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The pathway for creating and seeing a medical device to market
is time-intensive, costly, and demanding [1,2]. This is particularly
true of devices developed with tissue engineering components
within the device [1,3]. Machine learning and artificial intelligence
have expedited optimization and engineering design in many other
engineering disciplines [4,5]. By developing and using machine
learning algorithms, novel drugs and enzymes have been discov-
ered, innovative synthetic pathways and new chemistries have
been identified, parameters for the three-dimensional printing of
tissue engineering scaffolds have been elucidated, and better pre-
dictors for the success of electronics and robotics have been
demonstrated [6-9]. Although machine learning and artificial
intelligence have begun to be integrated into engineering and
science research, medical device research and tissue engineering
have not kept pace with this trend [1,4]. A wealth of underutilized
data is available in the form of research studies, clinical studies,
and medical device and patent applications [1,4]. There are also
enormous costs and complex regulatory pathways in seeing
medical devices—particularly tissue engineering devices—to
market [1,2,10]. Utilizing machine learning will enable the design
of innovative, cost-efficient, and effective tissue engineering
medical devices while minimizing the time to market. Harnessing
the power of machine learning is the next step in the evolution of
medical device development and is key for the continued success
of tissue engineering.

Tissue engineering and biomedical engineering are convergent
sciences, born from the fields of biology, engineering, chemistry,
physics, and medical science. While tissue engineering is still rela-
tively new at around 40 years old, the discipline has become a bed
of discovery for new knowledge in the fundamental and applied
sciences [1]. From its initial goal of creating replacement organs
to address the organ donor shortage, the field has expanded to
encompass the creation of replacement tissues such as bone, skin,
and cartilage; targeted and enhanced drug delivery; disease mod-
eling platforms; and high-throughput screening devices. The field
of tissue engineering has benefited from its highly interdisciplinary
nascence, and there is a wealth of information and data that cur-
rently requires extensive searches and digestion when designing
new tissue engineering strategies. This large dataset of tissue engi-
neering and biomaterials strategies has yet to be compiled into
easily usable formats, which has contributed to the delay in seeing
tissue engineering solutions actualized in clinical settings [1,3,4].
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Utilizing machine learning to comb through this data and identify
important trends and relationships in biomaterials selections, cell
types, induction strategies, and loaded factors is necessary to keep
pace with other engineering disciplines and allow tissue engineer-
ing’s translation into medical devices.

In creating medical devices with tissue engineering compo-
nents, there are many factors for consideration [4]. The intended
use of the device, the materials and biomaterials that will come
into contact with the body, any cell types that might be included,
the drugs or active agents that will be administered, and the physi-
cal implantation or implementation strategies must all be taken
into account [4]. At present in the United States, medical devices
require approval from the Food and Drug Administration (FDA),
and may be reviewed through 510(k) regulatory pathways that
allow for more rapid time to market (3-6 months), or as novel
devices that require a much more intensive evaluation before
being released to the market (3-7 years) [2]. The 510(k) pathway
is faster, as the devices that are approved through this pipeline
are demonstrated to be similar to existing approved medical
devices. This regulatory hurdle has been a barrier to many medical
devices that incorporate tissue engineering strategies [1]. Medical
devices that harness tissue engineering components in their design
are often not similar enough to existing medical devices to fall into
the 510(k) pathway, and thus require a novel device route that
takes much longer and is much more costly to see to market.
Taking a new drug as an example device, the cost of developing
the drug and seeing it through the US FDA approval and release
to the market has been estimated to cost 800 million USD [2].
Tissue engineering devices are especially costly, as they often con-
tain finely tuned and uniquely designed materials strategies, cells,
growth factors, or other active agents. These regulatory and
financial barriers pose a significant challenge to the realization of
impactful medical devices incorporating tissue engineering solu-
tions reaching the clinic [3]. Utilizing machine learning to better
predict which technologies would be most impactful while simul-
taneously possessing the easiest path to market would help to pave
the way for more tissue engineering solutions to be implemented
in the clinic. This endeavor should be partnered with coordination
from regulatory agencies to disrupt the current regulatory pipeli-
nes, which do not allow the easing of tissue engineering devices
into the clinic, in order to create novel channels for these innova-
tive devices.
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Recently, the US FDA has set a precedent for establishing novel
pathways by piloting an approval pipeline for artificial-intelli-
gence-incorporating devices. They have also issued a directive to
permit some machine learning technologies within medical
devices [10]. These actions have resulted in the development of
the first personalized cardiogram created from electrocardiograms
(ECGs). This technology has already been implemented in smart-
watches to monitor people’s cardiovascular health [11,12].
Through machine learning, the technology builds an individual
profile to understand the wearer’s cardiovascular behaviors that
fall within a normal and healthy range for that person. The device
is then capable of alerting the wearer when her or his cardiovascu-
lar signals begin to fall outside of this range. This technology has
successfully detected atrial fibrillation, changes in respiratory rate,
and Lyme disease, and was even able to detect pre-symptomatic
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
infections during coronavirus disease 2019 (COVID-19) in a retro-
spective study [11,12]. The advances made possible through
machine learning within medical devices hold enormous value.
The utilization and adoption of machine learning to design better
medical devices from the existing knowledge and data we have
are absolutely vital.

Perhaps one of the greatest barriers to more widespread adop-
tion and use of machine learning and artificial intelligence is public
trust [13]. Integration of and education on machine learning within
the public sector is crucial if these technologies are to be used for
the design and creation of improved medical devices [14]. Technol-
ogy is advancing rapidly in the modern world and, with the
increased use and widespread availability of machine learning
and artificial intelligence, the pace of technological development
will only quicken. Machine learning and deep learning must be
taught in schools, so students are better suited to begin interfacing
with this technology in college or in their future careers [14]. Two
hundred years ago, the concept of including science education in
grade school or high school in the United States was rejected, as sci-
entific topics were viewed as advanced subjects only required for
those attending academic institutions of higher education. Now,
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science education is required within the United States and
most other nations due to the fundamental framework it builds in
understanding and interfacing with the world around us.
Engineering education in high school settings is underway in many
schools but is not required. It is time for kindergarden through
twelfh grade (K-12) students to begin their introduction to
computer science, engineering, machine learning, and artificial
intelligence early on, if we want our next generation of students
to be able to keep pace with the changing world around them
[13,14]. Familiarity with artificial intelligence and machine learn-
ing will encourage machine learning to be further integrated into
engineering and the conception of medical devices. It will also
increase familiarity with the associated issues of explainability
and bias, and encourage the thoughtful adoption and use of these
machine-learning-inspired medical devices when they reach the
market.

Machine learning and artificial intelligence will play a critical
role in scientific development in the years to come. These tech-
nologies hold the power to work with large datasets to improve
engineering design and serve as better predictors of experimental
outcomes. Many other engineering disciplines have recognized
the value of these technologies and have already begun adopting
them. Tissue engineering and medical device development have
fallen behind this trend. Using machine learning for designing tis-
sue engineering schemata for medical device development, as
shown in Fig. 1, would enable the delivery of better, safer, and
more effective medical devices to market in a timelier manner,
since those with the most promising outcomes would be the only
devices working their way through the regulatory pipeline.
Machine learning algorithms could use the known and reported
data of the cell types proposed, the materials in question, and
any active agents, as well as factoring in the predicted time to
market and the costs associated with seeing the device to market,
in order to output the most effective and economical tissue
engineering device for the desired application. Tissue engineering
is a convergent science, and the next generation of tissue engineers
must harness machine learning to improve the development of
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Fig. 1. Utilizing machine learning to design novel tissue engineering medical devices.
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tissue engineering medical devices so that more of these techno-
logies can be realized in a clinical setting.
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