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The water sector needs to address viral-related public health issues, because water is a virus carrier,
which not only spreads viruses (e.g., via drinking water), but also provides information about the circu-
lation of viruses in the community (e.g., via sewage). It has been widely reported that waterborne viral
pathogens are abundant, diverse, complex, and threatening the public health in both developed and
developing countries. Meanwhile, there is great potential for viral monitoring that can indicate biosafety,
treatment performance and community health. New developments in technology have been rising to
meet the emerging challenges over the past decades. Under the current coronavirus disease 2019
(COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the
world’s attention is directed to the urgent need to tackle the most challenging public health issues related
to waterborne viruses. Based on critical analysis of the water viral knowledge progresses and gaps, this
article offers a roadmap for managing COVID-19 and other viruses in the water environments for ensur-
ing public health.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The field of virology was founded after Dmitri Ivanovsky
described a non-bacterial pathogen infecting tobacco plants in
1892, and a few years later (1898) Martinus Beijerinck discovered
the tobacco mosaic virus [1]. However, after more than a century,
the identified and reported viruses are still far less than 1% of the
total virome [2,3].

Viruses spread in many ways; humans’ respiratory viruses can
be transferred through coughing and sneezing, as seen with the
‘‘regular” influenza viruses and the on-going pandemic coronavirus
disease 2019 (COVID-19) that moved quickly through over 185
countries and has infected more than 31.6 million people (till 23
September 2020) [4,5]. Contact with contaminated fomites and
hands are also important exposure pathways for these viruses.
For enteric viruses, ingestion of contaminated water or inhalation
of aerosol is an important transmission pathway, and well docu-
mented [6].
There has been a consensus that virus concentrations in water
are low and difficult to detect. Yet, the use of meta-viromics tech-
nologies led to the discovery that water viruses are not only abun-
dant (up to 1011–1013 L�1) [7], but also diverse [3,8]. A key
question, then, is whether the many viruses present in water and
particularly in wastewater, including the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), the cause of the on-going
COVID-19 pandemic, are viable and infectious. One of the key
potential benefits of monitoring is the valuable insight it may offer
on the circulation of viruses and the scale of future outbreaks [9].
Based on critical analysis of progresses and gaps in the water viral
knowledge, this article offers a roadmap for managing COVID-19
and other viruses in the water environments for ensuring public
health, with focuses on the problems, potentials, and perspectives.

2. Problems

2.1. Waterborne diseases

Viruses in water can disseminate through water environments
affecting downstream human, animal, and plant health [10]. Most
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viruses are highly host specific and mainly the human enteric
viruses pose the greatest health concerns for waterborne transmis-
sion. Generally, the enteric viruses are small (size of nanometers)
and quite potent (with an 50% infectious dose (ID50) of just a
few to 103 viral particlesy) [11,12]. These particles are typically shed
by infected persons over long periods of time and in high concentra-
tions, have a lengthy survival time and have high disinfection resis-
tance in water environments [13]. These characteristics allow many
enteric viruses to bypass conventional water treatment processes
and play a significant role in water-related outbreaks of viral dis-
eases [14]. Actually, there are other viruses with less epidemiologic
importance but are also capable of waterborne transmission, such as
the human reovirus, parvovirus, parechovirus, polyomavirus, toro-
virus and coronavirus [15].

Since the first isolation of enteroviruses in 1941, more than 140
enteric viruses have been detected in water environments, the list
of which continues to grow every year [16–18]. Until recently, more
than 40% of diarrhea cases in the United States were caused by
unknown agents, which many believe were undiagnosed or undis-
covered viruses [19]. The World Health Organization (WHO) has
classified viral pathogens that have moderate to high health
significance including the adenovirus, astrovirus, hepatitis A and
E viruses, rotavirus, norovirus, enteroviruses, and other cali-
civiruses, which are commonly associated with gastroenteritis,
causing diarrhea, abdominal cramping, vomiting, and fever [20].
Those viruses can cause more serious illnesses (e.g., chronic diar-
rhea, liver disease, or neuro-invasive disease) for pregnant women,
young children, the elderly and immune-compromised people [21].

For example, the diarrhea caused by the rotavirus contributed
to 1.2 million deaths of young children in 2012 [22,23]. Developing
countries suffer most of the disease burden because of their lack of
sanitation and access to safe water, widespread malnutrition and
large populations of human immunodeficiency virus (HIV)-
positive people [21]. Meanwhile, developed countries have also
been experiencing outbreaks, such as the norovirus in the United
States, France, Japan, Sweden, Switzerland, the United Kingdom,
and the Netherlands [24].
2.2. Assessment strategies

2.2.1. Viromics and detection
It is important to measure viruses in aquatic environments as a

way to demonstrate the efficient control of viruses. One of the
major efforts over the past decades has been devoted to the study
of viruses using cultivation in tissue cultures, immunofluorescence,
radioimmunofocus assay to nucleic acid probes, copy DNA (cDNA)
probes, polymerase chain reaction (PCR), reverse transcription
(RT)-PCR, (multiplex) quantitative polymerase chain reaction
(qPCR), and microfluidic qPCR [8,17,25]. Today, the use of next gen-
eration sequencing and shotgun metagenomic sequencing has
revolutionized and expanded the horizon of the viral studies in
water, such that viruses can be detected quickly and accurately
[3,26,27]. However, the potential for increasing knowledge of the
water virome using metaviromics is on the brink of tremendous
growth in the coming years; applications of raw sequencing qual-
ity and downstream bioinformatics deserve particular attention.
The upstream steps such as virus concentration and DNA/RNA
extraction also need harmonizing for cross comparison of results
and optimization to guarantee high quality shotgun sequencing.
2.2.2. Viral indicators
It is difficult and costly to measure infectious viruses one by

one, which is hampered also by the lack of well-established viral
y http://qmrawiki.org/framework/dose–response.
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indicators, the limited application of genomics-based multiplex
quantitative methodology for viral detection and yet establishment
of a global network of environmental virology laboratories. As a
result, the biosafety of water systems worldwide is still being
tested by measuring fecal indicator bacteria (mainly Escherichia coli
(E. coli)) using 100-year-old technology [28], though it is well
known that bacterial indicators do not represent the occurrence
and removal/inactivation of viruses in water systems [29].

Efforts have been made to use bacteriophages as surrogates of
viral pathogens because they are more representative than fecal
indicator bacteria regarding the shedding by hosts, the diffusion
routes in environments and morphological characteristics, such
as female (F)-specific RNA coliphages MS2 that can infect E. coli
[30]. Other examples include the plant pathogen pepper mild-
mottle virus (PMMoV) and cross-assembly phage (crAssphage),
both of which are highly abundant in human fecal samples
(PMMoV, 105–1010 gene copies per liter; crAssphage > 1010 gene
copies per liter [31–33]. However, the behavior of phages in a
water environment and their responses to water treatment are dif-
ferent from human viruses [34,35].

Now, meta-viromics is shedding new light on the importance of
having proper viral indicators. Studies on untreated sewage found
0.4 � 1013–1.5 � 1013 virus particles per liter [2,7] with immense
diversity, including viruses associated with numerous bacteria,
archaea, and unicellular eukaryotes [36,37]. Wastewater provides
an opportunity to sample the viral diversity infecting cellular
organisms from all kingdoms of life [2] and select viruses that
are abundantly and ubiquitously present in human sewage, in
much higher numbers than human viruses and the coliphages that
have been used traditionally. Successful selection of indigenous
viruses will avoid the common over- or under-estimation of water
system virus safety related to using external indicators [38,39]. The
critical scientific challenge is to find indigenous viruses that react
similarly as waterborne viruses do to different treatments.

2.2.3. Management
Sanitation is important for managing waterborne viruses

because feces contain an abundance of viral pathogens that can
deteriorate surface water quality and infect people [40]; this is
especially true for the rural area and developing regions. As sim-
ulated by Hofstra’s group [41,42], total viral emissions to surface
water were 2 � 1018 in 2010, which were becoming worse due to
increased populations and climate changes [43]. Wastewater and
water treatment processes can be good barriers for ensuring the
viral safety of water environments, especially for water reuse,
recreation, and drinking. For virus removal by wastewater treat-
ments, Amarasiri et al. [44] compared and summarized that the
virus log removal value (LRV; e.g., if 90% was removed,
LRV = 1; and if 99% was removed, LRV = 2) of membrane bioreac-
tor, conventional activated sludge, microfiltration, ultrafiltration,
constructed wetlands and ponds are 1.5, 2.0, 1.4, 3.7, 0.9, and
2.3, respectively.

Given the increasing trend of wastewater reuse due to popula-
tion growth, urbanization and droughts, especially indirect potable
reuse, there is a strict requirement for viruses of LRV � 12 [45,46].
Regarding drinking water treatments, the LRV of conventional
treatments, ultrafiltration, disinfection with ozonation or chlorina-
tion, ultraviolet (UV), and reverse osmosis (RO) is 1.7–2.4, 3–4, 4–5,
3.0–6.4, and > 7, respectively [38,47–49].

Typically, the LRV is tested with selected model viruses (e.g.,
MS2 and PMMoV) [50,51]. However, the LRV can be variable for
different viruses [47]; the mechanism for virus removal is not yet
clear, which has hampered the effective treatment of viral pollu-
tion. Despite the treatments that have been applied and regardless
of the developing stages of the countries, there is a wide range of
viral pathogen occurrence in treated drinking water around the
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world [14], such as the United States [52], Republic of Korea [53],
South Africa [54], Spain [55], New Zealand [56], and China [57];
no need to list countries with known poor sanitation facilities.
3. Potentials

3.1. Viral regulations in reclaimed water and drinking water

If the treated wastewater will be reclaimed, virus removal is
required and regulated to a performance target [58,59]. In the
United States, for both indirect potable reuse (IPR) and direct pota-
ble reuse (DPR), an LRV of 12 and 8 are required when using
untreated wastewater and wastewater treatment plant effluent,
respectively, as a source [46,60]. In Queensland, Australia, achiev-
ing an LRV of 6.5 in wastewater treatment can be classified as the
highest quality reclaimed water, while an LRV of 9.5 is required for
drinking purposes [61]. However, recent studies found that the
threshold of LRV = 12 failed to meet the benchmark of 1 infection
per 10 000 people per year and another additional 2–3 LRV will be
necessary [62].

For drinking water, efforts have also been made to develop viral
regulations worldwide, such as in Australia [63], the United States
[64], and the Netherlands [65]. For Australia, there are no regulated
values for enteric viruses. Instead, coliphages targeting E. coli are
used. The US drinking water regulations are performance-based
standards requiring enteric virus removal/inactivation of 99.99%,
but specific virus families are not individually regulated. The
appropriate disinfectant dose and its residuals must be maintained
for microbiological water quality regulations. In the Netherlands,
drinking water is distributed without chlorine or any disinfectant
residuals; water utilities must conduct quantitative microbial risk
assessment (QMRA) every four years to address infection by enter-
ovirus with a threshold of one infection per 10 000 persons per
year.

For both reclaimed water and drinking water, it will be highly
necessary to have both general LRV and proper viral indicators
regulated to assess the viral safety of the water systems. For ensur-
ing water safety, when scanning viral parameters and evaluating
the viral safety, it is essential to consider the variable performances
of different viruses regarding their survival time, resistance to
environmental pressure and infection risks.
3.2. Indigenous natural viruses as treatment performance indicators

To evaluate whether water treatments can efficiently remove
viruses, it is important to monitor the performance with or without
contamination from viral pathogens. Taking nanofiltration (NF)
and RO as examples, it is critically important to have operational
monitoring of membrane integrity, especially for water reuse or
for drinking water purposes, because minor breakthroughs of
pathogenic viruses may result in serious human health risks [38].
However, direct routine measurement of viral pathogens is impos-
sible because their extra low concentrations in both source and
treated water. It was proved that the natural viruses present in
source water can be better indicators than the conventionally used
membrane-integrity test either by total organic carbon (TOC) and
turbidity [66,67], or by viral surrogates MS2 [38]. After mapping
the viruses in source water, indigenous natural viruses with con-
centrations > 108 gene copies per liter were selected, which
demonstrated RO integrity by showing an LRV > 7. The same pro-
tocol can be applied to monitor the performance of other treat-
ments and evaluate if the treatment is virus tight, which is:
mapping natural viruses in source water, selecting high abun-
dance viruses which can represent typical pathogenic viruses as
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performance indicators, and testing the performance by calculat-
ing LRVs.

3.3. Sewage surveillance of viruses to support public health
surveillance

Human viruses are excreted at high concentrations in the feces
of infected individuals with or without symptoms, such as ~1011

virus particles per gram of feces for noroviruses and adenoviruses
[8] and 108 gene copies per gram of feces for the current COVID-19
virus in about half of the cases [68,69]. For this reason, monitoring
the target viruses in sewage can be used to reflect human infec-
tions and virus circulation. A good example is sewage surveillance
for poliovirus (PoV), which has been included by WHO in the
strategic plan of the global polio eradication initiative supplement-
ing acute flaccid paralysis surveillance [70]. For the outbreaks in
Finland [71], Israel [72], and the Netherlands [73], by monitoring
PoV in the sewage, the researchers were able to indicate wide geo-
graphical circulation of the virus in the country, detect epidemic
virus in areas without reported paralyzed cases and/or a few weeks
before the first case of poliomyelitis was reported, demonstrated
the great potential power of monitoring target viruses in sewage
to herald epidemics and investigate outbreaks [74].

For the on-going pandemic COVID-19, Medema et al. [75]
started monitoring COVID-19 virus RNA in sewage in February
2020 before COVID-19 cases were detected in the Netherlands.
Their results turned from all negative in February into five and
six out of the seven sampled wastewater treatment plants
(WWTPs) positive in early and middle March 2020. Remarkably,
they detected COVID-19 in the city of Amersfoort six days before
the first cases were reported, indicating again that monitoring
the target virus in sewage can be a valuable means of measuring
the circulation of a virus in the community and sending early sig-
nals for taking timely actions. For the current situation worldwide,
many countries are short of testing consumables and mild cases
are not being reported or tested, so measuring COVID-19 in sewage
could be a good and necessary complement.

Countries in Asia, Europe, and in America are facing different
stages and conditions as they fight the pandemic. Monitoring sew-
age could serve as early warning for yet unaffected region, indicate
virus circulation and infections for the expanding region with or
without sufficient test kits, and early warning for the cities finish-
ing lockdown to identify re-emergence of the virus in the commu-
nity. The last one is of great importance for the cities and countries,
who have devoted extraordinary efforts controlling the virus and
are now facing high pressure to recover their economies. An impor-
tant challenge is to identify those persons who are infected but are
without symptoms in order to reduce risks before re-opening soci-
etal activities. It is possible that by combining the monitoring of
the sewage at treatment plants, sewage collection mains and the
major drainage pipe connection points, one could track the hot
zones of infected patients and neighborhoods and, thus, ultimately
prevent further spread of the virus in a timely manner.

To use virus levels in sewage as a public health surveillance tool
during pandemics, it is critical to conduct clinical investigations on
levels and distributions in fecal excretions for infected cases and
recovered patients and the time of excretion. Ultimately, it will
be valuable to have a quantifiable correlation between the detected
viral gene copies and the number of infections.

4. Conclusions

For assessing the viral risks and ensuring the biosafety of a
water environment, we would like to conclude this article with
the following perspectives as roadmap on urgently needed global
actions that should be taken (Fig. 1).



Fig. 1. Overview of the pathways of viruses in water and the urgent questions to be addressed regarding mapping, monitoring, and managing viruses in water environments.
WWTP: wastewater treatment plant; DWTP: drinking water treatment plant.
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(1) Mapping water viruses. Following the example set by the
Global Water Pathogen Project (GWPPy), it is urgently necessary
to expand our understanding of the sources, fate, and transport of
viral pathogens as well as other pathogens in our water systems.
Mapping the water viruses using up-to-date meta-viromics is essen-
tial to reveal the temporal-spatial distribution of water viruses, con-
struct national and international water viral databases, and advise
about efficient management strategies.

(2) Selecting viral indicators. Viral indicators are definitely
needed for the regular monitoring of water environment biosafety,
especially because indicators like E. coli fail to sufficiently indicate
the viral risks while requiring significant human effort and
resources worldwide. Based on the scanning of water environ-
ments, it is important to select proper indigenous viruses from
human sewage as viral indicators for viral pathogens, and from
source water as viral indicators for treatment performances.

(3) Harmonizing test protocols. Different testing protocols make
it difficult to have good comparisons case-by-case, which is ham-
pering researchers from joining their efforts. It is necessary to find
the best protocols and principals of good sampling/methodology
while allowing for advances in pre-treatment steps through data
processing including concentration, DNA/RNA extractions, reverse
transcription, qPCR, sequencing, and bioinformatics, which can
avoid variable detection efficiencies during and favor the interna-
tional unified work force.

(4) Assessing viral risks. Assessing the risks is the beginning of
the understanding necessary for management. Though the QMRA
method is well established and has been successfully applied for
years, the Netherlands is still the only country having a formal
QMRA that has been included in their drinking water regulations.
For a systematic risk evaluation, this method is highly recom-
mended to be introduced and promoted widely, especially in
regions where water pathogens have not gained enough attention.
y https://www.waterpathogen.org.
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(5) Setting a monitoring framework. Aiming for a strong sewage
monitoring program during pandemics, it is necessary to set up a
standard action framework to complement the clinical tests and
support public surveillance during different stages of the pan-
demic’s development. First, making clear the virus’s presence, sur-
vival, and shedding characteristics in sewage, then concluding with
knowledge of the risk of the virus’s spread and infection via water.
This should become part of any public health strategy which is
based on the monitoring results, evaluation of virus’s circulation,
tracking the original areas of the infected patients, if possible,
and finally, advising the government on timely management
strategies. Furthermore, establishing such a framework will also
be valuable for other disease and human parameters, such as
anti-microbial resistance, the use of pharmaceuticals, illicit drugs,
and so forth.
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