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1. Introduction

In recent years we have witnessed a rapid surge of interest in
novel person-based sensing devices, for example, for wellbeing,
sports, safety, childcare, healthcare, and bio-surveillance [1]. In
parallel, an additional aspect increasingly moving into the fore-
front is the mobile environmental monitoring by individual-worn
sensors combined with a smartphone [2]. Intelligent sensors
(called smart sensors) accomplish the acquisition of an electric sig-
nal from a physical property as well as the processing (and storage
or communication) of measured signals, an amenity that makes
them excellent personal exposure recorders. The wearable envi-
ronmental sensors approach pools the recordings of environmental
data (air quality, temperature, humidity, radiation, noise, etc.)
together with recordings of human activity spaces [3]. The latter
represent the urban areas within which people move during the
course of their daily activities and that can be tracked by Global
Positioning System (GPS)-devices [4].

The role of personal exposure in the etiology of environmental
(and often chronic) health problems was emphasized by the expo-
some concept [5] that attributes high importance to an individual’s
exposure compared to their genetic make-up. Epidemiological
studies of environmental health effects often work with data
aggregated at regional levels. Statistical associations are studied
between disease prevalence or incidence in certain districts and
data of environmental parameters gathered at fixed monitoring
stations that are ‘‘representative’’ for each of these districts (often
based on administrative boundaries). However, recordings from a
sparse station network do not adequately represent the range of
exposure experienced by different individuals, especially in diverse
indoor and outdoor urban environments [6].

Moreover, while results from such studies are valid for the
given scheme of districts, they change for another arrangement
of districts which is known as the modifiable areal unit problem
(MAUP) [7,8]. Therefore, more advanced approaches focus directly
on individuals and work with buffers around the individuals’
residences. Applying ecological regressions, these studies analyze
the associations between the individuals’ health status and the
percentages of traffic, green area, industrial area and so on in their
buffer as surrogate measures for exposure [9]. Evidently, the real
personal exposure of each individual is only indirectly measured
with this approach and exposure misclassification occurs that
can weaken the statistical significance of the results [10,11].

As a remedy, individual-worn sensors can record environmental
parameters directly at a person’s location; some authors call it
anthropocentric opportunistic sensing [12]. The small size of
modern sensors, their smart functionality, and affordable costs
make them perfect tools to register exposure data in vivo. Our
commentary aims to guide the choice of appropriate sensors, to
improve the understanding of obtained results, and to highlight
the principal needs of constructive elements of wearable environ-
mental sensors (Fig. 1). In particular, we outline standards for
application procedures of these sensors. Such standard operating
procedures (SOPs) depend on the intended purpose of the study
and the research question. The illustration through examples and
challenges is an attempt to initiate more interdisciplinary discus-
sions related to constructive elements and diverse use of sensors
and wearables in environmental monitoring, public health, and
personal exposure assessments.

2. Utility of person-worn environmental sensors

Personal exposure is multifactorial, involving, for example, air
temperature, air humidity, radiation, air pollutants (gases, particu-
late matter), and noise. This definition aims to encompass all
exogenous exposure factors contributing to the human exposome.

As the health outcome or discomfort associated with an
exposure depends on the vulnerability and the behavior of an
individual, additional person-specific variables have to be consid-
ered. They comprise fixed values (e.g., age, sex, and pre-existing
health conditions) as well as time-dependent values (e.g., move-
ment behavior recorded by GPS and breath rate that is related to
physical activity recorded by accelerometers [13]). Smartphone-
based sensing methods have become a valuable way to simulta-
neously collect many of these variables [14,15].

Individual-based environmental measurements are useful for
two very different purposes. First, they continuously collect
complete exposure data for an individual. This approach results
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Fig. 1. Short facts of environmental sensing by individuals.
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in metrics for cumulative exposure, location and activity-specific
exposure increments, frequency distributions of exposure incre-
ments [16], mobility habits, and behavior. It can facilitate behav-
ioral changes and adaptation for a sensor wearing individual and
being informed about its current exposure status. At the very least
this can help to promote individuals’ environmental health literacy
[17]. For example, cyclists can adjust their travel behavior accord-
ing to information assigned to their geo-position [18,19]. Second,
individuals can act as urban explorers and, by means of their
portable sensors, can capture the variability of atmospheric param-
eters [20]. Combining such crowdsourced measurements from
numerous people, or with model simulations, data for all loca-
tions/times in the city are estimated within a participatory citizen
science approach [21,22]. Plotting the spatiotemporal data along
the trajectory of each person (according to the concept of
time-geography [23]) can improve the understanding of disease
prevalence, etiology, transmission, and treatment [24]; and also
help to support sustainable urban planning.
3. Concepts of personal exposure measurements

Environmental exposure relevant to a person’s health has to be
locally monitored constantly for the individual. The results of such
continuous monitoring suggest different levels (and combinations)
of exposure depending on the individual’s immediate surroundings
[25]. Due to this concept, the exposure associated with the daily
agenda of a person is a sequence of pollution patterns, each char-
acterizing a specific microenvironment. For example, black carbon
exposure was found to be significantly elevated in diesel vehicles,
in the subway, or rooms with environmental tobacco smoke [26].

This microenvironment concept facilitates an approximate
exposure estimation based on an individual’s time–activity profile
and characteristic pollution levels of the involved microenviron-
ments [25]. Typical microenvironments are homes, schools, and
vehicles for transit/commuting [27]. Exposure to outdoor
pollutants occurs not only outdoors, but also indoors in naturally
ventilated homes [28]. While, in the past, the microenvironment
was categorized according to activity logs (diaries) or geographic
proximity [29], and the utilization of GPS and accelerometers
allows for automated human activity recognition [3,30].

A weakness of this microenvironment concept is that indoor air
pollution varies considerably between different apartments and
only very general information is available for selected typical set-
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tings. Further, outdoors and especially in urban neighborhoods,
the pollution can vary considerably due to many potential sources
(e.g., industry and traffic) and rapidly changing dispersion
conditions in street canyons. For example, studying the PM2.5

(particulate matter with an aerodynamic diameter no greater than
2.5 lm) exposure of schoolchildren, Rabinovitch et al. [31]
observed relatively high correlations between the mean concentra-
tions in the microenvironments of home, transit, and school. This
raises the question of variability between and within microenvi-
ronments. Only very few individual exposure records show clear
differences between microenvironments. Much more pronounced
are concentration peaks that occur independently of the microen-
vironment. The authors identify these peaks (exposure events) as
an exposure metric that is associated with health effects.

Another concept of personal exposure is linked with the urban
structure. Here the basic assumption is that land use is a proxy for
climatic, air quality, and noise conditions. Land use regressions
(LURs) are used for modeling [32]. The assumption is valid under
weak wind conditions (autochthone weather) and also (but
weaker) as an average over long periods (in the sense of long-term
climate). Mobile personal measurements can provide valuable data
for LUR models in high spatial resolution complementing station-
ary monitoring if appropriate cross-validating schemes are applied
to estimate the predictive model performance [33].
4. Sampling points and sampling rate

Conventionally, the (urban) atmosphere is monitored by a
network of meteorological and air quality stations that are placed
at fixed locations with the aim of gathering representative data. For
an appropriate selection of these locations, guidelines have been
developed [34]. However, the urban environment is strongly
inhomogeneous and influenced by numerous different processes
and the selection of these representative sites is a challenge. One
important aspect for the site-selection is the rationale of monitor-
ing: Does it aim to collect climatological data or is it intended to
provide data in support of particular needs, such as the prevention
of health problems? This determines whether the immediate vicin-
ity (e.g., a street canyon), the neighborhood, or the entire city is the
scale of observation.

To specify the optimum number and disposition of climatologic
monitoring sites in an urban area, information about meteorologi-
cal scenarios representative of the considered region is usually
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combined with spatial simulations of pollutant concentration
patterns or even composite air quality indices [35]. The sum of
all these air quality patterns weighted by the probabilities of their
occurrence results in the figure-of-merit (FOM). Its maxima help to
identify and rank the most desirable monitoring locations. The
lowest number of optimal locations are characterized by non-over-
lapping spheres-of-influence (SOIs), determined by a cut-off value
in the spatial autocorrelation between the pollution level at this
site and the neighboring monitoring sites [36,37].

While semi-variances assess the spatial autocorrelation struc-
ture of the entire pollution field (and can be useful for the spatial
interpolation of pollution data [38]), the SOI concept is based on
the calculation of correlograms that are specific for each location.
The correlogram cut-off distance (usually after a correlation decay
by 1/e (� 36.8%) indicates the size of the region for which the
recordings are representative. We suggest the transfer of this con-
cept to mobile measurements and to use it for the sampling rate
specification. If the SOIs of a sequence sampled during a walk over-
lap (see example in Fig. 2), the sampled values are correlated
because the sampling points are too close together. That means lar-
ger time periods between the individual samples can be selected;
in other words, sampling rate, which is the number of samples
per hour, can be reduced.
Fig. 2. Spheres-of-influence (SOIs) calculated from mobile temperature recordings
sampled with a ventilated (55 m�s�1 flow rate) and sun-protected sensor (data
logger testostor 171 with humidity/temperature probe 0572 6172, Germany;
accuracy: ±0.2 K, s � 12 s (s is the time constant characterizing the duration a
sensor will need to respond to a step-input)) 1.5 m above ground during a walk
made 22:50–00:00 UTC on Tuesday, 18 July 2017, in Leipzig, Germany. The dots
mark the sampling sites (coordinates registered by a GPS (Garmin GPSMap 60CSx,
USA), which are separated by a time-step of 1 min. The circles around the dots mark
the SOI-distance at which the correlation of temperature in the center with the
remaining data decays by 1/e (� 36.8%) (exponential function fitted to the
correlogram; negative correlations removed). The sampling rate was 5 s, so that
for each sampling site 12 recordings (comprising 1 min) were included into the
correlation calculation. The daily temperature profile was estimated using a low-
pass filter (6 h cut-off period) and then eliminated from the recordings. To improve
readability, successive circles were plotted in colors red, blue, and green. The urban
structure is visible in the background (coordinate system World Geodetic System
1984 (WGS84), Universal Transverse Mercator (UTM) zone 32).
5. Accuracy of sensors—A matter of performance

An important issue of miniature sensors is their accuracy. While
equipment for condition monitoring (e.g., temperature/humidity
control in factories or pollutant monitoring in mines) aims at the
detection of extreme values, a sensor that gathers personal
environmental burdens has to register very low concentrations
with high accuracy [39], which involves ① high precision (small
random fluctuations and good repeatability), ② trueness (no bias
from the true value), and ③ stability (no long-term drift). Trueness
can be achieved by regular calibrations, but precision and stability
are immanent to the measurement technique. For that reason, not
every technique is suitable for application in wearable environ-
mental sensors.

Regular calibration of the sensors according to the manufac-
turer guidelines is a must. The field measurement performance
can be evaluated by comparison with a standard high-end
instrument [40]. A set of indices is available for the assessment
of the sensors’ precision: index of agreement [41,42], Pearson’s
correlation coefficient, root mean squared error, mean bias error,
mean absolute error, and coefficient of variation. When multiple
factors are simultaneously sampled, a similar accuracy of all sen-
sors is desirable. This will guarantee that each factor measurement
has the same reliability at a sampling point. In practice, the sensor
accuracy can be assessed from a comparison with a precision
instrument by means of Bland–Altman and Taylor plots [40].
Fig. 3. Contemporaneous recordings of different temperature sensors and sampling
modes (outdoor temperatures gathered at time steps of 1 min): Testo Sensor (data
logger testostor 171 with humidity/temperature probe 0572 6172, Germany;
accuracy: ±0.2 K, s � 12 s) active sampling with sun protection and ventilation; TSI
Q-Trak 7565 sensor (USA; accuracy: ±0.6 K, s � 30 s) handheld with natural
ventilation and no sun protection; Texas Instruments (TI) SensorTag CC2650STK
(USA; accuracy: ±0.2 K, s � 300 s) without any sun protection and ventilation.
6. Time constant of a sensor

Another important parameter is the time constant s, characteri-
zing the duration a sensor will need to respond to a step-input
(more precisely, 1 � 1/e (� 63.2%) of the step-value). Considering
that the sensor might be carried during a walk with a speed of
approximately 5 km�h�1 (� 1.4 m�s�1) and the environmental
conditions markedly vary within a range of 14 m, an adequate
sampling rate needs to be 10 s. The sensor has to be compatible
with this sampling rate and the time constant has to be s � 10 s
(unfortunately, many of the new smart sensors have s � 1 min).
The time constant essentially depends on whether or not the sam-
pling is active (that means sensor ventilation by a micro-fan using
a standardized flow rate is applied). In contrast, passive sampling is
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generally not adequate in the context of mobile measurements as
to the large time-constant (inertia effect). An example comparing
active and passive temperature measurements (Fig. 3) demon-
strates that considerable mismeasurement can result from an
inappropriate combination of sampling rate and time constant.
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Undoubtedly, in a specific application of a wearable sensor, the
sampling rate needs to be adapted to the existing spatial variability
of the environmental parameter (see the SOI concept above), the
speed of the mobile measurements, and the sensor’s time constant.
Possibilities to tune the sampling ratemay be limited—not every sen-
sor is useful to every design for personal environmental monitoring.

7. Implementation of personal monitoring

The arguments above suggest that the implementation of
mobile measurements depends on their purpose and the prevalent
environmental conditions. The variability of the environmental
parameters can be assessed by point measurements, geostatistical
techniques (e.g., semi-variogram analyses), and micrometeorologi-
cal modeling. For the measurement task at hand, it will be very
helpful to develop an SOP, which is state-of-the-art with
pharmaceutical and industrial processes.

Such an SOP for mobile measurements involves a detailed
description of the measurement procedure, including the purpose
of the study, materials and devices, details of the sensors (includ-
ing functionality, energy supply, calibration, accuracy, and time
constants), details on the implementation of mobile measurements
(flow diagram), a protocol for the mobile measurement campaign
(including start date and time, location, preparations required for
the measurements, sampling rates, carriers (e.g., pedestrians,
bikers, and cars)), average movement speed, sampling period,
method of synchronization between all sensors and GPS, potential
sources of errors, data storage details, and data analysis approaches.
Such working instructions are useful for researchers that test differ-
ent sensors and novel devices or explore the environmental condi-
tions near urban hot spots. They are vital for high-quality
population studies when laypeople carry wearable sensors during
everyday life and record their burden for health studies. Templates,
as well as planning tools, are available for support [43].

A manual acquisition of all the collected data would be tedious
and therefore the data stream has to be integrated and rapidly
processed within a data acquisition system linking sensors,
smartphones, and a database [44]. An important task of this data
processing is the synchronization of all measurements that is
usually based on a timestamp [45]. Future developments toward
an Internet of Things (IoT, as a global data infrastructure [46])
can bring data management to perfection and simultaneously
increases data accuracy and coverage [47]. For example, short-
distance communication techniques like iBeacony can improve
the registration of positions in an indoor environment and
contribute to a comprehensive assessment of indoor and outdoor
environmental burdens.

8. Upvaluation of sensor records

All data recorded by wearables are subject to considerable noise
[48]. Small scale turbulence near the person, nuisance of record-
ings due to impacts (e.g., heat, acoustic noise, and trace gases)
caused by the moving individual, and other perturbations will
generate outliers as well as bias in the measured data. The quality
of the recorded data can be enhanced when an urban region is
‘‘explored’’ by numerous individuals. During their movement, the
data collected at nearby points in time and space can be averaged
for random noise reduction. A systematic technique that interpo-
lates many such measurements is the so-called data assimilation,
which combines measurements with micro-meteorological
simulations. This approach is similar to the procedure that is
operationally applied to meteorological and climatological mea-
surements on a global scale.
y http://www.ibeacon.com/.
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Because measurements always have uncertainty, the data
assimilation procedure needs to take this into account for the
calculation of the combined data and their uncertainty. As an
adequate solution for this task, we suggest the Bayesian spatiotem-
poral epistemic knowledge synthesis [49]. This approach can
combine micro-meteorological simulations (of air pollutants, tem-
perature, etc.) with multiple person-carried measurements result-
ing in highly resolved data of environmental parameters and their
confidence intervals.

Another perspective of wearable sensors is the association of
recordings with the perceptions of the carrier. A novel technique
registering a person’s apperceptions during their daily life are walk-
ing interviews [50]. Being in a certain urban setting, people aremore
easily able to reflect their ownexperiences and thismirrors themea-
sured environmental conditions. This technique is derived from
ethnographic studies and can bridge between measured exposure
data, an individual’s behavior, and their health status. In combina-
tion with wearable sensors, the walking interviews can uncover
daily habits and the social context as determinants of personal
exposureandcontributors to theetiologyof chronicdiseases. Smart-
phone sensing methods are a feasible way to integrate active user
feedback (e.g., exposure perception) on the move [45].
9. Conclusions

Novel sensor and information technology developments can
contribute considerably to the provision of human exposome data
[51] and foster the transition from population-based to individual-
based epidemiological studies [52]. While some environmental
parameters are reflected by human perceptions (such as the ther-
mal comfort and noise), others are basically imperceptible (such as
particulate matter and NOx concentrations). As a corrective, multi-
factorial exposure measurement can immediately inform a person
about prevalent health risks [53]. This is especially important for
epidemics of non-communicable (e.g., asthma and diabetes) as
well as communicable (e.g., tuberculosis and coronavirus disease
2019 (COVID-19)) diseases, that are influenced by people’s every-
day lifestyle and surrounding environments. Further, wearables
can help overcome the microenvironment and land-use concepts
that are not individual-based. However, the application of wear-
able sensors demands specifications for sampling rate, accuracy,
and numerous other conditions, ideally in the frame of an SOP
(Fig. 1). To avoid spurious and biased recordings, the sensors them-
selves must actively sample (i.e., ventilated by a micro-fan) and be
protected against the impact of nuisance parameters. Combining
individual-based records with environmental modeling as well as
novel techniques surveying ‘‘on the move” are promising chal-
lenges for future research activities.
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