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The problem of effluent total nitrogen (TN) at most of the wastewater treatment plants (WWTPs) in China
is important for meeting the related water quality standards, even under the condition of high energy
consumption. To achieve better prediction and control of effluent TN concentration, an efficient predic-
tion model, based on controllable operation parameters, was constructed in a sequencing batch reactor
process. Compared with previous models, this model has two main characteristics: ① Superficial gas
velocity and anoxic time are controllable operation parameters and are selected as the main input parame-
ters instead of dissolved oxygen to improve the model controllability, and ② the model prediction accu-
racy is improved on the basis of a feedforward neural network (FFNN) with algorithm optimization. The
results demonstrated that the FFNN model was efficiently optimized by scaled conjugate gradient, and
the performance was excellent compared with other models in terms of the correlation coefficient (R).
The optimized FFNN model could provide an accurate prediction of effluent TN based on influent water
parameters and key control parameters. This study revealed the possible application of the optimized
FFNN model for the efficient removal of pollutants and lower energy consumption at most of the WWTPs.

� 2020 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Due to the recent acceleration of industrialization and urbaniza-
tion, sewage discharge is increasing in China, reaching 69.96 billion
tonnes in 2017 [1]. China has made considerable efforts to decrease
the impact of immense sewage discharge, for example, the con-
struction of new wastewater treatment plants (WWTPs), expan-
sion of the treatment capacity of WWTPs, and modification
of wastewater discharge standards. At the end of 2018, a total of
5370 WWTPs were operating, with a total treatment capacity of
2.01 � 108 m3�d–1. The overall electricity consumption reached
1.973 � 1010 kW�h [2]. The existingWWTPs continue to experience
several problems such as unstable effluent, high energy consump-
tion, and low-level automation. As one of the most widely used
wastewater treatment processes, a sequencing batch reactor
(SBR) has the advantages of being a simple process with a flexible
operation mode, and excellent influent loading resistance [3].
However, the effluent total nitrogen (TN) concentration of this pro-
cess is fluctuant, leading to unsatisfactory discharge and energy
consumption. According to recent studies [4], the main reason
for this problem is the low-level automation of the SBR process.

The TN removal process in the SBR is complex and includes
nitrification and denitrification. Moreover, aerobic and anoxic con-
ditions are suitable for nitrification and denitrification, respectively
[5]. Dissolved oxygen (DO) is considered to be a significant factor
for nitrogen removal process control. During a biological waste-
water treatment process, sufficient DO is necessary to ensure the
degradation and nitrification of organic matter. Excessive DO leads
to high energy consumption, deterioration of sludge flocs, and low-
efficiency denitrification [6]. However, the precise control of DO is
rarely achieved in the biological wastewater treatment system of
WWTPs, and unstable nitrogen removal occurs. According to previ-
ous studies, inaccurate monitoring and the slow response of DO
caused by unmatched equipment are the main reasons for these
shortcomings. In contrast, traditional simulation models and
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control theory are backward, and the non-timely DO data is
another reason for an unstable nitrogen removal process [7,8].

In most WWTPs, engineers usually adjust the DO concentration
empirically via controllable parameters such as superficial gas
velocity and anoxic time. Compared with the difficulty in the pre-
cise control of DO, superficial gas velocity and anoxic time are
prone to be controlled, because these parameters provide accurate
regulation, precise monitoring, and a fast response. Therefore, an
advanced SBR simulation model should be established with super-
ficial gas velocity and anoxic time as the main input parameters
instead of DO, and hence, the imprecise control of DO would be
effectively avoided. Furthermore, the TN removal performance
could be predicted more precisely.

Considering that biological wastewater treatment is a multi-
parameter and complex process, traditional biochemistry models
are not likely to be applied at an engineering scale because of the
poor learning ability for high dimensional and nonlinear data
[9,10]. As an effective tool for predicting complicated nonlinear
systems, artificial neural network (ANN) is gradually being devel-
oped as an appropriate method to simulate the complex biological
treatment process in WWTPs. ANN is a self-learning method and
has the ability to approximate any nonlinear functions [11–13].
From the perspective of neuron topology, it could be divided into
the feedback neural network and feedforward neural network
(FFNN), and an FFNN model could theoretically approximate any
continuous function with arbitrary precision and possess the
strong ability of classification and pattern recognition [14–19]. To
improve the prediction ability and efficiency of an FFNN, multifarious
optimization algorithms have been proposed, including Levenberg–
Marquardt (L–M), Bayesian regularization (BR), scaled conjugate
gradient (SCG), momentum, and Nesterov accelerated gradient.
All these algorithms could significantly improve the prediction
ability and efficiency of an FFNN model [20–22].

In this study, an efficient simulation model was constructed for
an SBR process to achieve better prediction and control of effluent
TN concentration. Compared with previous studies, the model
made significant progress in two main aspects: ① The controlla-
bility of TN removal was improved by applying superficial gas
velocity and anoxic time as the main input parameters instead of
the regular index of DO, and ② the prediction accuracy of the
simulation model was improved, based on an optimized FFNN.
The objectives of this study are to ① evaluate the prediction
performance of effluent TN concentration on an SBR process based
on the optimized FFNN model, and ② achieve the accurate control
strategy with controllable operation parameters to realize the
efficient removal of pollutants and lower energy consumption at
most of the WWTPs.
Table 1
Design values of controllable operation parameters in SBR process.

Level Superficial gas velocity (cm�s�1) Anoxic time (min)

1 0.5 0
2 1.0 20
3 1.5 40
4 2.0 60

Table 2
Design values of controllable variables and influent ratio after anoxic period in
extended experiment.

Level Superficial gas velocity
(cm�s�1)

Anoxic time
(min)

Influent ratio after
anoxic period

1 0.4 30 0
2 1.2 60 0.25
3 2.0 90 0.5
4 2.8 120 0.75
2. Materials and methods

2.1. Long-term simulation of SBR process

Two paralleled reactors (R1, R2) were established to achieve a
long-term (two months) biological process simulation of an SBR
process. To better simulate the actual situation of wastewater
treatment, the reactors were constructed according to the SBR pro-
cess in the Dingqiao WWTP in Zhejiang, China. The activated
sludge in the two reactors was inoculated with seeding sludge
from the Dingqiao WWTP. The synthetic wastewater was prepared
according to the actual wastewater. The detailed structure of reac-
tors and composition of synthetic wastewater are shown in Fig. S1
and Table S1 in Appendix A.

According to the actual operation mode of the SBR process at
the Dingqiao WWTP, each reactor ran for four hours per cycle with
a volume exchange ratio of 50%, including feeding period (5 min),
196
anoxic and aeration period (210 min), setting period (5 min),
decanting period (5 min) and idle period (15 min). For the
fluctuation of actual influent wastewater quality, the concentration
of major influent quality indicators was randomly controlled at
75%–125% of the preset value. Superficial gas velocity and anoxic
time were set as control variables with four design values (Table 1).
Following standard methods [23], the influent and effluent were
sampled periodically to analyze the concentrations of TN, ammo-
nia nitrogen (NH4

+–N), chemical oxygen demand (COD), and total
phosphorous (TP). After the two-month simulation period, 124
groups of data were collected from a total of 16 combinations of
control variables, with different values.

To simulate more complicated condition in real SBR process, an
extended experiment was constructed with a wider range of con-
trollable variables and different influent ratio after anoxic period
(Table 2). A total of 91 groups of data were collected from combi-
nations of these variables, and 11 groups of data were collected
from combinations of two superficial gas velocities (3.6 and 4.8
cm�s�1) and two anoxic times (0 and 150 min) to simulate the
extreme condition.

2.2. FFNN modeling

The base FFNN model and its optimization algorithm were built
and operated in the Matlab R2016a program. Before modeling, the
data set, gathered from long-term simulations, were normalized to
the range of 0.001–0.999 to eliminate the effect of different dimen-
sion. A relatively ideal FFNN model was obtained by constant opti-
mization, and its weight network was adjusted by the error
between predicted and actual values (Eq. (1)) [24]. The structure
of the neural network consisted of an input layer, a hidden layer,
and an output layer. Six variables, including influent water quality
(COD, TN, NH4

+–N, and TP) and operation parameters (superficial
gas velocity and anoxic time) were set as the input of the base
FFNNmodel, and the effluent TN was set as the output. The scheme
for base FFNN modeling and coding are illustrated in Fig. 1. The
dimension of experimental data was relatively low, and therefore,
the number of hidden layers was set as one to shorten operation
time, improve efficiency, and prevent overfitting. The number of
nodes in the hidden layer was calculated by the empirical equation
(Eq. (2)).

a ¼ Wdþ b ð1Þ
where a is the output variable; W is the weight matrix; d is the
input variable; and b is the matrix of biases in network.

h ¼
ffiffiffiffiffiffiffiffiffiffi
iþ o

p
þ c ð2Þ



Fig. 1. Network structure of FFNN model for effluent TN prediction.
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where h is the number of hidden layer nodes; i is the number of
input layer nodes; o is the number of output layer nodes; and c is
the adjustment constant between 1 and 10.

2.3. Optimization of the FFNN model

The first base FFNN model constructed was the back propaga-
tion (BP) neural network. In the training period of the BP neural
network, the error between predicted and actual values could
propagate back to the hidden layer. According to error backward
propagation, the BP neural network could adjust the network
weight constantly until the error was minimized. The gradient des-
cent algorithm was the most common method applied to adjust
the weights continuously. It could adjust the network weight in
the direction of gradient descent and the minimal error could
finally be obtained [25]. In the actual training process, the gradient
descent method is prone to fall into the local minimum value
instead of the global minimum value, which thus, reduces the
learning efficiency and prediction accuracy [26]. To improve the
learning efficiency and prediction accuracy, three optimization
algorithms (L–M, BR, and SCG) were used to optimize the FFNN
model, and the best optimization algorithm was selected to obtain
the most suitable FFNN model of the SBR process. To improve the
model’s generalization ability, more complicated data set includes
the data collected from the extended experiment, was used to train
the FFNN model. The influent ratio after anoxic period was set as
the input instead of TP which is thought to have a little effect on
total nitrogen removal.

2.3.1. L–M algorithm
The L–M algorithm incorporates the merits of the Gauss–

Newton (G–N) algorithm and gradient descent algorithm.
Compared with a traditional gradient descent method, it could
effectively avoid the local minimum and improve the convergence
speed to the global minimum. The algorithm’s detail is as follows:

VectorW is used to represent the weights between layers in the
BP neural network. The square sum of error (E) is

E ¼ 1
2

XX
tnj � Onj
� �2 ¼ 1

2

X
en

2 ¼ 1
2
kek2 ð3Þ

where n is the sample number; tnj is the expected output of sample
n at node j of the output layer; Onj is the actual output; en is a mem-
ber of vector e. In Eq.(4), k is the number of iteration (the number of

weight adjustment). In the process of calculating Wkþ1, if
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Wkþ1 �Wk is small, e could be expanded into a first-order Taylor
series:

eWkþ1 ¼ eWkþ1 þ Z Wkþ1 �Wk
� �

ð4Þ

where Z is the Jacobian matrix of e, and the element of Z is

Znj ¼ oen
oW j

ð5Þ

Therefore, the error function could be changed into

E ¼ 1
2

����
����eWk þ Z Wkþ1 �Wk

� �����
����
2

ð6Þ

To minimize the error function, Wkþ1 could be differentiated to
obtain the following G–N iterative formula:

Wkþ1 ¼ Wk � ZTZ
� ��1

ZTeWk ð7Þ

The error function is rewritten as follows to avoid the Jacobian
matrix singularity, which often occurs in the G–N method:

E ¼ 1
2

����
����eWk þ Z Wkþ1 �Wk

� �����
����
2

þ k

����
����Wkþ1 �Wk

����
����
2

ð8Þ

where k is the damping parameter.
Take the derivative of E, then the L–M iterative formula based

on the G–N method could be obtained:

Wkþ1 ¼ Wk � ZTZ þ kI
� ��1

ZTeWk ð9Þ

where I is the identity matrix and iterative variable. The search
direction and training step size are affected by k during the itera-
tion. When k is larger at the initial stage of calculation ZTZ is negli-
gible compared to kI, and Eq. (9) could be written as

Wkþ1 ¼ Wk � 1
k
g ð10Þ

where g is the gradient. k in the expression tends to 0 at the extremum
of the function, meaning that it turns into the G–N interval formula.

2.3.2. BR algorithm
BR could regularize the neural network by the Bayes method.

The regularization refers to restricting the complexity of the
network in the training period by adding a penalty term. After
regularization, the overfitting phenomenon could be effectively
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avoided to improve generalization ability. In general, the perfor-
mance function (F) of neural network is
F ¼ E ð11Þ

After adding a penalty term EW, the performance function turns
into

F ¼ aEW þ bE ð12Þ

EW ¼ 1
2
kWk2 ð13Þ

The relative size of a and b determines the proportion of the
penalty term. If a � b, the performance function is approximate
to no regularization, meaning it minimizes the training error but
maximizes the possibility of overfitting. If a � b, it focuses on
the limitation of the network, making the model’s prediction
capacity poor. Therefore, knowing how to determine the values
of a and b is necessary. In the framework of Bayesian analysis,
MacKay deduces that [27]

a ¼ c= 2EWð Þ ð14Þ

b ¼ N � c
2E

ð15Þ

where c ¼ N � 2atr Hð Þ�1, represents the valid weight and N is the
total number of samples. H is the Hessian matrix of F:

H ¼ r2aEW þr2E ð16Þ
The Hessian matrix is very computationally intensive, and

Foresee F. Dan and Martin T. Hagan approximated the Hessian
matrix with the G–N method, which greatly reduces the amount
of computation [28]:

H ¼ r2F � 2bJTJ þ 2aIN ð17Þ
where J is the Jacobian matrix of the training error.

2.3.3. SCG algorithm
The SCG is an improved learning algorithm of standard BP. In

the traditional gradient descent method, a direction of gradient
descent is perpendicular to the previous direction, causing the glo-
bal minimum difficult to approximate. The conjugate gradient
method determined the new search direction by combining the
new direction with the previous search direction. The conjugate
gradient method is computationally intensive, requiring a new
search in each iteration. The SCG proposed by Moller successfully
avoids this drawback by adding a confidence interval to the conju-
gate gradient [29]. The adjustment method of the SCG algorithm is

wkþ1 ¼ wk þ hkpk ð18Þ
where wk is a point in Wk, pk is the search direction, and hk is the
search step size of iteration k.

hk ¼ � gT
kpk

pT
kHkpk

ð19Þ

where gk is the current gradient of the function, and Hk is the
Hessian matrix of iteration k.

Set sk ¼ Hkpk, dk ¼ pT
ksk, uk ¼ �gT

kpk, then hk ¼ uk=dk. In order to

ensure dk > 0, set dk ¼ pT
ksk þ kk pkj j2.

The step size hk can then be determined:

hk ¼ uk

dk
¼ uk

pT
ksk þ kk pkj j2 ð20Þ
Fig. 2. MSE for FFNN with different hidden layer nodes.
2.4. Verification and comparison of different models

The predictive performance of each model was assessed by the
correlation coefficient (R) (Eq. (21)), and the training performance
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of each model was compared by the mean square error (MSE) (Eq.
(22)). The R and MSE were calculated in the Matlab R2016a
program.

R ¼ Cov TNP;TNAð Þ
rPrA

ð21Þ

MSE ¼ 1
m

Xm
n¼1

TNPn � TNAnð Þ2 ð22Þ

where Cov TNP;TNAð Þ is the covariance of predicted effluent TN and
actual effluent TN; rP and rA are the standard deviation of pre-
dicted effluent TN and actual effluent TN, respectively; m is the
number of the datasets; TNPn and TNAn are the predicted effluent
TN and actual effluent TN for sample n.

3. Results and discussion

3.1. Feasibility of the FFNN model using actual operation parameters
as main input variables

The number of nodes in the hidden layer needs to be
determined prior to application. With other parameters constant,
the number of hidden layer nodes was selected as 3 to 12 for train-
ing, according to Eq. (2). Fig. 2 shows the MSE for the different
number of hidden layer nodes after training. By comparison, the
number of hidden layer nodes was selected as 8, and therefore,
the base FFNN model’s structure was constructed with 6–8–1
(Fig. 1). Consequently, MSE obtained the lowest value.

To train and assess the base FFNN model, the data collected
from the long-term laboratory simulation of the SBR were
randomly divided into a training set (104 groups) and a testing
set (20 groups). Fig. 3 indicates a consistent trend overall, and
the predicted value on the left side (training set) was close to the
actual value (R = 0.91973), indicating that it was feasible to build
a simulation model by replacing DO with actual controllable
operation parameters such as superficial gas velocity and anoxic
time as the FFNN input.

The prediction curve of the testing set on the right was, how-
ever, far from the actual situation (R = 0.5057), indicating that
the simulation model still had some problems such as overfitting
or falling into local minimum value which could reduce the predic-
tion performance. To solve these issues, three algorithms (L–M, BR,
and SCG) were used to optimize the FFNN model. A more compli-
cated data set was used to train the model, and more reasonable
training mode for different algorithms was established to find
the best algorithm for the model.



Fig. 3. Comparison of predicted results and actual values of FFNN.
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3.2. Optimization of the FFNN model by L–M algorithm

The data set were randomly divided into a training set (80%)
and a validation set (20%). After optimization by trial method,
the number of hidden layer nodes was set as 30, the minimum
number of failure times was set as 100, and tansig was selected
as the transfer function between the hidden layer and the output
layer. After training (113 steps), the training stopped because the
number of failure times exceeded the preset value, with a shared
time of 1.0 s. The simulation results are shown in Fig. 4. The MSE
was 0.000200, and the R value in the training set, the validation
set, and the whole set were 0.93603, 0.92316, and 0.93392, respec-
tively, illustrating a good performance in effluent TN prediction.
Given the higher R value and faster convergence speed than
previous model, the model optimized by the L–M algorithm not
only avoided the local minimum effectively, but also improved
the convergence speed to the global minimum.

3.3. Optimization of the FFNN model by BR algorithm

The BR algorithm did not need a validation set, and therefore,
the data were randomly divided into a training set (80%), and a
testing set (20%). In the process of model debugging, it was found
that when hidden layer nodes were less than 20, the R value was
lower than 0.6, and the results indicated that the prediction ability
was poor. With the number of hidden layer nodes increased to 30,
the R value gradually improved. After the number of nodes
Fig. 4. FFNN simulating results based on L–M algorithm: (a) the training set (the output
and (c) the whole set (the output � 0.88 � target + 0.077). The line ‘‘Fit” refers to the rela
equal to the output.
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exceeded 30, the R value increased insignificantly, whereas the
training time extended significantly. Consequently, the number
of hidden layer nodes was selected as 30. Tansig was selected as
the transfer function, the upper limit of training steps was set to
1000, and the training time was 19 s. As shown in Fig. 5, the R value
of the training set is 0.90232, whereas the R value of the testing set
is 0.83000. It was determined that the performance of the model
was better than that of the base model and worse than that of
the model optimized by the L–M algorithm. The BR algorithm
improved the model performance by restricting the complexity
of the network, leading to a higher R value than the base model.
Nonetheless, several relationships between input and output may
be lost due to the regularization, particularly in the case whereby
the complexity of the model’s structure was moderate.
3.4. Optimization of the FFNN model by SCG algorithm

Similar to the L–M algorithm, the data set was divided into a
training set (80%) and a validation set (20%). The number of hidden
layer nodes was maintained at 30 to ensure the identical model
structure with the three algorithms. Tansig was selected as the
transfer function between the hidden layer and the output layer,
and the minimum failure time was 100. The training stopped after
156 steps because the number of failure times exceeded the preset
value, and the usage time was near to zero. As shown in Fig. 6, the
R value based on the training set and the validation set were
0.91653 and 0.96276, respectively. The higher R value of validation
set revealed an inexistence of the overfitting phenomenon. With
these results, it was concluded that the prediction performance
of the FFNN model was excellent.
3.5. Comparison of three optimization algorithms

The relevant training parameters of FFNN, based on different
optimization algorithms, are summarized in Table 3. The results
showed that in the training period, all three FFNN models with
optimization algorithms had satisfactory MSE (< 0.001), and all
gave better performances than the model without the algorithm
optimization (MSE = 0.0037). Among them, the SCG algorithm
was characterized by the shortest training time because of the
rapid training method. The R values of FFNN, based on different
optimization algorithms, are summarized in Table 4. In the training
period, the three models obtained R values of 0.93603, 0.90232,
and 0.91653, respectively, which was similar to the base FFNN
model. The results revealed the intense relationship between input
� 0.88 � target + 0.075); (b) the validation set (the output � 0.88 � target + 0.074);
tionship between the target and the output and the line ‘‘O = T” means the target is



Fig. 5. FFNN simulating results based on BR algorithm: (a) the training set (the output � 0.76 � target + 0.15); (b) the testing set (the output � 0.75 � target + 0.15); and
(c) the whole set (the output � 0.76 � target + 0.15).

Fig. 6. FFNN training results based on SCG algorithm: (a) the training set (the output � 0.84 � target + 0.1); (b) the validation set (the output � 0.88 � target + 0.079); and
(c) the whole set (the output � 0.85 � target + 0.092).

Table 3
Relevant training parameters of FFNN based on different optimization algorithms.

Optimization algorithm Training step Training time (s) MSE

L–M 113 1 0.000200
BR 1000 19 0.000935
SCG 156 � 1 0.000512

Table 4
R values in different datasets of FFNN based on different optimization algorithms.

Dataset L–M BR SCG

Training set 0.93603 0.90232 0.91653
Validation set 0.92316 — 0.96276
Testing set — 0.83000 —
The whole set 0.93392 0.88685 0.92780
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(influent water parameters and operation parameters) and output
(effluent TN) from the training set. In the prediction period (testing
and validation), all of the FFNN models obtained a higher R value
than the base FFNN model. The results indicated that the predic-
tion performance of the FFNN models for effluent TN was greatly
improved by the optimization algorithms. The R value of the vali-
dation set of SCG was the highest in the three algorithms, and
higher than the R value of the training set. The results
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demonstrated that the SCG algorithm obtained the most rapid
calculation speed and outstanding prediction ability, and was an
excellent algorithm for optimizing the FFNN model.

3.6. Comparisons with existing prediction models

Diverse simulation models have been proposed to achieve the
prediction of effluent water quality in different wastewater treat-
ment processes such as anaerobic–anoxic–oxic (A2/O), SBR, and
oxidation ditch with different model methods (traditional machine
learning methods and ANN), and all the models were well suited to
the specific environment. To predict NH4

+–N removal of slaughter-
house wastewater, a BP neural network model based on influent
water quality and DO was proposed by Kundu et al. [30]. TN
removal prediction of aerobic granulation was achieved using the
ANN model based on influent water parameters [31]. A study by
Ebrahimi et al. [32] proposed a multivariate regression model
which could predict the effluent quality (biochemical oxygen
demand (BOD), TP) of oxidation ditch. Nevertheless, the parame-
ters selected in this study were mainly focused on DO and influent
water parameters, but not controllability. The regulation strategies
based on the models was lacking, because the feedback from the
model was delayed.

Compared with previous studies, strong controllability and high
prediction accuracy of simulation models were the two aspects
highlighted in this study. This study is the first to demonstrate that



Table 5
Performance comparison of different prediction methods (R values are rounded to
two decimal points).

Method MSE R

FFNN 0.000512 0.93
LR 0.009622 0.79
Lasso 0.009696 0.79
Ridge 0.009299 0.80
SVR 0.007687 0.84
RF 0.006941 0.85
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TN removal performance could be controlled by the FFNN model
based on actual controllable operation parameters such as superfi-
cial gas velocity and anoxic time, instead of DO, when considering
the uncontrollability of DO. For the improvement of prediction
accuracy, various algorithms were applied to optimize the FFNN
model, and the model optimized by SCG was considered to have
the highest prediction accuracy. To verify the advantage of the
FFNN model optimized by SCG for effluent TN prediction, the FFNN
model and other existing modeling methods, such as linear
regression (LR), ridge regression, least absolute shrinkage and
selection operator (Lasso) regression, support vector regression
(SVR), and random forest (RF) were conducted (Table 5). The
results showed that FFNN optimized by SCG was the best modeling
method in this study, considering the lowest MSE and the highest R
value of this model. It is reasonable that FFNN, optimized by SCG,
could provide an accurate prediction of effluent TN, and fitted the
real SBR process well.

In the future, the application of this prediction model could
achieve the regulation of controllable operation parameters con-
tinuously, based on influent water parameters. Therefore, the efflu-
ent TN concentration could be maintained at a stable level and
meet the relevant water quality standards. Furthermore, excessive
aeration could be avoided effectively via continuous regulation of
the operation parameters [33]. Finally, the energy consumption
of controllable operation parameters would be minimized.

4. Conclusions

In this study, a SBR simulation model was developed, and the
suitable control of effluent TN concentration and energy consump-
tion were achieved after a long-term simulation of the SBR process.
Superficial gas velocity and anoxic time were selected as the main
input parameters of the FFNN model instead of DO, to improve the
controllability of the model. Furthermore, SCG was selected as the
algorithm for the optimization of the FFNN model because of the
fastest calculation speed and outstanding prediction ability.
Finally, the optimized FFNN model exhibited an excellent predic-
tion capacity of effluent TN and optimal operation parameters.
The findings of this study could provide a valuable solution for
the stable operation and energy saving of WWTPs according to
influent quality and effluent standards.
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