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a b s t r a c t

Travel restrictions and physical distancing have been implemented across the world to mitigate the coro-
navirus disease 2019 (COVID-19) pandemic, but studies are needed to understand their effectiveness
across regions and time. Based on the population mobility metrics derived from mobile phone geoloca-
tion data across 135 countries or territories during the first wave of the pandemic in 2020, we built a
metapopulation epidemiological model to measure the effect of travel and contact restrictions on con-
taining COVID-19 outbreaks across regions. We found that if these interventions had not been deployed,
the cumulative number of cases could have shown a 97-fold (interquartile range 79–116) increase, as of
May 31, 2020. However, their effectiveness depended upon the timing, duration, and intensity of the
interventions, with variations in case severity seen across populations, regions, and seasons.
Additionally, before effective vaccines are widely available and herd immunity is achieved, our results
emphasize that a certain degree of physical distancing at the relaxation of the intervention stage will
likely be needed to avoid rapid resurgences and subsequent lockdowns.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The coronavirus disease 2019 (COVID-19) pandemic has caused
an evolving global public health and economic crisis [1–3]. Before
effective vaccines are widely available to achieve herd immunity,
the medical and public health communities have been reliant upon
non-pharmaceutical interventions (NPIs) for mitigating the COVID-
19 pandemic [4–6]. Travel and physical distancing interventions
have been implemented across countries by quarantining geo-
graphic ‘‘hot spots” and minimizing physical contact between
infectors and susceptible populations [7–10]. These interventions
have aimed to suppress the peaks of the waves in this pandemic
and delay virus’s resurgence, protect healthcare capacity, and
reduce the morbidity and mortality caused by COVID-19 [10–13].
The implementation of travel restrictions and physical distanc-
ing measures, together with other interventions, for example,
large-scale testing, contact tracing, and personal hygiene behav-
iors, are likely to have substantially reduced transmission rates
and flattened epidemic curves across countries in the first half of
2020 [7–9,14]. However, the global effectiveness of these travel
and social contact restrictions remains unclear, due to the varying
durations and intensities of these interventions conducted across
regions and time [15,16]. Additionally, to minimize the socioeco-
nomic impacts of lockdowns or travel restrictions, strategies for
relaxing these interventions are also of importance to prevent
resurgences and additional lockdowns. For example, China has
moved past the first wave of the COVID-19 and lifted travel restric-
tions that were strictly implemented between late January and
early March 2020 [17]. However, premature and sudden lifting of
uncoordinated interventions could lead to a resurgence and an ear-
lier secondary peak [18–21], such as the rapid resurgences and
third lockdowns that have been occurring in Europe. An uncon-
trolled outbreak in one country may introduce transmission in
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another country [12,22]. However, few studies have been con-
ducted using quantitative measures of global travel and contact
reductions to inform how and when social distancing measures
should be implemented or lifted in the absence of a vaccine or
effective treatment [18,19]. To answer these questions, the effec-
tiveness of interventions and potential relaxation strategies across
countries should be measured and assessed to guide ongoing and
future COVID-19 or other pandemic responses [23].

Anonymized and aggregated human mobility data derived from
mobile devices have been increasingly used to provide approxima-
tions of population-level travel patterns and physical contacts
throughout the COVID-19 pandemic [24–26]. These data help
refine interventions by providing timely information about
changes in patterns of human mobility across space and time
[27–30]. Here, we use population movement data to measure the
intensity and timing of actual travel across 135 countries and ter-
ritories throughout the first wave of the COVID-19 pandemic in
2020. A metapopulation transmission model was built to ① simu-
late COVID-19 spread across these countries, ② assess the relative
effectiveness of travel and physical distancing interventions that
were in place, and ③ examine various relaxation strategies. The
potential numbers of age-specific severe and critical COVID-19
cases by population, region, and season were also estimated to
help guide healthcare resource preparedness.
2. Methods

2.1. Mobile phone-derived travel and contact reductions

Two aggregated and anonymized population mobility datasets,
obtained from Google and Baidu, were used to approximate mea-
surements for the intensity of both travel and physical distancing
interventions across space and time throughout the early stage of
the COVID-19 pandemic.
2.1.1. Google data
The Google COVID-19 Aggregated Mobility Research Dataset

contains anonymized mobility flows aggregated from users who
have turned on their location history settings, which is off by
default [31]. This is similar to the data used to show how busy cer-
tain types of places are in Google Maps—helping to identify when a
local business tends to be the most crowded. The dataset contained
aggregated flows of people between S2 cells from January 5 to May
30, 2020. Each S2 cell represents a quadrilateral on the surface of
the planet and allows for efficient indexing of geographical data
[32]. This dataset was analyzed by researchers at the University
of Southampton, UK as per the terms of the data sharing agree-
ment. Production of this anonymized and aggregated dataset has
been detailed in previous studies [23,31,33,34].

A total of 134 countries, territories, or areas outside of Chinese
mainland had domestic outflow data over the study period, and
among them, 104 had international outflow data. The cumulative
weekly outflows of each country were then divided by the number
of origin S2 cells (each was calculated only once) that contained
data from January 5 to May 30, 2020. This was done to account
for any bias that may have been introduced by the increasing num-
ber of S2 cells discarded in order to protect the privacy of the
decreasing number of travelers under travel restrictions.

To be comparable across countries and stages of the outbreak,
the population movement data during the physical distancing
interventions used to control COVID-19 were further standardized
using ‘‘normal” mobility flows before the COVID-19 outbreaks.
Asian countries/regions neighboring Chinese mainland imple-
mented travel restrictions and physical distancing interventions
earlier than other countries, and at an early stage of the outbreak.
915
Therefore, the domestic and international weekly outflows in
seven Asian countries/regions (Hong Kong Special Administrative
Region (SAR) of China, India, Japan, Republic of Korea, Singapore,
Thailand, and Vietnam) during the period of January 26 to May
30, 2020 were standardized by the mean flows during the three
weeks of January 5–25, 2020; all remaining 127 countries/regions’
outflows since February 16, 2020 were standardized using the
mean movements from January 5 to February 15, 2020 as a
baseline.

2.1.2. Baidu data
To capture the changing population movement patterns in

China during the COVID-19, the daily population mobility data at
prefectural level (342 cities) in Chinese mainland in 2020 were
obtained from Baidu’s location-based services [35,36]. Baidu pro-
vides over seven billion positioning requests per day from people
who use relevant mobile phone applications. The aggregated and
de-identified daily outbound and inbound flows (travel index) for
each prefecture-level city are publicly-available online. These data
have been used to understand mobility patterns during the pan-
demic [35] and in previous studies [9,27]. To derive the country-
level mobility data, we calculated the mean daily outflows across
the country from January 5 to May 2, 2020. As Wuhan’s lockdown
and travel restrictions were enforced on January 23, 2020, the daily
flows since January 23 were standardized by the mean outflows
across Chinese mainland from January 5 to 22, 2020 to compare
reductions in travel over time.

2.2. Estimating effective reproduction numbers

To account for variations in the transmissibility of severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) in different
regions, we calculated the reproduction number (the average num-
ber of new infections associated with one infected person) by
country/territory, before the travel and physical distancing inter-
ventions were implemented. This was then used to simulate
COVID-19 transmission and assess the effectiveness of various
intervention and relaxation scenarios across regions and time.

2.2.1. COVID-19 case data
We used country-specific daily counts of confirmed cases by

date of report as of May 4, 2020 which were systematically collated
by the European Centre for Disease Prevention and Control [37].
The numbers of cases by date of symptom onset reported in Chi-
nese mainland as of May 2, 2020, were obtained from the Chinese
National Health Commission [38] and an online resource of the
Chinese Center for Disease Control and Prevention [39]. The epi-
demic curves in Hong Kong and Macao SARs, China were aggre-
gated from individual case data obtained from the Centre for
Health Protection, Department of Health, Hong Kong SAR, China
[40] and the Bureau of Health, Macao SAR, China [41].

2.2.2. Adjusting for reporting delays
To parameterize COVID-19 transmission before travel and phys-

ical distancing interventions, we estimated the effective reproduc-
tion number (Re) before these interventions were implemented by
country or territory. For estimates of Re that were made at the date
of report, any changes and interventions in the time-varying
parameters during the simulation of COVID-19 transmission were
delayed due to the incubation period and reporting. In order to
reduce the potential biases in estimates of Re due to these delays,
for a given country, we drew a sample of infection–onset–report
delays from the posterior distributions of the incubation period
and symptom-to-report period, to transform each observed report-
ing date into a sample infection date [42]. This resulted in 1000
samples of infection and onset date for each confirmed case. Then
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we calculated Re using the adjusted epidemic curve of daily case
counts generated from the potential infection dates before imple-
menting travel and physical distancing interventions. The distribu-
tions of incubation period (log-normal distribution with a mean of
5.2 d, 95% confidence interval (CI) 4.1–7.0 d) and the period from
symptom onset to first medical visit/report (Weibull distribution
with a mean of 5.8 d, 95% CI 4.3–7.5 d) were obtained from the epi-
demiological data at the early stage before the lockdown of Wuhan
on January 23, 2020 [43].

2.2.3. Timing of travel and physical distancing interventions
The timing of various NPIs by country was derived from the

government measures dataset which was systematically collated
by the Assessment Capacities Project of the United Nations Office
for the Coordination of Humanitarian Affairs [44]. This dataset
assembled the measures implemented by governments worldwide
in response to the COVID-19 pandemic. The collection of this data-
set included secondary data reviewed from various data sources,
and the available information fell into five categories: lockdowns,
social distancing, (international) movement restrictions, public
health measures, and social and economic measures. As our study
focused on the travel and physical distancing interventions, we
extracted data from the earliest dates of implementing lockdowns,
physical distancing, and (international) movement restrictions, in
each country/territory.

2.2.4. Estimating effective reproduction numbers
We preliminarily used an exponential growth (EG) method

described in a previous study [45] to estimate the initial reproduc-
tion numbers before travel restrictions or lockdowns for each
country/territory. We considered the period without travel and
physical distancing interventions in the epidemic curve over which
growth was exponential. An initial reproduction number was
linked to the exponential growth rate, denoted by s, at the early
stage of the epidemic [46]. The exponential growth rate was mea-
sured by the per capita change in number of new infections.
Poisson regression was used to estimate this parameter as the
numbers of cases reported were integer values [47,48]. Therefore,
we estimated the reproduction number, Re, as

Re ¼ 1
Mð�sÞ ð1Þ

where M represents the discrete moment generating function that
generates the time distribution. The generation of the time distribu-
tion is usually obtained from the interval between the time a person
becomes infected and the infection time of his or her infector. Since
the generation time cannot be calculated directly in our research, it
was replacedwith the serial interval generated from theWeibull dis-
tribution (a mean of 7, standard deviation (SD) of 3.4 d; constant
across periods) which was derived from case data in Wuhan [43].
The ‘‘R0” package in the statistical software R [46] was used to esti-
mate the Re based on country-specific epidemic curves, adjusted for
the incubation period and reporting delays as described above,
before implementing the lockdown. If the lockdown date was
unavailable, the period from the first case to the date of the maxi-
mum number of cases reported before May 2, 2020 was selected.
To reduce the likelihood of spurious estimates for countrieswith lim-
ited transmission or case ascertainment, according to previous stud-
ies [49], we estimated the Re for countries/territories with at least
500 cases reported, as of April 28, 2020. The Re for these countries
were used to estimate the initial reproduction numbers in the first
wave of the pandemic. For countries with less than 500 cases, we
used the median value of Re (2.4, interquartile range (IQR) 2.0–2.8)
estimated from other countries. In our COVID-19 simulations, for
those countries/territories with an Re value higher than 3, we substi-
916
tuted that Re value with 3 to avoid any potential overestimation of
transmission. Table S1 in Appendix A shows the Re values by country
or territory originally estimated in this study, with 95% CI provided.

2.3. Simulating COVID-19 transmission

To assess the effectiveness of various travel and physical dis-
tancing interventions on COVID-19 pandemic mitigation and
resurgence, we used a metapopulation epidemiological model
(coding for the model is available at https://github.com/wpgp/
BEARmod) to simulate the COVID-19 spread across the 135 coun-
tries and territories for 13 months from December 1, 2019 to
December 31, 2020.

2.3.1. Model framework
We simulated the spread of COVID-19 using a previously pub-

lished epidemiological modeling framework called susceptible–
exposed–infectious–removed (SEIR) to simulate the COVID-19
pandemic across Chinese mainland [9]. In this model, each coun-
try/territory was represented as a separate subpopulation (N) with
its own susceptible (S), exposed (E), infected (I), and recovered/
removed (R) populations. Based on a typical SEIR model, these
stochastic infection processes within each country therefore
approximated the following continuous-time deterministic model:

dS
dt

¼ S� c � S � I
N

ð2Þ

dE
dt

¼ c � S � I
N

� eE ð3Þ

dI
dt

¼ eE� rI ð4Þ

dR
dt

¼ rI ð5Þ

where t is for a particular moment, c is the travel and contact rate of
each country, e is the inverse of the average time spent exposed to
the virus but not infectious, and r denotes the rate of infected peo-
ple becoming noninfectious per day due to recovery, death, or
removal by isolation.

2.3.2. Model parameterization
For each day within our simulations, infected people recovered

or were removed at an average rate r, which was equal to the
inverse of the average infectious period. Explicitly, a Bernoulli trial
was incorporated for each infected person with the probability of
recovering being 1� e�r . The time lags from illness onset to diag-
nosis/reporting were used as proxies for the average infectious per-
iod, indicating the improved timeliness of case identification and
isolation. Based on the information derived from confirmed cases
in Wuhan and the first cases reported by county across Chinese
mainland before and since Wuhan’s lockdown on January 23,
2020 [9,50], the time differences between disease onset and
reporting/isolation/quarantine used in the model decreased from
an 11-day lag before the lockdown (or physical distancing if the
date of lockdown was unavailable) to a 3-day lag following day
15 of the lockdown, with the lag decreasing every 2 d from lock-
down day 1 to day 14. Following day 15 of interventions, we also
added an extra 0.5 d to the 3-day lag to account for potential trans-
mission by asymptomatic persons before illness onset [51]. Addi-
tionally, the model converted exposed individuals to infectious
individuals by similarly incorporating a Bernoulli trial for each
exposed individual, with the daily probability of becoming infec-
tious being 1� e�e. For this, e was calculated as the inverse of

https://github.com/wpgp/BEARmod
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the incubation period (5.2 d, 95% CI 4.1–7.0 d), which was esti-
mated from case data in Wuhan [43].

The number of newly exposed individuals was calculated for
each country based on the number of infectious individuals in
the country and the average number of daily contacts an infectious
individual had that potentially lead to disease transmission. We
simulated the number of exposed individuals in a country on a
given day through a random draw from a Poisson distribution for
each infectious individual where the mean number of new infec-
tions per person was c. This was subsequently multiplied by the
fraction of people in the country that were susceptible. The base-
line daily contact rate, c, was calculated using the country-
specific Re, divided by the average delay (5.8 d, 95% CI 4.3–7.5 d)
from onset to first medical visit that was estimated at the early
stage of the outbreak [43]. To account for the impact of travel
and contact restrictions, the daily contact rate, c, was weighted
by the relative level of daily travel and contacts derived from Goo-
gle and Baidu population mobility data within each country/terri-
tory. We assumed that no individual had existing immunity to
COVID-19, and we did not include new susceptible individuals,
or conversion of recovered individuals back to susceptible, as our
simulation runs were not extended beyond 13 months. Corre-
sponding country-level population data in 2020 for modelling
were obtained from the United Nationsy.
2.3.3. Simulation run, validation, and sensitivity analysis
We initiated the simulated outbreak in each country/territory at

the earliest date (Table S1) based on at least one case in the epi-
demic curves, adjusted by the reporting delays as detailed in Sec-
tion 2.2.2. Considering the delay from infection to onset and
report [52], we used December 1, 2019 as the initial date of simu-
lation in China [27]. As in previous studies [9,53], the outbreak in
each country was simulated and initiated by five infectious people
at day 0. We initially found that five is the small number that can
prevent stochastic extinction of the epidemic during the initial
days of the simulation, and found no significant difference at the
end of 2020 with simulation runs that initially started with five
and seven infected people.

It should be noted that, as we needed sufficient days to start the
simulation for generating the outbreak in each country or territory,
the start dates of simulations used in this study were derived from
reported case data are were only for the purposes of initializing
and propagating the transmission. Therefore, this might not repre-
sent the actual timing of when the disease appeared in the country
and caused the local transmission. In addition, the reported case
data that we used do not have the information for classifying local
and imported cases, and our model also did not consider the
importation of pathogens via international population movements.
Therefore, results from our study might underestimate the local
transmission caused by imported cases.

Using this model, we simulated the transmission of COVID-19
in each country/territory using the parameters derived from the
data before lockdowns as baseline scenarios. Then we compared
the transmission of COVID-19 between scenarios with and without
travel and physical distancing interventions, to assess the impact
of these interventions. Our approach accounted for variance in
recovery, exposure, and infection across many simulation runs
(n = 1000), and assessed the effects and uncertainty of various
intervention scenarios and the timing thereof, as well as the impact
of relaxing these measures to guide future responses. Additionally,
the estimates of the outbreak before and under travel and physical
distancing interventions were compared with the reported number
of COVID-19 cases across countries and time, as of June 1, 2020.
y https://population.un.org/wpp/
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The reported epidemic curves adjusted for reporting delays were
further compared to the patterns and epidemic curves estimated
in this study. We also conducted a series of sensitivity analyses
to understand the relative impact of changing epidemiological
parameters on the estimates and uncertainties of intervention
efficacy.

2.4. Estimating number of severe and critical cases

Based on the outputs of our COVID-19 transmission simulation,
we further estimated the potential number of severe and critical
cases that might need intensive health care. First, we obtained
the age-specific severity risk from a cohort of 32 583 laboratory-
confirmed patients in Wuhan, spanning the period from December
2019 through March 2020 [50]. A proportion (22.1%, 7139/32 325)
of all confirmed cases with available data were severe or critical
cases. The risk of severity increased with age, with 4.1% of those
aged < 20 years, 12.1% of 20–39-year-olds, 17.4% of 40–59-year-
olds, 29.6% of 60–79-year-olds, and 41.3% of those
aged � 80 years being severe or critical cases. We standardized
the severity risk across these five age groups using population
counts by age in Wuhan. Using the age-specific severity proportion
(SWuhan;g) above and the number of cases (IWuhan;g , with 536, 5960,
12 269, 11 934, and 1884 cases, respectively) in each age group,
g (0–19, 20–39, 40–59, 60–79, and � 80 years of age) reported in
Wuhan, combined with the country-specific number of cases (Ii)
estimated by our simulations, we preliminarily estimated the
number of severe and critical cases (Ci) in a country/territory, i,
as below.

Ci ¼
X

Ci;g ð6Þ

Ci;g ¼ Ii � Di;g � SWuhan;g ð7Þ

where Di;g ¼ I0i;gP
I0i;g

and I0i;g ¼ Pi;g � IWuhan;g
PWuhan;g

. The Ci;g was the estimate of

severe and critical cases in a given age group, g, and country/terri-
tory, i. As we did not use age-structured transmission models to
directly simulate the COVID-19 transmission by age group in each
country/territory, we estimated the number of cases by age group
using a country-/territory- and age-specific proportion (Di;g). This
was calculated from the age-specific incidence in Wuhan and stan-
dardized by the number of population counts by age group inWuhan
(Pwuhan;g) and study country/territory (Pi;g). The population data by
age in Wuhan were obtained from the Wuhan Statistical Yearbook
2018 [54]. The age structures of the populations in the study coun-
tries or territories in 2020 were aggregated from the high-
resolution gridded population count datasets (Appendix A
Table S2) projected by theWorldPop� [55]. R version 3.6.1 (R Founda-
tion for Statistical Computing, Austria) was used to perform data col-
lation and analyses in this study. Ethical clearance for collecting and
using secondary population mobility data in this study was granted
by the institutional review board of the University of Southampton,
UK (No. 48002). All datawere supplied and analyzed in an anonymous
format, without access to personal identifying information.

3. Results

3.1. Intensity of travel and physical distancing interventions

Derived from two anonymized and aggregated mobility data-
sets obtained from Google and Baidu, population mobility across
the 135 study countries and territories declined rapidly from
mid-March 2020 due to the implementation of travel and physical
� http://www.worldpop.org/project/categories?id=8
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distancing interventions. Low levels of movement continued
through April 2020 (Fig. 1). During the 10 weeks of March 22 to
May 30, 2020, domestic travel decreased to a median of 59% (IQR
43%–73%) of levels seen before the interventions, with interna-
tional travel down to 26% (IQR 12%–35%) of normal levels. How-
ever, the timing and intensity of these reductions in travel and
physical contact differed. The reductions appeared earlier in coun-
tries that were initially strongly affected by COVID-19, for example,
Italy, China, and other Asian countries or regions (Fig. 1). However,
the decline in African countries occurred later and was less steep
with higher residual travel and social contact levels, compared
with other countries around the world (Fig. S1 in Appendix A). Pop-
ulation mobility gradually resumed in May 2020, with domestic
travel back to a median of 69% (IQR 56%–80%) of normal levels
and international travel recovering to 35% (IQR 15%–47%) during
the four weeks from May 3 to 30, 2020 (Figs. 1(a) and (c)).
3.2. Effects of global travel and contact reductions

We estimated that there were 15 million (IQR (11–20) million)
COVID-19 cases under travel and physical distancing interventions
across the 135 study countries or territories as of May 31, 2020.
These interventions appear to have effectively suppressed the first
wave of the pandemic, with 448 million (IQR (365–539) million)
infections likely prevented in these areas as of May 31, 2020. The-
oretically, without these interventions, the cumulative number of
cases may have shown a 97-fold (IQR 79–116) increase as of May
31, 2020, and the peak of the pandemic might have occurred
Fig. 1. Changing patterns of domestic and international population movements across c
127 countries or territories, with movements from January 5 to February 15, 2020 as a r
(the daily mobility within Chinese mainland from January 23 to May 2, 2020 was derived
5 to 22 before Wuhan’s lockdown on January 23, 2020, and all other country or region cu
January 5 to 25 as a reference); (c) relative international outflows from 104 countries wi
European countries (the weekly international mobility measures, derived from Google d
red vertical dashed lines indicate the dates the World Health Organization (WHO) decla
respectively. The median (red line) and interquartile range (pink areas) are provided in (
and (d) represents the relative travel pattern of a country or territory.

918
around July–August 2020, with 51% (IQR 43%–60%) of the popula-
tion having been infected across the study regions by the end of
2020. We estimated that if levels of travel and contact restrictions
were to remain consistent through June 30, 2020, a total of 983
million (IQR (808–1169) million) infections would have been pre-
vented by that date, and only 20 million (IQR (15–27) million)
cases might have developed.

The timing of interventions is critical (Fig. 2). The World Health
Organization (WHO) declared the COVID-19 outbreak a Public
Health Emergency of International Concern on January 30, 2020
[1]. We estimated that, if all travel and physical distancing inter-
ventions put in place since February 23, 2020, one month after
the lockdown of Wuhan City, had been implemented one, two, or
three weeks earlier across the study regions outside of Chinese
mainland, the number of COVID-19 cases by May 31, 2020, would
have been dramatically reduced by 67% (IQR 55%–76%), 87% (IQR
81%–90%), or 95% (IQR 92%–96%), respectively (Fig. 2(e)). If, on
the other hand, these interventions had been implemented one,
two, or three weeks later than they were, the case count by the
end of May, 2020, would have been 2.5-fold (IQR 1.9–3.3), 7.2-
fold (IQR 5.3–9.3), or 16.4-fold (IQR 13.2–20.1) higher, respectively
(Fig. 2(f)).
3.3. Impacts of various intervention and relaxation scenarios

Compared with the 4-week travel and physical distancing inter-
ventions, the 8-week and 12-week interventions were estimated to
further reduce cases by 25% (IQR 20%–30%) and 39% (IQR 32%–
ountries or territories, as of May 30, 2020. (a) Domestic weekly movements within
eference; (b) domestic population movements within eight Asian countries/regions
from Baidu location-based data, standardized by averaged travel flow from January
rves were derived from weekly Google location history data, with movements from
th available international mobility data; (d) relative international outflows from all
ata, took movements from January 5 to February 15 as a reference). The orange and
red COVID-19 a Public Health Emergency of International Concern and a pandemic,
a) and (c), with the curves of Italy, the UK, and the USA presented. Each curve in (b)



Fig. 2. Estimated epidemic curves of COVID-19 under different intervention scenarios across 135 countries or territories in 2020. (a) Implementing travel and physical
distancing interventions during various periods (the median and interquartile ranges of estimates are shown); (b) 8-week interventions with various levels of travel and
contact rates (in panels (a) and (b), the travel and contact levels after relaxing interventions were assumed to be 70% of normal level before the outbreaks, if the travel and
contact rates in a country or territory were lower than 70%); (c) scenarios of various travel and contact rates after lifting 8-week interventions; (d) the estimated epidemic
curves under interventions up until December 31, 2020 based on travel and contact levels by May 2, 2020: 14 countries/territories with travel and contact rates higher than or
equal to 70%, and 121 countries/territories with the rate less than 70% at any week; (e) estimated epidemic curves under interventions implemented earlier than actual
timing, under the scenario of interventions implemented by December 31, 2020; (f) estimated epidemic curves under interventions implemented later than actual timing,
under the scenario of interventions implemented up until December 31, 2020. The orange and red vertical dashed lines indicate the dates the WHO declared COVID-19 a
Public Health Emergency of International Concern and a pandemic, respectively. The pink vertical lines indicate the dates that lockdown/physical distancing measures were
implemented by each country or territory.

S. Lai, N.W. Ruktanonchai, A. Carioli et al. Engineering 7 (2021) 914–923
45%), respectively, by December 31, 2020. However, if the travel
and contact levels as of May 2, 2020 continued through the end
of 2020, they would have only reduced the number of cases by
40% (IQR 33%–46%) further as of December 31, 2020. This figure
is compared to estimates of an 8-week intervention and maintain-
ing travel and contact rates at 70% of their normal levels after
relaxing interventions (Fig. 2(a) and Appendix A Fig. S2). If a strict
8-week intervention could be in place across all regions in which
there was only 25% of normal travel and contact rates, COVID-19
could be significantly suppressed to a relatively low level of daily
new cases (median 4155, IQR 2555–7364) from May through
September 2020, without a resurgence before October 2020
(Fig. 2(b)).

We further assessed the potential effects of various travel and
contact rates after easing interventions. We found that, relaxing
the interventions would result in an increase in the number of
cases, and a complete cancellation of travel and physical distancing
interventions would lead to a rapid resurgence of COVID-19 (Fig. 2
(c)). If the physical distancing intensity were maintained at 70% of
normal levels or lower after relaxing interventions, countries
might significantly delay the next wave and reduce its peak. How-
ever, due to the heterogeneity of intensities and extents in inter-
ventions among countries, we estimated that, in countries with
weak travel and physical distancing interventions (travel and con-
tact levels being higher or equal to 70% of normal levels), a rela-
tively high proportion of populations (median 14%, IQR 11%–16%)
might be infected by the end of 2020 (Fig. 2(d)). In contrast, other
countries with more intensive measures would only have 0.9% (IQR
0.7%–1.1%) of their populations being infected by that date. These
differences in interventions would result in temporal and spatial
heterogeneity of COVID-19 across the world (Appendix A Fig. S3).

Based on our simulations of COVID-19’s transmission under the
8-week travel and physical distancing interventions, the age struc-
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ture of the population in each country/territory in 2020 [37], and
the age-specific severity risk of confirmed COVID-19 cases reported
from Wuhan [29], we estimated that a total of 0.9 million (IQR
(0.6–1.2) million) cases as of March 31, 2020, would have been sev-
ere and critical cases, with a potential cumulative number of 33
million (IQR (28–39) million) severe and critical cases by the end
of 2020. Substantial variations in severe and critical infections
might be seen across populations, continents, income groups, and
seasons (Fig. 3 [50,55] and Appendix A Figs. S4–S6).

We validated our model and outputs using reported case num-
bers across regions and periods as of June 1, 2020 (Fig. 4), with a
series of sensitivity analyses conducted to help better understand
the effectiveness of travel and physical distancing interventions
under various settings (Appendix A Figs. S7–S11). Generally, the
overall correlation between the number of estimated cases and
the reported number by country or territory was significant
(p < 0.001, R2 = 0.69), with high correlations also found before
(p < 0.001, R2 = 0.83) and since (p < 0.001, R2 = 0.67) the implemen-
tation of travel and physical distancing interventions. The esti-
mated epidemic curves of the first wave in this pandemic were
also consistent with reported data (p < 0.001, R2 = 0.91) (Fig. 4(d)).
4. Discussion

The COVID-19 pandemic has led to an unprecedented number
of travel restrictions and physical distancing interventions imple-
mented around the world. Using aggregated and anonymized pop-
ulation mobility data derived from time- and space-explicit mobile
phone data, our study quantified the role that travel and contact
interventions had in mitigating the first wave of the pandemic
across multiple countries. We found that since mid-March 2020,
global population movements dramatically declined and remained



Fig. 3. Estimates of severe and critical COVID-19 cases in 135 countries or territories. (a) Estimates by age and continent; (b) estimates by season and continent; (c) estimates
by age and income classification of each country or territory (low income was less than 1026 USD�a�1 per capita; lower-middle income was from 1026 to 3995 USD�a�1 per
capita; upper-middle income was from 3996 to 12 375 USD�a�1 per capita; high income was higher than 12 375 USD�a�1 per capita); (d) estimates by season and income
classification of each country or territory. The estimates were based on the scenario of 8-week travel and physical distancing interventions as of May 30, 2020. If the travel and
contact rates in a country or territory were lower than 70% of normal levels before the outbreak, the rates were assumed to return to 70% after relaxing the interventions. The
estimates of severe and critical infections were preliminarily based on the age structures of populations in each country/territory in 2020 [55] and the age-specific severity
risk of confirmed COVID-19 cases reported from Wuhan [50].
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at low levels in April 2020, but gradually recovered in May 2020.
These multi-nation, aggressive, and continuous measures played
a significant role in suppressing and containing the pandemic in
the first half of 2020, and likely prevented a large number of cases,
in turn alleviating the pressure on medical and public health ser-
vices in areas where COVID-19 has spread in the community. Ulti-
mately, these early interventions likely helped to delay subsequent
waves of the pandemic, stalling for global preparation and
response, and increasing the potential for the development of vac-
cines and therapeutics that could be used in later stages.

The effectiveness of travel restrictions and physical distancing
measures in slowing down COVID-19 transmission, however,
hinged on the reduction in the number of contacts between
infected individuals and healthy individuals, and between popula-
tion groups with high rates of transmission and population groups
with no or a low rates of transmission [10]. We found that the tim-
ing and intensity of physical distancing interventions in countries
were not fully synchronized; therefore, the ability of these strate-
gies to contain or mitigate the COVID-19 outbreak also differed.
Due to this, the effects of the interventions manifest differently
across regions and seasons, especially in regions with uncoordi-
nated interventions and in low-income countries with weak pre-
vention and control capabilities [56]. The travel and contact
restrictions have slowed, but have not fully contained the out-
breaks across the world [57], leading to ongoing resurgences and
second or third lockdowns in many countries in 2020 and 2021.

At the end of April 2020, in hopes of reducing the human and
economic impacts of social distancing measures, countries were
gradually implementing exit strategies from these interventions
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and formulating their next response to the pandemic. We found,
however, that immediately lifting travel and physical distancing
measures made a second wave of outbreaks inevitable, which
was shown by our simulations and the reported data. Similar
results have also been seen in previous modelling work [18,19].
Moreover, the effectiveness of restrictions to both global travel
and physical contact varied by the duration of interventions, the
intensity of physical distancing, and the travel and contact rates
after relaxation of the interventions. Before the herd immunity
against COVID-19 is achieved in populations, a certain degree of
physical distancing, in parallel with early case detection, diagnosis,
reporting and (self-)isolation, should be maintained to avoid a
rapid resurgence [9]. In addition, if immunity is not permanent,
periodic transmission, for example, annual cycle, will likely occur
[19], and physical distancing interventions will again become
necessary.

Several limitations in our study should be noted. First, the
mobile phone data used in this study were limited to smartphone
users who had opted into relevant product features. These data
might not be representative of the population as a whole, and their
representativeness might vary by location. Importantly, these lim-
ited data were subject to differential privacy algorithms, designed
to protect user anonymity and obscure fine detail. Moreover, com-
parisons across rather than within locations could only be descrip-
tive since regions differ in substantial ways. Second, the accuracy
of our model relied on accurate estimates of Re and other epidemi-
ological parameters derived from reported case data. The quality of
reported data and epidemiologic features of COVID-19 likely
differed across countries/regions [58–60] due to varying case



Fig. 4. Comparing the estimated and reported numbers of COVID-19 cases across 135 countries or territories. (a) Estimates versus reported case counts by country/territory;
(b) estimates versus reported numbers of cases before implementing lockdown/physical distancing measures; (c) estimates versus reported case counts after implementing
lockdown/physical distancing measures; (d) estimated versus reported epidemic curves. The median and interquartile range of estimates are provided here. The reported case
counts were obtained from European Centre for Disease Prevention and Control, as of June 1, 2020. To be comparable between estimated and reported data, time series of
daily reported cases were moved back six days to account for the delay from illness onset to reporting. The red vertical dashed line indicates the date of COVID-19 pandemic
declared by the WHO. The pink vertical lines indicate the dates of lockdown/nationwide physical distancing measures implemented by each country/territory. The Pearson’s
correlations between estimated and reported case numbers are presented with the p values of two-sided t-test.
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definitions, diagnosis and surveillance capacity, population demo-
graphics, and other factors [61]. Third, we assumed the observed
travel and contact reductions had similar effects in minimizing
exposure risk of COVID-19 across space and time. The impact of
physical distancing might, however, vary between urban and sub-
urban or rural areas with different population densities. Fourth,
many other factors might also contribute to COVID-19 spread,
resurgence, containment, or mitigation. For example, our simula-
tions did not specify the contributions of pre-symptomatic trans-
mission, the presence of other NPIs such as using face masks,
hand washing, and other preventive measures at community, fam-
ily and individual levels [62], or the potential continuous importa-
tions of the virus via international travel, and the seasonal impacts
of climatic factors that might have had a limited role in the early
COVID-19 pandemic [63]. Future research is necessary to reveal
the effects of travel restrictions and social distancing as well as
other measures at national and international levels and at commu-
nity, family, and individual levels over time [15,16]. Lastly, our pre-
liminary estimates of the number of severe and critical cases by
age assumed similarity in the severity of cases that were observed
in Wuhan [64], and did not account for the individual characteris-
tics, for example, comorbidities, contact, and mixing patterns [65],
or country-specific healthcare capacity that varies widely across
regions and may have influenced the risk of serious disease. Addi-
921
tionally, the estimated infections of severe and critical cases varied
across age groups, continents, income groups, and seasons, indicat-
ing that further studies are needed to assess the impact of socio-
economic differences and demographic heterogeneities on
COVID-19 for tailoring and adjusting response strategies in differ-
ent populations and regions.

Viruses do not respect national borders, yet our societies are so
deeply interconnected that the actions of one government can have
rapid and profound global impacts. Our study serves to quantify
important metrics of travel and physical distancing interventions,
suggesting their potential effectiveness across the globe to improve
international strategies and guiding national, regional, and global
future responses to prioritize limited resources and strengthen
healthcare capacity. Countries vary widely in terms of their ability
to prevent, detect, and respond to outbreaks [66], and many low-
and middle-income countries might not be able to provide suffi-
cient access to health care resources in the face of a rapidly spread-
ing infectious disease, such as COVID-19 [67]. For the time being,
therefore, travel and physical distancing measures are critical tools
in mitigating the impacts of the COVID-19 pandemic. Although
COVID-19 vaccines have been rolled out in many countries, some
levels of NPIs may be still required for considerably longer to pre-
vent rapid resurgences and additional lockdowns [68,69]. Given
the improving access of timely anonymized population movement
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data for supporting COVID-19 mitigation across the globe [31], the
potential exists to monitor and assess the effectiveness of travel
and physical distancing interventions to inform strategies specifi-
cally against future waves of the COVID-19 pandemic as well as
other infectious diseases in the future.
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