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Disc cutter consumption is a critical problem that influences work performance during shield tunneling
processes and directly affects the cutter change decision. This study proposes a new model to estimate
the disc cutter life (Hf) by integrating a group method of data handling (GMDH)-type neural network
(NN) with a genetic algorithm (GA). The efficiency and effectiveness of the GMDH network structure
are optimized by the GA, which enables each neuron to search for its optimum connections set from
the previous layer. With the proposed model, monitoring data including the shield performance database,
disc cutter consumption, geological conditions, and operational parameters can be analyzed. To verify the
performance of the proposed model, a case study in China is presented and a database is adopted to illus-
trate the excellence of the hybrid model. The results indicate that the hybrid model predicts disc cutter
life with high accuracy. The sensitivity analysis reveals that the penetration rate (PR) has a significant
influence on disc cutter life. The results of this study can be beneficial in both the planning and construc-
tion stages of shield tunneling.

� 2020 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

With rapid urbanization, an increasing number of metro sys-
tems are being constructed in Chinese cities [1–5]. Shield tunneling
is an economic and effective way to construct metro tunnels under
various geological conditions [6–9]. During work processes in
mixed strata or rock conditions, disc cutters are pushed forward
and pressed into the rock through thrust force (TF). Cracks appear
and spread by increasing the pressure of the cutter penetration.
The rocks are then chipped into different parts due to crack
coalescence between contiguous cutters, which crushes the rocks.
The complicated interaction between the disc cutter and the rock–
soil environment causes serious wear of the disc cutter, which is
difficult to predict [10,11]. In some tunneling projects, disc cutter
consumption and replacement constitute approximately one-
third of the project costs and consumption time [12]. To estimate
the excavation costs of a mechanized tunneling process, correct
estimation of the cutter life is essential [13,14].

Disc cutter consumption depends largely on the ground condi-
tions, shield construction parameters, and cutting conditions. Solv-
ing key problems, such as identifying the major causes for cutter
consumption, analyzing the wear mechanism, and developing
techniques to increase cutter life, help to reduce construction cost
and improve excavation efficiency. Previous researchers have stud-
ied the influence of ground conditions on cutter consumption
through experimental studies on prediction processes [15–19]
and empirical or theoretical analyses [20–22]. For example,
Hassanpour [23] proposed a relationship between disc cutter life
and geological parameters based on statistical analysis and an
empirical equation. Ren et al. [14] proposed a wear-prediction
model for heterogeneous ground based on the total energy con-
sumption theory. Yang et al. [24] analyzed the failure and con-
sumption of a disc cutter on a water conveyance tunnel section
based on data from a Lanzhou construction project in China.
Because many parameters affect cutter life, the predicted results
from empirical models do not match well with the measured
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results. Thus, it is necessary to develop models that allow more
accurate predictions of cutter life in heterogeneous ground.

Recently, soft-computing artificial intelligence (AI) techniques
such as regression, optimization, and group method of data han-
dling (GMDH)-type neural networks (NNs) have been successfully
used in a wide range of geotechnical fields [25–28]. GMDH is a self-
organizing technique that can be used to solve complex problems
in nonlinear systems with large degrees of complexity. The main
advantage of this technique is that the analytical equations can
be estimated via quadratic polynomials. In addition, the GMDH
approach undoubtedly provides a favorable tool that can profes-
sionally overcome short and noisy data [29,30]. However, artificial
models such as GMDH are usually trapped in the local minimum
and are therefore unable to find the global minimum. Therefore,
prevailing optimization algorithms are necessary to avoid such
drawbacks. The genetic algorithm (GA) is an evolutionary method
inspired by Darwin’s theory, which can enhance the generalization
performance of artificial models [31–33].

The objective of the present study is to provide a reliable pre-
diction model for disc cutter life by using AI technology with the
input data of geological and operational parameters. The proposed
hybrid model is first applied to estimate disc cutter life. Thus, the
proposed model is established to address the gap between nonlin-
ear systems and machine learning techniques. Empirical analyses
were developed in detail for predicting disc cutter life using
statistical regression systems (linear and nonlinear). Then, a new
mathematical model based on integrating GMDH-type NN with
GA was developed to evaluate its ability as a more reasonable
cutter life prediction model. The Guangzhou–Shenzhen intercity
railway project in China is used as a case study to demonstrate
the feasibility of the developed model and its application potential.
A sensitivity analysis of the established approach was also con-
ducted to determine the effect of each input parameter on the
model output and to facilitate the evaluation procedure.

The present study is organized as follows. Section 2 displays the
background of this study, which includes factors affecting the esti-
mate of disc cutter life. Section 3 presents the basic GMDH-type
NN and describes the model development. The project description,
disc cutter consumption, and data preparation are introduced and
analyzed in Section 4. Section 5 displays the results and discussion
for predicting disc cutter life, and the last section concludes the
paper.
2. Background

The performance analysis and prediction of disc cutter life are
essential in tunnel projects because the cost and schedule of the
entire project are determined according to the tunneling perfor-
mance. This is especially necessary in huge tunnel projects, since
shield tunneling is a complex interaction between the soil–
machine process, and is influenced by various parameters. Thus,
it is important to study such parameters in order to avoid many
unnecessary losses and a great deal of trouble in the construction
process [34]. The effective parameters for disc cutter life should
be considered as input variables for building an accurate model.

In general, geological conditions should be investigated in
advance before tunnel excavation. The efficiency of the drilling sys-
tem by shield cutters is related to the properties and types of soil.
In a previously published paper [23], the uniaxial compressive
strength (UCS), which refers to the strength characteristics of the
rock material, was employed as the most representative input
parameter for the geological conditions. The penetration rate
(PR), which represents the ratio of the drilled distance to the oper-
ating time during a continuous excavation phase, was considered
to be one of the key input parameters for the shield construction
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parameters [12,35,36]. In another study, Ren et al. [14] investi-
gated the effect of TF on disc cutter life. TF, which represents the
cutterhead load, is one of the main construction parameters affect-
ing rock breaking and cutter wear conditions. The TF imposed on a
cutter during tunneling is expressed as a function of the PR and
rock material properties [37]. Since the forces influencing the cut-
ter can be estimated from the operational parameters of the
machine, penetration depends not only on the properties of the
rock material, but also on the cutting conditions, which directly
affect the disc cutter life [38–40]. The specific energy (SE) is the
energy consumed to drill a unit volume of soil. Namli and Bilgin
[41] have stated that the SE can be utilized to assess the cutting
efficiency of a tunnel-boring machine. Furthermore, the cutter
rotation speed reflects the rock-breaking status during the cutting,
which is directly influenced by the working efficiency and there-
fore affects the cutting performance. Based on the aforementioned
parameters, it is noticeable that disc cutter life is the output of an
extremely complex system influenced by several geological and
operational parameters. Furthermore, analyzing the shield cutting
performance still principally depends on experience and on statis-
tical and theoretical analyses. Thus, a systematic analysis method
could provide comprehensive understanding of the performance
of shield cutting according to shield monitoring data.
3. Cutter life prediction via an AI approach

3.1. GMDH-type neural network

The GMDH-type NN is one of the best methods for solving AI
problems such as identifying and predicting short-term and long-
term expectations of random processes in complex construction
problems. The GMDH-type NN is a layered structure; each layer
contains independent neurons and the independent neurons are
organized in pairs, with each pair being integrated via a quadratic
polynomial. In all layers, new neurons are formed by crossing the
independent variables from the previous layer. Consequently,
new generations of neurons are generated. Anastasakis and Mort
[42] presented a GMDH based on choosing the optimal quadratic
polynomial formulas for modeling nonlinear models using a collec-
tion of input and output variables. For the input vector X = (x1, x2,
x3, . . ., xn), the predicted output (yi) is expected to be close to the
actual output (yi). Hence, the presented M indications for
multiple-input single-output data pairs are observed as follows
[43]:

yi ¼ f xi1; xi2; xi3; :::; xinð Þ i ¼ 1; 2; :::; M ð1Þ
In order to predict the required output (yi) from the presented

input vector X = (xi1, xi2, xi3, . . ., xin), the predicted output is dis-
played as follows:

yi ¼ f xi1; xi2; xi3; :::; xinð Þ i ¼ 1; 2; :::; M ð2Þ
The squared variance between the actual outputs and the esti-

mated outputs is decreased to determine the GMDH:

XM
i ¼ 1

½f xi1; xi2; xi3; :::; xinð Þ � yi�
2 ! minimum ð3Þ

GMDH provides a comprehensive map between the input and
output parameters, which are expressed in a nonlinear function
in the form of a Kolmogorov–Gabor function [44]:

y ¼ a0 þ
Xn

i¼1

aixi þ
Xn
i¼1

Xn
j¼1

aijxixj þ
Xn
i¼1

Xn
j¼1

Xn
k¼1

aijkxixjxk þ � � � ð4Þ

where a is the coefficient of the quadratic polynomial and i, j, k 2 (1,
2, . . ., n).
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The presented formula refers to the Kolmogorov–Gabor formula
and can be represented via a second-degree polynomial form:

y ¼ G xi; xj
� � ¼ a0 þ a1xi þ a2xj þ a3xixj þ a4x2i þ a5x2j ð5Þ

The GMDH-type NN is employed to estimate the coefficients ai
(i = 1, 2, . . ., 5) in Eq. (5) by utilizing a regression analysis to
minimize the variance between the actual and estimated output
for every set of (xi, xj) as input parameters [45,46]. Thus, to
optimize the coefficients of every quadratic equation, the least-
squares method is used, as presented below (E stands for error
which is the quantity to be minimized):

E ¼
PM
i ¼ 1

yi � yið Þ2

M
! minimum ð6Þ

To display the main form of the GMDH approach, the matrix
form of Eq. (5) can be rewritten as follows:

Y ¼ Aa ð7Þ
where Y ¼ y1; y2; :::; yMf gT and a ¼ a0; a1; :::; a5f g, which repre-
sents the coefficient of the quadratic polynomial vector; A is esti-
mated for various p and q (2 {1, 2, . . ., n}):

A ¼

1 x1p x1q x1px1q x21p x21q
1 x2p x2q x2px2q x22p x22q
: : : : : :

1 xMp xMq xMpxMq x2Mp x2Mq

2
66664

3
77775 ð8Þ

The least-squares formula for the multiple regression analysis
solves a normal equation:

a ¼ ATA
� ��1

ATY ð9Þ

The best coefficients vector of Eq. (5) is calculated for a triples
set of M data. Although the GMDH model provides a favorable tool
to overcome short and noisy data, it is usually trapped in the local
minimum and is therefore unable to find the global minimum.

After computing partial descriptive coefficients, the selection
criterion is adjusted according to the objective function (OF) to
Fig 1. Graphical example of the GMDH training process. (a) The network layer formed w
neurons are showed in a light color; (c) the selected neurons on the new layer; (d) after
(e) and (f) all neurons that are not participating in the network are removed. Reproduce
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eliminate neurons that present inferior results. To conduct a selec-
tion step, the database is split into a training dataset and testing
dataset. The OF of each output is calculated as follows:

OF ¼ 1
N

XN
i ¼ 1

ypre � ymea

� �2 ð10Þ

where ypre, ymea, and N are the predicted, measured, and total num-
ber of datasets, respectively.

The selection step is conducted based on the testing data, and
the OF of each output is applied for the evaluation process. The
GMDH training process involves adding layers, calculating partial
characterization coefficients, and eliminating the neurons that
introduce the worst results. During the training stage, the output
of the recent layer is converted into the input of the next layer. This
process discontinues in the case of an existing layer residue of one
neuron after the selection stage, or in the case of a new layer being
added whose training does not upgrade the performance of the
overall network. The neuron that gains the best behavior is pre-
served in the preceding layer and the other neurons are eliminated.
Finally, the trimming stage is performed to fulfil the eventual net-
work structure. Fig. 1 [46] shows a graphical example of the GMDH
training procedure. In this figure, the removed neurons are dis-
played in a light color [46]. Itemized mathematical information
and further background related to the GMDH-type polynomial net-
work can be found in Ref. [46].

3.2. Genetic algorithm

The GA, which was initially proposed by Holland [47] and then
developed by Goldberg [48] to optimize complicated problems, is
an adaptive heuristic search technique. This algorithm is estab-
lished according to the basis of Darwin’s theory of evolution. Based
on this concept, the lower adjusted types tend to vanish, whereas
the fittest individuals survive and generate new offspring. Opti-
mization methods like the GA are distinguished by simplicity, resi-
lience, and self-adaptability. The GA repeatedly adjusts the
population in generations for individual solutions. Individuals from
the recent generation are haphazardly selected to be parents for
ith four inputs; (b) after calculating the coefficients for all neurons, the eliminating
selection process, the training stops when any layer remains with only one neuron;
d from Ref. [46] with permission of Elsevier Ltd., �2012.
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producing children in the following generation, until the popula-
tion promotes the best solution. For every generation, a new collec-
tion of approximations is formed according to the fitness grade.
During each iteration, the GA is repeated until the required termi-
nation criterion, such as the predefined number of generations, is
achieved. Further details of GAs are provided in the literature, such
as Ref. [48]. Although a GA can be extensively applied in different
stages of the design of NNs, it suffers from a low ability for local
searches [28,49,50]. Therefore, it is necessary to propose a
higher-accuracy model that reduces the OF by adjusting the design
parameters while achieving the design procedures. A hybrid
GMDH–GA model is proposed here to address the shortcomings
of the abovementioned models and to create a synergetic effect
in forecasting, which has become the dominant approach in recent
years.
3.3. GMDH-type NN design using a GA

To predict disc cutter life with a higher accuracy, this study
introduces a hybrid GMDH–GA model. In this hybrid model, the
abovementioned GA is applied to optimize the whole structural
of the GMDH-type NN (i.e., number of neurons for every hidden
layer and its formation of correlations, in conjunction with individ-
ual value decomposition to detect the optimal set of adequate coef-
ficients). A flowchart for integrating GMDH with the GA model to
predict disc cutter life is shown in Fig. 2. The systematic procedures
of the proposed model are as follows:

Step 1: The input parameters X = {x1, x2, . . ., xn} and the corre-
sponding output Y = {yn} are preprocessed to obtain a suitable
dataset for training model.

Step 2: The used data in the hybrid GMDH–GA model are
divided into training and testing sets. The training set is utilized
Fig. 2. Flowchart of generalized structure for GMDH–GA model.
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to train neurons, whereas the testing set is utilized to assess how
well the neurons predict the predestined data.

Step 3: The GA is initialized as the initial population and GA
operators are generated to optimize the GMDH parameters.

Step 4: In the selection stage, the preferable two chromosomes,
which refer to the best solutions, are recognized according to their
fitness, and the chosen chromosomes are utilized as parents for
creating children, chromosomes, and new generations.

Step 5: In the crossover stage, the chromosomes intersect hap-
hazardly with the specific probability for producing children.

Step 6: Through mutation, the population diversity is adjusted
and the search ability is enhanced to overcome the convergence
in the local optima.

Step 7: Through iterative processing, the GA is applied until the
specified condition is achieved. As there is no explicit method or
formula for choosing the optimum GA parameters, this study esti-
mates the GA parameters using a trial-and-error approach. In this
way, trials of the hybrid model are conducted with a gradually
increasing relative fitness function, until no further improvement
is achieved.
4. Case description

4.1. Project summary

The Guangzhou–Shenzhen intercity railway, which is located
on the coast of the Pearl River Delta of Guangdong, China, includes
tunnels of a total length of 22 km. The construction project con-
nects Guangzhou North Station and Shenzhen Bao’an International
Airport. The tunnel section is located in the zone of the airport’s
Terminal 3, between Bao’an Airport North Station and Bao’an Air-
port Station. Fig. 3 depicts the location of the studied section. Its
length is approximately 3.3 km. An earth pressure balance (EPB)
shield machine is utilized to construct the tunnel. The cutterhead
of the machine has diameter equal to 8.85 m and the diameter of
trailing shield is 8.78 m. The segment ring has 1.6 m width and
0.4 m thickness. The precast concrete lining rings (six segments
and a key piece) are erected within the shield body and have inner
and outer diameters of 8.10 and 8.50 m, respectively. Several
parameters such as the TF, cutter rotation speed (CRS), screw rate
(SC), cutterhead torque (CT), grouting pressure (GP), PR, burial
depth (H), soil pressure (SP), and SE were carefully monitored.
Table 1 lists the specifications of the EPB shield machine.
4.2. Geological conditions

Before excavating the tunnel, the geological conditions were
examined using a series of boreholes. In this study, several bore-
holes were drilled to a depth of approximately 45 m every 50–
70 m along the tunnel. The core samples were tested to determine
different parameters such as internal friction angle and cohesion
force. These factors were used to describe the geotechnical features
and the formations along the tunnel path. The plasticity index of
the soil encountered by the shield machine varied from 11.90 to
25.10. Moreover, the consistency index of the soil samples was
below 1. The ground water table varied between 1.63 and 3.63 m
below the ground surface. According to the preliminary geological
investigations, the geological formations outcropping in the project
area mainly consisted of backfill, silty clay, weathered rock, and
moderately to highly weathered granite. The properties of various
ground formations are illustrated in Table 2. The present study
focused on the shield tunneling performance in mixed ground for-
mation of rock–soil strata. For soil stratum, the undrained shear
strength of soil was calculated using the following two approaches
[50–53]: ① the modified Cam-clay model (MCC) [53–55]; and



Fig. 3. Location of the construction site (based on Google Earth).

Table 1
Main specifications of EPB shield machine in this study.

Technical parameter Design value

Tunnel-boring machine (TBM) type EPB
External diameter (m) 8.85
Internal diameter for lining (m) 8.10
Outer diameter for lining (m) 8.50
Maximal TF (kN) 40 000
Maximal cutter rotation speed (r�min�1) 2
Number of disc cutters Central cutters: 6; face cutters: 34;

gauge cutters: 12
Number of single disc cutters 46
Number of double disc cutters 6
Number of scrapers 88
Number of rippers 12
Disc cutter diameters (mm) 432, 483
Total installed power (kW) 4500
Shield weight (t) 1200
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② Ladd’s empirical equation [56]. For the MCC model, the
undrained shear strength of soil was determined based on the fol-
lowing equations:

Su ¼ 1

2D þ 1 Mp0
oðOCRÞD ð11Þ

p0
o ¼ g2 þ l2

g2

� �D

p0 ð12Þ

where Su refers to the undrained shear strength, p0 is the initial
effective mean stress, l ¼ q0=p0 (q0 refers to the initial deviator
stress), OCR is the over consolidation ratio, p0

o is the equivalent
effective mean stress; g is the slope line failure; D ¼ 1� K

k, and K
and k refer to the slope of the rebound line in the e–lnp0 (e: the void
ratio) plot and compression line, respectively. For Ladd’s empirical
equation, Su is estimated as follows:
Table 2
Geological description of the tunnel.

Stratum Cohesion force (kPa)

Minimum Ma

Backfill 10 15
Silty clay 10 28
Weathered rock 26 29
Weathered granite 27 35
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Su ¼ Sr0
vðOCRÞk ð13Þ
where r0
v is the vertical effective stress; S and k are constants, and

were adapted based on Ladd’s work [56], in which the value of S
was 0.162–0.250; and k is 0.75–1.00.

For rock stratum, the UCS of the surrounding rock (rc) values
were calculated based on the following approach [57]:
rc ¼ 14:73
CT0:536

Nc � PR � D0:5
TBM

ð14Þ
where CT is the cutterhead torque, Nc is the cutter number, PR is the
penetration rate, and DTBM is the cutterhead diameter of the tunnel-
boring machine (TBM).

Fig. 4 displays the geological profile along the tunnel, and intro-
duces the rock classifications [58,59]. As shown in Fig. 4, key data
extracted from the field such as the rock quality designation (RQD),
quartz content (Qc), joint surface condition, and UCS were consid-
ered. The rock mass classifications along the studied section were
defined according to the Chinese standard ‘‘Code for hydropower
engineering geological investigation” (GB 50287–2016), which
can be utilized to guide excavation design and underground works
[60]. The classification of the rock formation for the engineering
topography (ET) in zones ET-1, ET-2, and ET-4 was soft rock, as
shown in Fig. 4, while the formation of rock ET-3 was classified
as hard rock [61].

Rock abrasivity is essential for estimating disc cutter life. The
Cerchar abrasivity index (CAI) is a fast, simple, and economic
method for determining rock abrasiveness [62]. According to
Cerchar’s definition, the CAI values vary from 2.0 to 3.3 for
metamorphic schist rock. Thus, the ground can be defined as
moderately to highly abrasive material. When the shield machine
encounters silty clay, the ground is defined as slightly to moder-
ately abrasive material with CAI values from 0 to 1.2 [63].
Internal friction angle (� )

ximum Minimum Maximum

8 55
10 20
20 35
19 34



Fig. 4. Topography of the construction site in the longitudinal tunnel direction. ET: engineering topography; RQD: rock quality designation; Qc: quartz content.
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4.3. Cutter wear analysis

A disc cutter is used to chip hard and weathered rock layers or
at positions where mixed face conditions are expected [64]. Fig. 5
shows a schematic section of the cutterhead machine and cutter
arrangements of a shield. To determine the influence of cutter posi-
tion on cutter consumption, the cutterhead was numbered based
on the cutter positions (No. 1–12 are the central cutters; 13–46
are the face cutters; 47–56 are the gauge cutters). Cutter consump-
tion was categorized into two classes: normal and abnormal wear.
Normal wear is an expected type of wear that causes uniform abra-
sion for the cutter ring, as shown in Fig. 6(a). Abnormal wear refers
to partial wear, bearing damage, chipping, and loosening. During
cutter inspection, if the cutter rings reveal abnormal damage, the
cutter should be immediately replaced. An example of disc cutter
wear encountered during tunneling with abnormal wear (partial
wear and damage by chipping or breaking) is shown in
Figs. 6(b)–(d). During the excavation process, 112 disc cutters were
replaced. Fig. 7 shows the overall number of worn disc cutters for
every disc position, and most worn cutters (more than 70%) exhibit
normal wear. According to Fig. 7(a), the central cutters did not
exhibit normal wear owing to the very small radii of their positions
compared with their diameter. The number of disc replacements
increased for the outer edge of the cutterhead. In addition, the rate
of consumption of disc cutters indicates that the cutter-exchange
frequency was extremely high for disc cutters 47–56 in the gauge
area (three times higher than the cutter replacements for the total
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excavated tunnel length). This obvious increase can be explained
as a result of cutters No. 1–46 being parallel to the direction of tun-
neling excavation and perpendicular to the face of tunnel. In con-
trast, there are 7�–8� between the directions of the gauge cutters
(arc segments) for cutters 47–56. During the cutting process and
under axial thrust, the greater the angle, the higher the lateral force
endured by the disc cutter. This observation is in accordance with
previous publications [65,66]. The normal wear proportion is
74.11% (Fig. 7(b)). Fig. 8(a) presents the distribution of the disc cut-
ter replacements for abnormal wear. According to the results, the
replacement number of disc cutters is independent of the cutter
position for abnormal wear, which might be attributed to the con-
trast of the mixed strata. Furthermore, the abnormal wear is rele-
vant for the operation level of the shield driver and breakage grade
of the rock mass [14,67,68]. The flat wear proportion is 89%
(Fig. 8(b)). The wear rate of an individual disc cutter is measured
in terms of the ring height loss. Fig. 9 shows the analyses of the col-
lected wear mounted on the cutterhead at each position. It can be
deduced that the collected wear extent of the face and gauge cut-
ters increases greatly with distance from the cutterhead to the
center.

Disc cutter life is identified as the amount of time each cutting
tool is used for before it requires replacement. Bruland [69]
expressed disc cutter life using three different methods: Hm, Wm,
and Hf. That is, disc cutter life can be defined as the excavated tun-
nel length per cutter (Hm in meter per cutter) or via the wear of a
disc cutter, which is represented by the number of cutters changed



Fig. 5. EPB shield cutterhead components. (a) Cutter wheel with various excavation tools; (b) machine components. /: the diameter of the cutter (mm).

Fig. 6. Disc cutter wear. (a) Normal wear; (b) partial wear; (c) breakage wear;
and (d) badly damaged.

Fig. 7. (a) Disc cutter replacement for various disc cutter positions and (b) the
proportion of normal and abnormal wear of the disc cutter in the studied project.
The solid line in (a) represents the wear limit.
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per rolling distance of excavated soil (Wm in cutter per meter).
Finally, disc cutter life can be defined as the soil excavation volume
per cutter (Hf in cubic meter per cutter). To calculate these
parameters, the following equations are used:

Hm ¼ L
NTBM

ð15Þ

Wm ¼ NTBM

L
ð16Þ

Hf ¼ Hmpd
2
TBM

4
ð17Þ
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where NTBM, L, and d are the number of exchanged disc cutters,
excavated length (m), and shield diameter (m), respectively. Table 3
lists the estimated cutter life and wear in this study. The results
indicate that the average cutter life was 29.46 m, which corre-
sponds to an excavation volume of 1820 m3. Among the above three
parameters, Hf has been shown to be the most suitable parameter
for estimating cutter life in several projects [23]. Therefore, Hf

was employed as a parameter to predict disc cutter life.



Table 3
Calculated cutter life and cutter wear for studied section.

Numbers of replaced disc
cutters

Average disk cutter wear and life parameters

Hm

(m�cutter�1)
Hf

(m3�cutter�1)
Wm

(cutter�m�1)

112 29.46 1820 0.03

Fig. 8. (a) Disc cutter replacement for abnormal wear and (b) the proportion of flat
wear, breakage, and other damages of disc cutter in the studied project. The solid
line in (a) represents the wear limit.

Fig. 9. Histogram of accumulated wear extent of rings in the studied project. The
solid line represents the wear limit.
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4.4. Data preparation

To consider the geological conditions, geological and geotechni-
cal reports from boreholes and surface outcrops were used in this
study. The geological characterization was considered from the
extracted core samples (Section 4.2). The intact rock properties
and rock mass parameters were used to quantify the ground char-
acteristics. For each tunnel section, the values of the parameters
were calculated from different sets of tests in the database
[23,61,66]. The mean values of these parameters were then utilized
to detect the geotechnical properties of the specified engineering
geological sets. To build up a complete database, the tunnel was
split into 32 sections with uniform geological characteristics
(Fig. 4). The database was divided into two main categories. The
first category comprised the geological conditions, such as intact
rock properties (UCS and Qc) and rock mass parameters (RQD).
The variation range of the UCS was between 1.26 and 162.9 MPa,
and the optimal values of Qc and RQD were 22% and 78%, respec-
tively. The second category contains the shield construction
Table 4
Descriptive statistics of generated database for this study.

Parameter Unit Category Minimum

TF kN Input 21700
CRS r�min�1 Input 1.5
GP kPa Input 240
PR mm�r�1 Input 18
Qc % Input 0
SE kW�h�m�3 Input 1.67
SP kPa Input 160
UCS MPa Input 1.26
H m Input 14
Hf m3�cutter�1 Output 600
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parameters, such as PR, TF, GP, SP, and SE. Table 4 summarizes
the statistical analyses of the input and output models. In this
study, a proposed method suggested by Bruland [69] was used to
estimate the disc cutter life over the tunneling process. The instan-
taneous cutter life was estimated for every part by collecting the
cutter wear and life at every cutter replacement section. Along
the tunnel alignment, the variation in disc cutter life indicated that
most estimated average values of cutter life were between 600 and
2700 m3 per cutter. Furthermore, the maximum was approxi-
mately 4.5 times the minimum. Table 5 shows the mean values
of disc cutter life and some shield operational parameters along
the studied tunnel section.
5. Model development

Several empirical equations based on geological conditions have
been used to predict disc cutter life in geotechnical engineering
applications [23,67]. This study aims to develop empirical models
based on not only geological conditions, but also shield operational
parameters, in order to predict the disc cutter life for excavation
tunnels. Therefore, two statistical techniques (i.e., simple and mul-
tiple regression models) were utilized to develop the relation
between disc cutter life and the influencing factors.
Maximum Mean Standard deviation

40700 30043.8 5417.53
1.9 1.72 0.108
450 333.43 45.76
36.2 27.79 3.88
22 9.45 6.79
7.32 3.48 1.18
240 200 24.62
162.9 32.34 34.03
20 17.19 1.706
2700 1452.19 543.91
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5.1. Simple regression model

In this study, different simple regression models were analyzed
using cutter life as an objective variable. The influences of differen
parameters, including SP, UCS, CRS, and Qc, on the prediction of
cutter life were investigated. The correlations between disc cutter
life and certain geological and operational engineering parameters
via linear and nonlinear regression models are displayed in Fig. 10.
The UCS was found to be the most suitable parameter for predict-
ing disc cutter life, compared with the other parameters. The
results of the regression coefficients and related equations are
listed in Table 6 [23,65].

5.2. Nonlinear regression model

Cutter wear depends on many parameters [10,14,65]. A nonlin-
ear multiple regression model can be used to combine more than
one parameter (independent parameter) that affects the cutter
life (dependent parameter) during tunneling. Hence, a multiple
Table 5
Excavation performance data along the tunnel alignment.

Group symbol Hf range (m3�cutter�1) TF range

ET-1 2250–2700 22 000–2
ET-2 1100–1800 26 900–3
ET-3 600–1150 29 300–4
ET-4 1200–1830 21 700–3

Fig. 10. Relationship between recorded disc cutter life (Hf) and different o
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regression model was employed to determine a nonlinear solu-
tion with an optimal fit to the existing data. After performing a
series of simulations, the best correlation of the geological and
operational parameters for the prediction of cutter life was
obtained for the PR, RPM, and UCS parameters (best fit with
R2 = 0.84, based on Eq. (20) in Table 6). Fig. 11 displays the rela-
tionship between the actual and predicted results for cutter life.
The proposed model is compared with previous models in Table 6.
Evidently, the proposed model predicts cutter life better than the
previous models. It can be noted that the results of the multiple
regression model are statistically meaningful. However, in order
to achieve better performance, a more advanced model should
be developed.

5.3. Evaluation of cutter life using GMDH–GA

The GA was applied to optimize the quadratic function
parameters and thus gain the best structure of the GMDH
technique. The essential stages of the hybrid GMDH–GA are
(kN) SE range (kW�h�m�3) SP range (kPa)

7 000 1.67–3.70 150–170
0 000 2.74–7.32
0 700 1.84–3.25 170–240
8 300 2.59–5.97

perational and geological parameters. (a) CRS; (b) UCS; (c) SP; (d) Qc.



Table 6
Results of regression coefficients for different input and output parameters [23,65].

Parameter Relationship Function type R2 Eq. No. Reference

GP Hf = 5845 – 2826GP + 0.044GP2 Quadratic 0.130 (18) This study
Qc, TF Hf = 2462.60 – 44.50Qc – 0.019TF Polynomial 0.440 (19)
UCS, CRS, PR Hf = exp(�0.0168UCS � 5.2187(RPM/PR) + 8.0256PR) Exponential 0.840 (20)
Qc, CRS Hf = 2687.70 – 50.75Qc – 439.97RPM Polynomial 0.420 (21)
UCS, VHNR Hf = –2.544VHNR – 8.331UCS + 3288.248 Polynomial 0.771 (22) Hassanpour et al. [65]
UCS, VHNR Hf = –2.013VHNR – 8.074UCS + 2859.35 Polynomial 0.785 (23) Hassanpour [23]

VHNR: Vickers hardness number of the rock.

Fig. 11. Comparison between actual and predicted cutter life from multivariate
nonlinear regression analysis.
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illustrated in Fig. 2. The first step includes the selection of proper
inputs. Previous studies were examined to identify the most
effective parameters for estimating disc cutter life. The accuracy
of the predicted model depends on the inclusiveness of the
empirical data and appropriate choice of input parameter. As
mentioned above, an extensive data range that covered the tunnel
section was used to develop the model. To select the best model
structure using GMDH–GA, four models were proposed. To deter-
mine the prediction ability of the developed models, the data
Table 7
Parameters and coefficients used in neuron equations.

Model Equation

GMDH–GA-1 Y1 = 2 816.08 – 59.7PR – 22.44UCS – 0.32P
Y2 = 6 108.48 – 0.24TF – 60.99PR – 0.0001
Y3 = 1 368.66 – 0.85Y1 – 0.36Y2 + 0.00025Y
Hf = –1 093.89 + 1.55Y3 + 52.88PR – 0.042Y

GMDH–GA-2 Y1 = 2 398.97 – 99.70SE – 35.06UCS + 0.92
Y2 = –102 578.36 – 468.32SE + 2027.34PR
Y3 = 2 816.08 – 59.7PR – 2.44UCS – 0.32PR
Y4 = 4 774.01 – 4.65Y1 –46.03UCS + 0.023Y
Y5 = 648.67 + 0.38Y2 – 0.64Y3 – 0.00033Y2
Hf = 292.05 + 1.67Y4 – 1.12Y5 – 0.0013Y4 �

GMDH–GA-3 Y1 = 19 041.41 – 82.09UCS – 17 232.71CRS
Y2 = 18 406.86 – 35 952.14CRS + 1 019.99P
Y3 = 3 643.98 – 72.47UCS – 0.05CRS + 0.00
Y4 = –45.57 + 1.13Y1 – 0.17Y2 – 0.0002Y1 �
Hf = 110.14 + 0.6Y3 + 0.22Y4 + 3.29Y1 � Y4 –

GMDH–GA-4 Y1 = 2 398.97 – 35.06UCS – 99.7TF + 0.92U
Y2 = –102 578.36 – 468.34TF + 2 027.34PR
Y3 = 3 643.98 – 72.47UCS – 0.05SE + 0.001
Y4 = –666.63 + 0.72Y1 + 0.05SE – 4.09e–5Y1
Y5 = 773.7 – 0.94Y2 + 0.92Y3 – 0.0005Y2 � Y
Hf = 109.7 + 0.86Y4 – 0.019Y5 – 6.45e–5Y4 �
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were split haphazardly into two sets: a training set and a testing
set. Among the 32 datasets used in this research study, 70% of the
complete dataset (training group) was employed to determine the
coefficients in Eq. (5), whereas the other 30% (testing group) was
used to evaluate the trained model. Several parameters were
involved in the structure of the hybrid GMDH–GA model (e.g.,
size of population, number of hidden layers, probability of cross-
over and mutation, and number of generations). The selected
parameters can affect the model generalization ability. To employ
the GA in the GMDH design structure, a population of 100 indi-
viduals with 0.95 crossover probability and 0.01 mutation proba-
bility was used through 300 generations; no further improvement
was conducted. The corresponding polynomial representations
obtained via the structural models and the relevant equations
for models GMDH–GA-1 to GMDH–GA-4 are illustrated in Table 7.
These polynomial representations are provided for each model
based on Eq. (5), using a partial quadratic polynomials system
with two variables. For example, in GMDH–GA-1, Y1 is estimated
based on PR and UCS; Y2 is determined based on TF and PR; and
Y3 is not independent but is related to Y1 and Y2. Hf is then esti-
mated based on Y3 and PR. These mathematical equations and
their coefficients are obtained from the four different models to
predict disc cutter life during the tunneling process. These analy-
ses are visualized in Fig. 12, which displays the structure of the
developed double hidden GMDH layers for the four GMDH–GA
models. Double hidden layers were chosen to avoid over-fitting
and obtain simpler equations. Inserting more hidden layers
greatly increased the complexity of the established model with-
out achieving substantial improvement.
Eq. No.

R � UCS + 1.13PR2 – 0.37UCS2

7TF � PR – 0.0017TF2 + 1.35PR2

1 � Y2 + 0.0233Y12 – 6.21Y22

1 � PR + 0.015Y32 – 7.02PR2

(24)

3SE � UCS + 2.94SE2 + 0.38UCS2

+ 533.68SE � PR – 3.4SE2 + 2.72PR2

� UCS + 1.13PR2 + 0.37UCS2

1 � UCS + 0.041Y12 + 0.34UCS2

� Y3 + 3.62Y22 + 0.029Y32

Y5 + 0.017Y42 + 0.035Y52

(25)

+ 32.49UCS � RPM + 0.33UCS2 – 65.33CRS2

R – 850.77CRS � PR + 131.71CRS2 + 2.77PR2

1 3UCS � TF + 0.43UCS2 – 6.07TF2

Y2 + 0.008Y12 – 0.015Y22

0.0057Y32 – 1.61Y42

(26)

CS � TF + 0.37UCS2 + 2.94TF2

+ 533.68TF � PR – 5.94e–7TF2 + 1.19PR2

UCS � SE + 0.435UCS2 – 9.67e–13SE2

� SE – 0.023Y12 – 4.02e–9SE2

3 + 0.023Y22 + 0.017Y32

Y5 + 2.23e–9Y42 + 0.01Y52

(27)



Fig. 12. Evolved structure of double hidden GMDH layers in models GMDH–GA-1 to GMDH–GA-4 for the prediction of Hf.
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To evaluate the deviation between the results predicted via
GMDH–GA and field data, the root mean-square error (RMSE)
and correlation coefficient (R2) were applied:
RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

xmea � xpre
� �2

n

vuuut
ð28Þ
R2 ¼ 1 �
Pn
i¼1

xmea � xpre
� �2

Pn
i¼1

xmea � xmð Þ2
ð29Þ
where xmea, xpre, xm, and n are the measured, predicted, and mean x
values and the total number of datasets, respectively.

Fig. 13 shows the relation between the actual and predicted cut-
ter life for all datasets. According to Fig. 13, the values of the pre-
dicted cutter life from four GMDH–GA models exhibit a good
correlation for both the training and testing datasets. Furthermore,
the predicted disc cutter life values are limited to curves corre-
sponding to ±20%, which indicates high accuracy of the hybrid
models in the prediction of cutter life during the tunneling process.
The best quadratic polynomial model for predicting Hf consists of
UCS, PR, TF, and CRS, and is presented in model GMDH–GA-3, as
shown in Table 8. This model exhibits significantly lower error
than the other models. Better accuracy can be achieved by mini-
mizing the RMSE and maximizing R2. Furthermore, the best hybrid
GMDH–GA model was compared with the equation obtained from
the multiple nonlinear regression (Eq. (20)) to evaluate its accu-
racy. According to the result, the hybrid model can effectively pre-
dict cutter life via geological and operational parameters—that is,
the correlation coefficient R2 = 0.967 and RMSE = 97.22 compared
with the empirical equation with R2 = 0.84 and RMSE = 218.
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5.4. Sensitivity analysis

A sensitivity analysis for the proposed model was carried out to
define the impact of each input parameter on the model output.
Analysis of the double hidden layers of the GMDH structure was
performed by changing each input parameter at a constant rate
and keeping the other input variables constant. The cosine ampli-
tude model was used to perform the analysis [49]:

Rij ¼

PN
k¼1

LikLjk
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
k¼1

L2ik
PN
k¼1

L2jk

s ð30Þ

where Li and Lj are the input and output parameters, and n is the
total number of datasets. The Rij value [0, 1] expresses the strength
of the relationship between every input variable and the output
model. Fig. 14 shows the results of Rij estimated via the GMDH algo-
rithm for double hidden layers. As can be seen, the PR is the most
significant parameter in the hybrid model for cutter life prediction.

5.5. Discussion

According to the aforementioned empirical models, disc cutter
life basically depends on geological and operational parameters.
To obtain more accurate estimations, a GA was applied to the
GMDH model to optimize the quadratic function parameters and
thus improve model accuracy. Four parameters (UCS, PR, TF, and
CRS) were demonstrated to be closely linked with cutter wear
and were therefore utilized as factors for predicting disc cutter life.
The results of GMDH–GA-3 confirmed that using these four param-
eters helped to accurately predict disc cutter life with high accu-
racy (Fig. 13). To evaluate the effect of every input parameter on
the model output, a sensitivity analysis was performed. Using the
results of this study, engineers studying tunneling engineering
can have a deeper understanding of the prediction of disc cutter



Table 8
Statistical results for evolved GMDH–GA models.

Model Parameter R2 RMSE

GMDH–GA-1 f (TF, PR, UCS) 0.928 143.33
GMDH–GA-2 f (SE, PR, UCS) 0.931 139.65
GMDH–GA-3 f (UCS, CRS, PR, TF) 0.967 97.22
GMDH–GA-4 f (UCS, TF, PR, SE) 0.936 135.32

Fig. 14. Influence of each input parameter on the output of the double hidden layer
model.

Fig. 13. Comparison between actual and predicted Hf by models GMDH–GA-1 to GMDH–GA-4.
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life and can make a reasonable choice between different prediction
models. It is noteworthy that rock mass properties such as the UCS
have an evident impact on disc cutter life. This fact was the stim-
ulus for analyzing disc cutter life to evaluate and infer the variation
of geological conditions. Given the importance of shield opera-
tional parameters, the method developed in this study could
become necessary to create a new factor governance method for
shield performance. Moreover, the parameters used in hybrid
model GMDH–GA-3 reflect the field conditions and differ with cut-
ter wear changes. Thus, this model can predict disc cutter life in a
timely and reliable manner.

Finally, it must be mentioned that shield tunneling is often con-
ducted in rock–soil varied strata, and thus benefits from improve-
ments in design and manufacturing technologies for the
cutterhead and its cutters. The EPB shield machine studied here
is used in many current tunneling projects—particularly in China
(e.g., in the case study of the Sui–Guan–Shen (Guangzhou–
Dongguan–Shenzhen) intercity railway in the Pearl River Delta
249
[8]; the Guangzhou South Railway Station for the intercity railway
project; the railway tunnel project in Changsha, Hunan [70]; and
the intercity tunnel project between Guangzhou and Foshan (un-
der construction) [71]. However, adaptations might be necessary
for cases with different cutting heads.
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6. Conclusions

This study proposed an AI approach to predict disc cutter life
during shield tunneling in rock–soil varied strata. To achieve accu-
rate estimation, a database was compiled and subjected to statisti-
cal analysis to derive new approaches and models for predicting
disc cutter life and thus improving the shield machine perfor-
mance. The proposed model includes not only geological data,
but also shield operation parameters. The following conclusions
can be drawn:

(1) The results indicate that normal wear significantly affects
disc cutter life, and the accumulated wear volume of the disc cut-
ters increases with increasing distance between the cutterhead
center and the face cutters.

(2) The proposed empirical model provides a reasonable tool for
the quick assessment of construction parameters and the verifica-
tion of field results for the prediction of cutter life with an accept-
able accuracy range (R2 = 0.84).

(3) The results obtained via the GMDH–GA models exhibit a
high degree of accuracy for disc cutter life values and a notably bet-
ter performance than those obtained from empirical models. To
assess the effect of each input parameter on the model output, a
sensitivity analysis was performed. The sensitivity analysis shows
that the PR of the shield machine, as predicted using double hidden
GMDH layers, significantly influences the disc cutter life.

(4) In applications, the proposed GMDH–GA model can use
shield operational parameters (TF, PR, CRS) and geological condi-
tions (UCS) as inputs to predict disc cutter life during the tunneling
process. The proposed model is general, and can be utilized to
analyze different tunneling systems in other projects with similar
geological and mechanical conditions. Eventually, the proposed
model is expected to provide insightful suggestions to support
engineers in the prediction of disc cutter life; it can be utilized as
intelligent selection to achieve acceptable prediction in both the
planning and construction stages.
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