. In addition, a series of seminal algorithms and 
pipelines were developed for metagenomic sequence quality control 
(QC-Chain) [16], high-throughput pairwise comparison of microbi-
omes (Meta-Storm algorithm) [17,18], a strategy for analyzing large-
scale microbiome datasets (the MDV model for data analysis) [19], 
and software for data visualization (MetaSee) [20].

Although metagenomic approaches are powerful, single-cell 
analysis, including functional sorting, sequencing, and cultivation 
at the single-cell level, can potentially solve one of their core lim-
itations: the inability to discriminate and validate the function of 
individuals within the community. At present, most function-based 
cell-sorting approaches are based on fluorescence-activated cell 
sorting (FACS) [21]. However, FACS typically requires labeling the cells 
with fluorescent probes that target proteins, metabolites, or nucleic 
acids, thus requiring a priori knowledge about the biomarkers of the 
targeted function. For most functional analyses of the microbiota, 
both of these requirements are difficult to fulfill. To address these lim-
itations, a series of core technologies and devices for Raman-activated 
cell sorting (RACS) were developed by this team, including Raman- 
activated cell ejection (RACE) [5] and Raman-activated microfluidic 
sorting (RAMS) [22]. Furthermore, a prototype for a Raman-activated 
cell sorter called RACS-1 has been demonstrated, which sorts and 
isolates microbial cells based on the aforementioned SCRS [5,22]. Be-
cause  SCRS can model a theoretically unlimited number of cellular 
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diagnosis. For example, data from our laboratories showed that the 
turn-around time of live bacterial cell counting can be reduced from 
1–2 days to a few hours by digital spreading plate counting (dSPC), 
which generates single-cell-containing microdroplets, followed by cul-
tivation. Moreover, with the introduction of nanometer-size particle- 
mediated aggregation, single-cell-harboring microdroplets can be 
directly distinguished from empty ones, so that the counting of 
bacterial cells can be further reduced to just a few minutes. These 
methods can also take advantage of cellphone-based microscopic 
imaging, so as to enable portable and real-time detection and count-
ing of all or selected members of the microbiota.

4. From microbiome data analysis to microbiome data science: 
“Look for the old to learn the new”

Big data is one of the most critical bottlenecks for microbiome 
science at present. Microbiome big data holds the key to unleash the 
power of microbiomes to overcome critical challenges in precision 
medicine, environmental remediation, and clean energy production. 
For example, microbiome data science will allow us to define the 
nature of similarities among microbiomes in order to understand 
the global features of microbiomes on Earth; machine learning can 
be exploited to unveil associations between structural and function-
al similarity in microbiomes, so as to dissect and predict microbi-
ome evolution; and artificial intelligence can be used to establish 
diagnostic and early-alarm models for human diseases and environ-
mental disasters. However, in metagenomic datasets, for example, 
features such as the enormous data volume and the heterogeneity in 
data origin and sequence type have hindered integration, searches, 
and pairwise comparison. There are two main problems that need 
to be overcome. First, integration and indexing of metagenomic  
datasets are challenging. MG-RAST [40] and CAMERA [41] are 
among the most prominent metagenomic databases; however, these 
datasets can differ in metadata, project design and sample prepara-
tion, and sequencing methodology. Hence, integrated analysis and 
global comparison of all these datasets have been difficult. Second, 
high-speed comparison and searching for metagenome datasets 
have been hindered by the lack of appropriate methods. Published 
methods, including microbiome structure-analysis tools such as 
PHYLOSHOP [42] and MEGAN [43] and structure-comparison tools 
such as mothur [44], UniFrac [45,46], and QIIME [47], are primarily 
based on the premise of “within-project metagenome analysis,” and 
are not optimized to support comparisons and searches across the 
much larger scope of all known metagenomes. Third, the explosive 
expansion of data sources and data volume has resulted in unprece-
dented needs in terms of the functionality, throughput, and cost, in 
the design and sustainability of big data systems. At the same time, 
the integration of multi-omics, including metatranscriptome, meta-
metabolome, and single-cell genomes as well as new phenome data 
types such as the aforementioned ramanome and meta-ramanome, 
has been a major challenge.

In order to tackle these technological bottlenecks, the Microbi-
ome Search Engine (MSE)† was developed by this team to enable 
microbiota structure- or function-based searching and data mining, 
with one metagenome as the basic search unit. Based on a series of  
computational-method developments, including a novel indexing 
method [17], an algorithm for the pairwise comparison of 16S- 
amplicon libraries [48–50], a statistical framework for evaluating 
similarities among metagenomes [17], general-purpose graphic pro-
cessing unit (GPGPU)-based acceleration software [18], and so forth, 
MSE allows a “BLAST-like” search of microbiomes in which subject  
microbiomes in the known microbiome space that are most similar 

to the query microbiome, in either organismal structure or functional  
structure, are rapidly identified and returned. Moreover, via machine- 
learning approaches, MSE automatically builds computational mod-
els for key metadata such as the type or stage of a polymicrobial 
disease or ecological disaster, and applies them to calculate a series 
of microbiome-based indices for diagnosis or risk assessment, such 
as the Microbial Index of Gingivitis [51], Microbial Indicators of 
Caries [52], and Microbial Index of Gout [53]. The reference micro-
biome database covers a wide range of high-quality, well-annotated 
metagenomic datasets that were analyzed using a consistent bioin-
formatics pipeline that accounts for heterogeneity in the type and 
strategy of sequence data acquisition, quality control, comparison, 
and visualization. As a result, MSE supports both local and global 
interrogation of the known microbiome space, and may even enable 
prospecting into the yet-unexplored areas of microbiome structure 
and function (including not just bacteria but fungi and viruses; e.g., 
Ref. [54]).

In summary, similar to the impact on microbiome science of the 
metagenomics approach over a decade ago, the three methodologi-
cal shifts in microbiome analysis methodology described here have 
the potential to fundamentally change the ways of thinking and the 
tools that are widely accessible to microbiome scientists in the next 
decade. As advocated in the Confucian Analects over 2000 years 
ago, “To do a good job, one must first sharpen one’s tools,” major 
breakthroughs in harnessing the power of the microbiome to meet 
the challenges facing our generation will not be possible without in-
novation in methods, software, and instruments. In addition, novel 
funding and management mechanisms will be required to encour-
age seamless collaboration among tool developers and tool users. 
By fostering both domestic and international collaborations, mi-
crobiome tool developers based in China, who contributed many of 
the new methods and tools introduced above, have the opportunity 
to deliver high-quality “Made-in-China” tools to the international 
microbiome research community, thus building a competitive and 
contributive China Microbiome Initiative.
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