In the early 1990s, I was asked to review a manuscript by Professors Jinghai Li and Mooson Kwauk (Chinese Academy of Sciences) in which the energy minimization multiscale (EMMS) concept was introduced. This theory had been presented at various conferences and had been the object of Li's PhD thesis. On reading the manuscript, my first thoughts were that the concept was indeed a very interesting one, but that it was not more than an academic curiosity elegantly elucidated. The theory presented was rigorous; however, I never imagined at the time that such a theory could have a practical impact. After about two decades, I must admit that I was wrong: EMMS has flourished. Li and his team have even been able to apply it in an industrial context and to demonstrate that this theory enjoys a wonderful feeling to recognize the unity of a complex of phenomena.

The world is ordered and can be explained by a number of natural constants and historian Gerald Holton) is the belief in the unity of sciences: the “compromise in competition.” Li’s work is a call for a multidisciplinary approach toward knowledge. Unified learning has always been a common dream among scientists. The Ionian Enchantment (an expression coined by the physicist and historian Gerald Holton) is the belief in the unity of sciences: the “compromise in competition.”
we study complexity, but also in the training of the next generation of researchers.

References