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It has been almost 50 years since the term ‘‘brain–computer
interface” (BCI) was first proposed by Jacques J. Vidal in 1973 [1].
Unlike traditional electronic interfaces that transmit nonliving
information between devices, BCIs set up a communication bridge
between a living brain and nonliving devices. Technically speaking,
a BCI is a system that measures brain activity and converts it into
the artificial outputs that replace, restore, enhance, supplement, or
improve the natural central nervous system outputs [2]. At pre-
sent, electroencephalography (EEG) is the most commonly used
brain signal for BCIs.

From the perspective of electronic communications, the two
most important issues for EEG-based BCIs are the encoding strat-
egy that converts a person’s thoughts into detectable EEG signals,
which is usually called a paradigm in the BCI field, and the decod-
ing strategy that extracts and recognizes EEG features, which is
called an algorithm. Therefore, the information transfer rate (ITR)
is a key index that is widely used in communication systems for
evaluating the encoding and decoding efficiency of a BCI. The last
decade has witnessed an enormous ITR increase in BCIs. More
specifically, the largest bitrate was only approximately 1.5 bits
per second (bps) around 2010 [3], but it tripled in 2015 [4] and
recently reached about 7 bps [5].

From another point of view, a BCI can be regarded as a proces-
sor, which processes the commands requested by the user. There-
fore, it is indispensable to evaluate the BCI command processing
manner and its capacity. A clear indicator is how many different
commands a BCI can process—that is, the size of the command
set. In the past ten years, the number of BCI commands has grown
remarkably, increasing from about 30 in 2010 to over 100 in 2020
[6]. Another important indicator is whether BCIs can be operated
using an asynchronous method. However, this field is still
underdeveloped.

Aside from these two perspectives, a BCI is also an instrument
for measuring mental activity. Unlike traditional measuring instru-
ments, such as EEG amplifiers that merely detect the EEG signal
itself, BCIs detect the psychological process lying behind the signal,
such as the occurrence of left- versus right-hand motor imagery
activity. Thus, the measurement precision of a BCI is equivalent
to the smallest EEG feature that can be decoded and interpreted
in real time. The smaller the signal decoded by the BCI, the more
mental activity the BCI touches. In 2018, the measurement preci-
sion of BCIs first reached the level of the sub-microvolt in ampli-
tude [7]—that is, 0.5 lV—which significantly broadened the
category of BCIs.
1. Challenges

Although tremendous progress has been made in BCI research
in recent years, it remains challenging to make the leap from the
lab to the marketplace. BCIs are a multidisciplinary subject involv-
ing many research fields, including neuroscience, computer
science, materials, electronics, ergonomics, and mechanical engi-
neering. Therefore, concerted efforts must be made by researchers
in different fields to fulfill the practical application of BCIs. Here,
we highlight two formidable challenges that require more atten-
tion from the BCI community.

(1) The current manner of wearing a BCI reduces its range of
application. To date, nearly all EEG-based BCI systems consist of
electrodes, an amplifier, and some accessories, such as a cap.
Therefore, such a system’s shape and manner of wearing directly
determine the potential application scenarios of the BCI. To acquire
high-quality EEG, most studies are conducted using high-precision,
multi-channel EEG instruments that are, however, too bulky and
heavy to be wearable. As a result, these instruments can only be
used in scientific research and medical applications. To solve this
problem, portable EEG products have been developed that are
much smaller and lighter, and can be mounted onto the head [8].
However, a cap or something similar is still necessary for the por-
table EEG instrument to host electrodes. For some products, a
headband is used to secure the electrodes, making them more
compact and easier to wear. Even so, it is still very difficult to per-
suade normal, healthy people to wear an uncomfortable and ugly
EEG cap or headband in everyday life, because current BCI systems
have limited capacity and cannot provide healthy people with a
vital function for improving their lives. Actually, in most cases,
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the benefits offered by BCIs are insignificant or even unclear in
regard to the performance of our duties. Therefore, wearing an
EEG cap/headband or BCI is not fully justified or motivated for
healthy individuals, compared with motivated patients who want
to use BCIs to replace, repair, enhance, supplement, or improve
the normal output of the brain. Therefore, increasing the accessibil-
ity of BCIs is an essential step forward in incorporating the most
direct form of human–machine communication into everyday life;
it would also provide valuable insight into the workings of the
healthy brain

(2) Unnatural brain–computer (BC) interaction in a BCI
hinders the BCI’s usefulness. Over the past 50 years, the BCI com-
munity has put most of its effort into increasing the ITR between
the brain and the computer, while neglecting the user-friendliness
of the interaction between them. Therefore, the BCI paradigm is
seriously underdeveloped, and current BCI studies can almost be
said to be based on paradigms invented about 30 years ago, such
as motor imagery [9], P300-speller [10], and steady-state visual
evoked potential (SSVEP) [4,5,11]. These traditional BCI paradigms
have been successfully demonstrated by transmitting information
from the brain to a computer. Nevertheless, they are unnatural for
the brain to interact with and thus require many more cognitive
resources to perform an action than traditional human–computer
interfaces. For example, the SSVEP-BCI is currently the most effi-
cient BCI system in terms of ITR. It can produce a command in
about 1 s [4,5]. However, to obtain a high-quality SSVEP, the flick-
ers used to encode the BCI command must be sufficiently large and
intense, which will engage a relatively large portion of the visual
resources. Moreover, such irritating visual stimuli are not only
irrelevant to users’ subjective intent, but even disrupt users and
make them feel uncomfortable. Therefore, even though this BCI
system can work well in certain scenarios, its unnatural way of
interaction is unacceptable to users, which reduces its usefulness
in practice.
2. Future research directions

Immediate action must be taken to tackle these two urgent
challenges, which we believe to be the main barriers to the practi-
cal application of BCIs at this stage. As both are complex problems
that are impossible to solve within a single discipline, collaborative
work is needed to gather the wisdom of researchers with different
specialized knowledge. Here, we summarize several important
research topics that are expected to overcome these challenges.
We hope these topics will lead to valuable discussions and studies
in the BCI community.

(1) New metrics for evaluating BC interaction. In previous
studies, BCI performance has typically been assessed by means of
classification accuracy and ITR. However, both metrics focus only
on assessing the transfer of information for the BCI; they are not
appropriate for assessing the efficiency of BC interaction in a real
and complex human–computer interaction scenario, which should
consider the human factor in a closed-loop operation [12]. There-
fore, from a practical perspective, new metrics should be proposed
to measure the overall performance of a BCI system, such as the
brain-to-hands ratio (BHR) [13]. The BHR is computed by dividing
the performance score achieved using the BCI by that achieved
using hands, for the same task by the same person.

(2) Innovations in BCI hardware to make it more user-
friendly. As mentioned above, the current BCI hardware is unac-
ceptable to most healthy people. Therefore, innovations in EEG
electrodes, circuits, ways of assembly, mounting mechanisms,
and wearing methods are urgently needed to make the BCI hard-
ware more compact, comfortable, and easy to use. For example, a
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small EEG recording device that can be invisibly hidden under-
neath the hair would be more popular than the current cumber-
some models.

(3) BCI paradigms with a low cognitive load. Traditional BCI
paradigms often cost users many cognitive resources, making the
BC interaction unnatural and ‘‘stagy.” Therefore, we strongly sug-
gest that researchers move from those traditional BCI paradigms
to developing new BCI paradigms that can significantly reduce
the cognitive load of the user.

(4) BCI algorithms guided by EEGmechanisms and character-
istics. The BCI algorithm is the key link to decoding the brain’s
intention. In the domain of image and speech recognition, the
object to be recognized can be clearly identified by humans. As a
result, researchers can use their experience and inference to guide
the extraction of features and the construction of classifiers. How-
ever, raw EEG signals are rather incomprehensible to humans.
Thus, we will be blind in developing BCI algorithms if we have
no idea how an EEG unfolds or what features it contains. Therefore,
a thorough understanding of EEG mechanisms will greatly help
and guide the design of BCI algorithms [7]—although such an
understanding has been ignored in most previous studies. Further-
more, the pervasive and elusive EEG variability among different
individuals, as well as within a single individual across time, limits
the reproducibility of specific brain responses used in BCIs and
thus reduces the generalizability of brain-decoding algorithms
[14–16]. Advanced BCI algorithms need to mitigate intra- and
inter-subject variability in order to create a robust BCI. To under-
stand the neural mechanisms behind such EEG variability is a
promising approach that will aid in solving this problem.

In sum, BCI development has entered the stage of studying BC
interaction. Therefore, all questions concerning the natural interac-
tion between the brain and the computer—including but not lim-
ited to the four crucial topics mentioned above—should be
studied in depth in the future.
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