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High-precision and efficient structural response prediction is essential for intelligent disaster prevention
and mitigation in building structures, including post-earthquake damage assessment, structural health
monitoring, and seismic resilience assessment of buildings. To improve the accuracy and efficiency of
structural response prediction, this study proposes a novel physics-informed deep-learning-based real-
time structural response prediction method that can predict a large number of nodes in a structure
through a data-driven training method and an autoregressive training strategy. The proposed method
includes a Phy-Seisformer model that incorporates the physical information of the structure into the
model, thereby enabling higher-precision predictions. Experiments were conducted on a four-story
masonry structure, an eleven-story reinforced concrete irregular structure, and a twenty-one-story rein-
forced concrete frame structure to verify the accuracy and efficiency of the proposed method. In addition,
the effectiveness of the structure in the Phy-Seisformer model was verified using an ablation study.
Furthermore, by conducting a comparative experiment, the impact of the range of seismic wave ampli-
tudes on the prediction accuracy was studied. The experimental results show that the method proposed
in this paper can achieve very high accuracy and at least 5000 times faster calculation speed than finite
element calculations for different types of building structures.
� 2023 The Authors. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher

Education Press Limited Compan. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

High-precision and efficient structural response prediction is
essential for intelligent disaster prevention and mitigation in
building structures, including post-earthquake damage assess-
ment, structural health monitoring, resilience assessment of build-
ings, and other aspects [1]. One of the core aspects of intelligent
disaster prevention and mitigation in building structures is the
intelligent assessment of structural damage [2], which can be real-
ized by predicting and analyzing the response of structures under
external loads. Therefore, high-precision and efficient real-time
structural response prediction is essential in post-earthquake dam-
age assessment, structural health monitoring, building seismic
resilience assessment, and other applications.

Earthquakes are among the natural disasters that cause the lar-
gest losses of life and property worldwide. During major earth-
quakes, the damage and even collapse of buildings are the
leading causes of economic losses and casualties [3]. When an
earthquake disaster occurs, post-earthquake damage assessment
of buildings in the earthquake area can provide critical decision-
making information for rescuing the wounded and post-
earthquake building repairs [4]. An essential aspect of the existing
damage assessment methods is the simulation of earthquake dis-
asters using numerical calculations [5,6]. This method uses the
response information of building structures obtained through
numerical calculations to calculate the degree of damage to build-
ing structures. In addition, the calculation of the response of a
building structure under an earthquake can be used for structural
health monitoring [7] and for assessing its seismic resilience [8]
and vulnerability [9–11]. In summary, it is essential to predict
the structural responses to earthquakes.

The current method for predicting the response of building
structures to earthquakes with high precision is primarily based
on finite-element time-history analysis [12]. This method has
problems such as long computation time and a complex analy-
sis process; therefore, real-time calculation of the structural
response cannot be realized, which is unfavorable for rapid
damage assessment and rescue after disasters. Supercomputers
provide possible solutions [13]; however, the lack of openness
of these computing resources currently limits their widespread
use.
, Engi-
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To solve these problems, three main strategies are used in this
research. The first strategy is to improve the time–history analysis
method to solve the ground motion response, for example, by
improving the input ground motion data preprocessing method,
structure and component modeling method, and integration
method [14–16]. Although this method can simplify the calcula-
tion of the time–history analysis to a certain extent, it cannot
achieve real-time structural response calculations. The second
strategy is to significantly reduce the computational complexity
by establishing a simplified model that achieves an extremely fast
but low-accuracy prediction of the overall structural response [17].
For example, Hori and Ichimura [18] simplified a building into a
multi-degree-of-freedom system and realized real-time prediction
of the overall response of the structure through a time–history
analysis method. Lu and Guan [19] used an inter-story bending–
shear model as a simplified model. The calculation of the building
response is accelerated by the graphics processing unit (GPU);
therefore, real-time prediction of the overall structural response
can be realized at the city level. However, the models used in these
methods are excessively simplified; therefore, the structural
response can only be approximately calculated, making it challeng-
ing to achieve a refined damage assessment. In addition, because of
the significant difference between the simplified model and the
actual building, the prediction accuracy of the response is rela-
tively low.

The last strategy involves approximating the seismic response
of structures in a data-driven manner using machine learning
methods, thereby avoiding the complex iterative integration pro-
cess in the time–history analysis. Lin et al. [20] considered param-
eters such as building structure height and natural vibration period
and used a support vector machine (SVM) to predict the peak
acceleration of the floor. Oh et al. [21] used five parameters, includ-
ing the average period of earthquake vibration and ground peak
acceleration, as the input of a multilayer perceptron (MLP) and pre-
dicted the structure’s maximum displacement and maximum
inter-story displacement ratio. Papadrakakis and Lagaros [22] pro-
posed an artificial neural network model combined with a
performance-based design process to predict nonlinear seismic
responses of buildings. Yang et al. [23] addressed the multistep
prediction of strong earthquake ground motion and the seismic
response of single-degree-of-freedom systems with the support
of an empirical mode decomposition and extreme learning
machine. Sahoo and Chakraverty [24] proposed a functionally
linked neural network to predict the seismic responses of tall shear
buildings. Tezcan and Marin-Artieda [25] proposed a least-squares
SVM approach to estimate displacements from measured
accelerations.

With the rapid development of deep learning, an increasing
number of deep learning-based models with strong fitting abilities
have been proposed, such as convolutional neural networks (CNNs)
[26], recurrent neural networks [27], long short-term memory
(LSTM) networks [28], and transformers [29]. Kim et al. [30] pre-
dicted the peak transient response of a nonlinear hysteresis system
using a CNN. In another study by Kim et al. [31], a Bayesian deep
learning approach was used, and the probability distribution of
the peak displacements was provided. Some researchers focused
on the time series of structural responses and conducted further
evaluation analyses using sufficient sequence information. Wu
and Jahanshahi [32] studied the problem of structural dynamic
response estimation and system identification for building struc-
tures with multiple degrees of freedom using CNN models. Gao
and Zhang [33] achieved structural response prediction using an
LSTM network. Zhang et al. [34] proposed an LSTM network for
predicting nonlinear structural seismic responses. Zhang et al.
[35] proposed a physics-guided CNN model to provide data-
driven seismic response predictions. The prediction results were
2

within a 10% confidence interval compared with the actual struc-
tural vibration response, with a confidence level of more than
88%. Perez-Ramirez et al. [36] proposed a recurrent neural network
with Bayesian training and mutual information for the response
prediction of large buildings. Peng et al. [37] used piecewise linear
least squares, a forward connected neural network, and an LSTM
network to predict the response time history of nodes using
autoregressive methods. An experiment for structural response
prediction was conducted on a six-story steel-frame model. Eshke-
vari et al. [38] proposed a DynNet network by constructing a recur-
rent neural cell that updates the state from the current time step to
the next with neural connections, inspired by exact numerical dif-
ferential equation solvers. This method was tested on a four-
degree-of-freedom structure.

These methods can be used to predict the structural response
time history. However, they can only predict the overall response
time history of a few nodes or floors in a building structure and
cannot achieve a more accurate damage assessment. In addition,
the above studies did not consider the physical information of
the structure, such as its dynamic characteristics. Instead, these
methods use only a large amount of data or physical laws to per-
form data-driven fitting. Finally, limited by the fitting ability of
the data-driven model, most current research focuses only on the
response prediction of single-story structures or simplified multi-
story buildings, rather than the more complex response prediction
of high-rise buildings.

To solve these problems, this study proposes a real-time predic-
tion method for the structural response of a large number of nodes
under seismic actions, combined with structural physical informa-
tion. The dynamic characteristics of the building structure and
other inherent structural information are introduced into the
real-time response prediction method. A large amount of data is
generated through numerical calculations to predict the real-time
structural response of tall buildings. In addition, this study pro-
poses a Phy-Seisformer model based on deep learning that realizes
high-precision, real-time structural response predictions under
seismic action. The main innovations of this study are summarized
as follows:

(1) A novel real-time structural response prediction method under
seismic action is proposed, which can predict a large number of
nodes in the structure. Despite the prediction speed is remark-
ably high, the accuracy aligns closely to the calculation result
driven from the finite-element time–history analysis.

(2) A novel deep-learning approach that uses a physics estimator
to integrate structural dynamic characteristic information,
Phy-Seisformer, is presented. The proposed model achieved
highly accurate predictions for various building types. By lever-
aging the physics estimator, we significantly reduced the com-
plexity of model fitting, leading to better overall prediction
results.

2. Methodology

2.1. Overall process

A flowchart of the real-time prediction method for the struc-
tural response time history based on deep learning and physical
information proposed in this paper is shown in Fig. 1. First, a
refined finite element (FE) model of the structure is established,
and a large number of seismic waves are selected as inputs for
the finite element elastic or elasto–plastic time–history analysis.
The above method can be used to obtain the acceleration, velocity,
and displacement response time histories of all nodes in a
structure under seismic action. Owing to the high accuracy and



Fig. 1. Overall process of the physics-informed real-time structural response prediction method under seismic action. FE: finite element.
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computational complexity of the refined FE model, high-precision
structural response data can be obtained through massive numer-
ical simulation calculations. Subsequently, in the structural
dynamic information extraction module, the FE model of the build-
ing is simplified into a lumped mass model, in which each floor in
the FE model is simplified into a mass point. After extracting the
floor structure features of the simplified model, including the story
mass and story stiffness, these features are inputted into the pro-
posed Phy-Seisformer model. The last part is a real-time prediction
model of the structural response time history based on deep learn-
ing, called Phy-Seisformer. The model input is the seismic wave
and structural dynamic information, and the model output is the
predicted response time history value of all nodes on the floor of
the structure. Response prediction is achieved through an autore-
gressive mechanism. The model performs multiple autoregressive
iterative calculations when dealing with complete seismic waves.
Thus, the proposed method can predict the time history of a struc-
tural response under the action of seismic waves of any length. In
the training phase of the Phy-Seisformer model, it is necessary to
use the results of the FE calculations to create a dataset for model
parameter optimization. In the model inference stage, only the
seismic wave and structural dynamic information must be input
to realize the rapid prediction of the structural response, which
can be thousands of times faster than FE calculations. The results
of the rapid prediction of the structural response can be used for
the refined real-time assessment of building damage and other
aspects.

The proposed physics-informed real-time structural response
prediction method can effectively realize nonlinear structural
response prediction, which is primarily realized in two aspects.
First, the dataset for training the Phy-Seisformer model is
3

calculated using nonlinear FE calculations; therefore, nonlinearity
is inherent in the training dataset of the model. The second and
more critical aspect is that the nonlinear stiffness information of
the floors of the structure can be obtained through structural infor-
mation extraction, which is then input into the Phy-Seisformer
model. Based on the nonlinear stiffness information of the
structure and through the physics estimator module in the
Phy-Seisformer model, an elasto–plastic time–history analysis of
the lumped mass model is performed. Thus, the model can process
nonlinear structural information and perform response prediction.

2.2. Structural dynamic information extraction module

The primary function of the structural dynamic information
extraction module proposed in this study was to extract the floor
structure information required by the subsequent Phy-Seisformer
model, including story mass and story stiffness. A schematic of
the structural information extraction process is shown in Fig. 2.
In this study, the seismic wave input was unidirectional. Therefore,
it was only necessary to extract the story mass and stiffness of the
FE model in the direction of the applied seismic waves.

The story mass is the sum of the masses of all the structural
components and the floor’s additional mass. The mass of the com-
ponents connecting the upper and lower floors, such as the col-
umns and walls, is evenly distributed between the upper and
lower floors. The additional mass is the equivalent mass of the per-
manent and live loads, the specific values of which can be deter-
mined using the load code for the design of building structures
[39].

The extraction of the story stiffness information is more compli-
cated. The calculation method [40] using an empirical formula



Fig. 2. Schematic of the structure information extraction module. C: damping matrix; a: important parameter to calculate C; F: force; u: displacement; n: damping ratio; x1

and x2: the structure’s first- and second-order natural frequencies.
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inevitably has a relatively large deviation and requires the use of
different calculation methods for different structures, which is rel-
atively complicated. As the FE model is known, a more accurate
structural stiffness can be obtained through FE calculations. When
calculating the stiffness of a specific story, it is necessary to fix the
lateral displacement of all nodes in the upper and lower stories and
apply a lateral force proportional to the mass at the specific story.
The average displacement of all the nodes on the floor is calculated
and considered as the story displacement. Subsequently, the lateral
force is divided by the displacement to obtain the story stiffness
curve. To bring the dynamic characteristics of the simplified model
closer to those of the FE model, the first period of the simplified
model and the main period of the FE model in the selected direc-
tion should be made equal by scaling the stiffness. The formula
for this period is as follows:

T ¼ 2pðMK�1Þ1=2 ð1Þ
where T indicates the main period of FE model in the selected direc-
tion, M is the mass matrix, and K is the stiffness matrix. Therefore,
the period of the simplified model and the FE model can be equal-
ized by multiplying the overall stiffness of the simplified model by a
coefficient f. The calculation formula of f is as follows:

S ¼ ðT=T 0Þ2 ð2Þ
where S denotes the stiffness scaling factor of the simplified model,
and T 0 is the first period of the simplified model.

2.3. Detailed structure of the Phy-Seisformer model

The Phy-Seisformer model proposed in this study includes a
physics estimator module, two feature extraction modules, and a
feature aggregation module. Among them, each module contains
a SeisBlock module, which is mainly composed of multi-head
self-attention mechanisms. Owing to the full consideration of
structural dynamic information, which contains the story mass
and story stiffness, the Phy-Seisformer can directly predict the
response time history of all the nodes on a floor. The inputs of
the physics estimator are the structural dynamic information and
seismic wave, and its output is the predicted value of the floor
response time history. The inputs to the two feature extraction
modules are the seismic wave and physics estimator calculation
results. Because the structural response is not only related to seis-
mic waves but also to the historical response time history of the
structure [37], the two feature extraction modules also need as
input the response time history of the structure in multiple previ-
4

ous time steps. The input of the feature aggregation module in Phy-
Seisformer is the output of the two feature extraction modules, and
the output of the feature aggregation module is the predicted value
of the response of the structural floor nodes. A detailed structural
diagram of the Phy-Seisformer model is shown in Fig. 3.

The proposed Phy-Seisformer adopts an autoregressive predic-
tion strategy to predict structural responses. The structural
response prediction approach proposed in this study involves
segment-wise iterative processing of the input seismic wave,
instead of direct processing of the entire seismic wave. During each
iterative prediction, the value of the structural response output pre-
dicted by the model serves as one of the input components for the
subsequent model prediction. A schematic of the autoregressive
prediction method used in this study is shown in Fig. 4. By fixing
the length of the single input and output data in the time dimension
of the model in the autoregressive process, the model’s training
process is simplified, and the structural response time history pre-
diction for the seismic wave input of any length is realized. In addi-
tion, this method is not a pure autoregressive process, which relies
on the historical structural response and uses the results of seismic
waves and the physics estimator as inputs. Therefore, the impact of
the iteration error on the prediction accuracy is significantly
reduced. Finally, this method can significantly expand the number
of samples in the training set and fully utilize a limited dataset
for substantial data amplification. The remainder of this section
introduces the various modules of the Phy-Seisformer model.

2.3.1. Physics estimator
In the physics estimator part of the model, the inputs of this

module are structural dynamic information and seismic waves,
and the output is an estimate of the overall response time history
of the floor. Because the calculation process of this part utilizes the
story mass and stiffness, and the structural dynamic equation is
embedded, the physical information is fully considered in the cal-
culation process instead of purely using data to fit the deep learn-
ing model. The proposed physics estimator module simplifies the
complicated fitting problem of direct fitting from seismic waves
to structural responses. This transforms the fitting problem of the
seismic wave to any node in the structure into a fitting problem
between the approximate and precise calculation results of the
structural response. This simplification method dramatically
reduces the complexity of the model in dealing with structural
response prediction under seismic action and the difficulty of fit-
ting the deep-learning-based model.

The specific calculation method involves a rapid calculation of
the response prediction value of the floor using a simplified



Fig. 3. Detailed structural diagram of the Phy-Seisformer model.

Fig. 4. Visualization of the autoregressive prediction method used in this study.
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numerical calculation method and inputting it into the feature
extraction module. The numerical calculation method can utilize
any multi-degree-of-freedom structural response calculation
method. This study used the Newmark-b method [41] for the cal-
culation. The basic assumption of the Newmark-b method is that
the acceleration changes linearly within the time interval
½t; t þ Dt�, and its expression is

_utþDt ¼ _ut þ ½ð1� cÞ€ut þ c€utþDt�Dt ð3Þ
utþDt ¼ ut þ utDt þ ½ð1=2� bÞ€ut þ b€utþDt �Dt2 ð4Þ

where u, _u, and €u represent the floor displacement, velocity, and
acceleration, respectively. c and b are constants. Let C indicates
5

the damping matrix, and G means the load vector. According to
the structural dynamics equation, a structure must satisfy the fol-
lowing equation:

M€utþDt þ C _utþDt þ KutþDt ¼ GtþDt ð5Þ
Substituting Eq. (3) and Eq. (4) into Eq. (5), the equation about

€utþDt can be obtained as

K̂utþDt ¼ ĜtþDt ð6Þ
where K̂ and R̂tþDt can be expressed as follows:

K̂ ¼ K þ c
bDt

C þ 1
bDt2

M ð7Þ
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ĜtþDt ¼ GtþDt þM
1

bDt2
ut þ 1

bDt
_ut þ 1

2b
� 1

� �
€ut

� �

þ C
c

bDt
ut þ c

b
� 1

� �
_ut þ c

2b
� 1

� �
Dt€ut

� �
ð8Þ

By solving Eq. (6), utþDt is obtained and introduced into Eqs. (3)
and (4) to calculate _utþDt and €utþDt , respectively. Thus, an estimate
of floor response is obtained. In this study, the damping matrix
adopts Rayleigh damping [42], which is expressed as

C ¼ a0M þ a1K ð9Þ
The calculation method for the two important parameters, a0

and a1 [42], is shown in Eq. (10).

a0
a1

� �
¼ 2n
x1 þx2

x1x2

1

� �
ð10Þ

where n is the damping ratio. x1 and x2 are the structure’s first-
and second-order natural frequencies, respectively. Suppose that
the FE model of the structure is elastic. In this case, the stiffness
matrix of the simplified lumped mass model remains constant,
and the damping matrix is also a constant value. However, when
the FE model is an elasto–plastic model, the stiffness matrix varies
as the floor displacement changes. The changing stiffness matrix
can be calculated step by step through the story stiffness curve
obtained in the structural dynamic information extraction module.
By substituting it into the above equation, the approximate value of
the structural response of the elasto–plastic model can be
calculated.

2.3.2. Feature extraction module
In the feature extraction module proposed in this study, a

token-embedding module is first used to preprocess and add the
input features, which significantly increases the number of feature
channels to 512 and plays a role in feature fusion. The token mod-
ule is primarily implemented through a fully connected network or
Fig. 5. Detailed structure of the SeisBlock module, the multi-head linear self-a

6

a one-dimensional CNN. The token-embedding module integrates
both seismic ground motion and structural response history infor-
mation as inputs. Positional embedding is used to preserve the
temporal relationship between the input data [43]. The token mod-
ule is expressed as Eq. (11).

D ¼
XN
k¼1

ðMLPðEt�i;k; Et�iþ1;k; :::; Et;k; Etþ1;k; :::; Etþj;kÞ

þMLPðRt�i;k;Rt�iþ1;k; :::;Rt�1;kÞÞ þ PE ð11Þ
where D represents the output result of the token embedding mod-
ule, t is the current time step, E denotes the ground motion data, R
denotes the response time history data, N is the total number of
nodes, PE indicates positional embedding [43], MLP indicates mul-
tilayer perceptron, and i and j represent the number of historical
and predicted time steps, respectively. After completing data pre-
processing, the SeisBlock module is employed based on the trans-
former model for encoding. The SeisBlock module, as depicted in
Fig. 5, consists of two multi-head linear self-attention modules, a
feed-forward module, multiple dropout layers, and layer-
normalization layers. Additionally, a structural diagram of the
multi-head linear self-attention module is presented in Fig. 5. The
input features of SeisBlock are divided into eight equal parts based
on the dimension of the channel dimension, and each sub-input has
64 channels, which are utilized as the query, key, and value for cal-
culation, respectively, as shown in Eq. (12).

Di ¼ softmax
QWQ ;iðLK;iKWK;iÞffiffiffiffiffi

dk

p
 !

� LV ;iVWV ;i ð12Þ

where P, Q, and V represent the key, query, and value metrics,
respectively, L is a fully connected layer in the projection layer,
WQ and WV indicate the trainable weights in the multi-head linear
self-attention module, D is the output of the linear self-attention
module, and i represents one of the heads in the multi-head linear
self-attention module. After obtaining the eight output features, all
ttention module, and the feed forward module. ReLu: rectified linear unit.



Fig. 6. Seismic impact coefficient curve of Shanghai.
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features are concatenated in the channel dimension and mapped
through a linear layer to obtain the output result F, whose expres-
sion can be represented by Eq. (13).

F ¼ WF

F1

F2

:::

F8

0
BBB@

1
CCCA ð13Þ

where F represents the final output of the multi-head linear self-
attention module, and WF indicates the parameters of the linear
layer. The network structure of the feed-forward module, as shown
in Fig. 5, comprises two convolutional layers, two dropout layers,
and a rectified linear unit [44].

Finally, the SeisBlock output is processed separately. This out-
put is then fed into the subsequent feature aggregation module
in the first aspect. However, through a fully connected layer, the
encoded features are mapped to the dimensions of the response
time history of all nodes, and the loss function is calculated in com-
bination with the ground truth. It should be noted that the purpose
of this operation is to obtain a better parameter training effect in
the model training phase; therefore, the operation is performed
solely during the training phase of the model and is not utilized
during the inference phase.

2.3.3. Feature aggregation module
In the feature fusion module, the features extracted by the two

feature extraction modules are first added and then calculated
using the SeisBlock module. A fully connected layer is then
employed to map the calculation results to each node to be pre-
dicted, and the response prediction value of multiple nodes on
the same floor is obtained. In the model training phase, the results
of the two feature extraction modules and feature aggregation
modules must be processed by the fully connected layer. Subse-
quently, the loss function is calculated and added. In the reasoning
stage of the model, the outputs of the feature aggregation module
are used as the final prediction results.

3. Experiments of the structural response real-time prediction
method

This section describes the dataset generation, model training,
and model testing for multiple floors in a four-story masonry struc-
ture, an eleven-story reinforced concrete irregular structure, and a
twenty-story reinforced concrete frame structure. To verify the
effectiveness of the proposed method, elastic and elasto–plastic
FE models were established for each building. Subsequently, the
accuracy and efficiency of Phy-Seisformer in predicting the struc-
tural response time history of the elastic and elasto–plastic models
were tested. The responses tested in the experiment were acceler-
ation, velocity, and displacement. In addition, an ablation study
was conducted to verify the effectiveness of the physics estimator
in Phy-Seisformer. Furthermore, through a comparative experi-
ment, the influence of the seismic wave amplitude range on pre-
diction accuracy was studied.

3.1. Dataset generation and experiment details

3.1.1. Seismic wave selection
In this study, 200 seismic waves were selected, which were

obtained from the Pacific Earthquake Engineering Research (PEER)
GroundMotion Database and coded for the seismic design of build-
ings [45]. Considering that all the building structures utilized in the
experiment are situated in Shanghai, China, our methodology for
selecting suitable seismic waves references the response spectrum
outlined in the ‘‘code for seismic design of buildings” of Shanghai
7

[45]. The response spectrum for Shanghai is shown in Fig. 6. The
expression for the response spectra is given by Eq. (14):

a ¼

0:45amax þ ð10g2 � 4:5ÞamaxTn Tn < 0:1
g2amax 0:1 � Tn < Tg

ðTg=TnÞcg2amax Tg � Tn < 5Tg

½g20:2
c � g1ðT � 5TgÞ�amax 5Tg � Tn < 6:0

½g20:2
c � g1ð6� 5TgÞ�amax 6:0 � Tn < 10:0

8>>>>>><
>>>>>>:

ð14Þ

where a is the seismic impact coefficient, amax is the maximum
value of the seismic impact coefficient, g1 is the slope adjustment
factor, g2 is the damping modification factor, Tg is the feature per-
iod, and Tn is the natural vibration period. For minor and moderate
earthquakes, the feature period was defined as 0.9 s; while for
major earthquakes, it was set as 1.1 s. To select suitable seismic
waves for experimentation, we utilized a specific method for com-
puting the mean square error (MSE) between each seismic wave
from the PEER database and the normed response spectrum out-
lined in the aforementioned code. Finally, we selected 186 seismic
waves with the smallest MSE, along with 14 recommended seismic
waves specified in the ‘‘code for seismic design of buildings” [45] to
establish a dataset of 200 seismic waves for our experiment.
Through this approach, we aimed to ensure that the selected seis-
mic waves aligned with the characteristics of the Shanghai region
and complied with the recommended seismic design practices.
For the time–history analysis of the elastic model, the input seismic
wave does not need to be amplitude modulated. In contrast, for the
time–history analysis of the elasto–plastic model, the amplitude of
the input seismic wave was adjusted to a random number in the
range of 350–3500 mm�s�2. The time interval for the seismic wave
input was 0.02 s. In total, 140 seismic waves were randomly
selected as the training set, 20 as the verification set, and 40 as
the test set. Specific information regarding the selected seismic
waves is provided in Table S1 in Appendix A.

3.1.2. Data augmentation
Because the Phy-Seisformer model proposed in this study per-

forms iterative prediction, such as autoregressive prediction, and
further expands the dataset to leverage the advantages of deep
learning, this study augments the dataset by overlapping partition-
ing. In the training phase of the model, the structural history
response input to Phy-Seisformer is the ground truth; therefore,
each batch in the training set can be sampled overlappingly in
the complete seismic wave sequence, rather than strictly following
the autoregressive method in time order. An overlap-based data
segmentation technique was utilized to generate training datasets
for the Phy-Seisformer model. Specifically, we divided the
sequence corresponding to a single seismic wave into thousands
of time-series segments of equal length. The starting time steps
of adjacent segments differed by only one time step. Using this



Fig. 7. Four-story masonry structure: (a) photograph and (b) the schematic of the
FE model.

Table 1
Experimental results of the acceleration time history prediction for the elastic model
of the four-story masonry structure.

Location MAE MSE R gr

Floor 4 0.2414 0.4410 0.9697 8431.63
Roof 0.2538 0.7049 0.9803 8255.97

Table 2
Experimental results of the velocity time history prediction for the elastic model of
the four-story masonry structure.

Location MAE MSE R gr

Floor 4 0.1568 0.1533 0.9524 9646.70
Roof 0.2040 0.3222 0.9311 8446.00

Table 3
Experimental results of the displacement time history prediction for the elastic model
of the four-story masonry structure.

Location MAE MSE R gr

Floor 4 0.0830 0.0266 0.9924 9320.00
Roof 0.0439 0.0124 0.9970 8478.53
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overlap-based segmentation approach, we significantly expanded
the limited seismic time series data and improved the training
effectiveness of the Phy-Seisformer model. This operation can yield
overlapping training data, thereby significantly increasing the
number of datasets used for training. During the inference stage
of the model, it is essential to input the seismic wave information
step-by-step in chronological order.

3.1.3. Evaluation metrics
The evaluation metrics used in this experiment can be roughly

divided into accuracy and speed. The mean absolute error (MAE),
MSE, and Pearson coefficient (R) were selected as metrics to eval-
uate the prediction accuracy of the model. The calculation speed
relative to that of the FE method measures the inference speed of
the model. It should be noted that the specific values of MAE and
MSE were related to the seismic amplitude in the experiment.
The normalized seismic amplitude of this experiment was 3.5,
which was restored to the original amplitude after processing by
Phy-Seisformer. To establish a unified evaluation standard, the
response time history corresponding to a seismic amplitude of
3.5 was used to calculate MAE and MSE rather than the response
time history restored to the original amplitude. Addtionally, the
values of all the evaluation metrics in the experiment were the
average values of the 40 seismic waves in the test set. The metric
definitions are given in Eqs. (15)–(18),
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where yi and y0
i represent the predicted and actual values of the ith

time step in the structural response time sequence, respectively. y
�

and y
�0

are the mean values of the predicted and actual values,
respectively, of all the time steps in the structural response time
sequence. Ls is the length of the entire sequence. gr is the relative
speed of the inference. ts and tf represent the time required to cal-
culate the structural response under seismic action using Phy-
Seisformer and FE time–history analysis, respectively.

3.1.4. Experiment details
In this study, all FE calculations were performed using Abaqus

2020. The implicit calculation method was employed, which
requires an equilibrium iteration foreach incremental step of the
simulation. If the balance condition is not satisfied within a partic-
ular incremental step, it is halved, and the calculation is repeated
until convergence is achieved. The initial incremental step size is
retained for subsequent calculations. If the incremental step size
decreases to the minimum preset value, the computation is termi-
nated. For this study, the initial incremental step size was set to
0.02 s, with a minimum incremental step of 1 � 10�8 s. These
parameters were selected after considering the trade-off between
computational accuracy and efficiency. The material properties of
the building structure are elaborated in Sections 3.2 and 3.3.

The loss function used in this experiment was the MSE loss, and
its expression is given by Eq. (19).
8

J ¼ 1
Nd

XNd

i¼1

XNt

j¼1

ðyij � ŷijÞ2 þ ðy0ij � ŷijÞ2 þ ðy00ij � ŷijÞ2
h i

ð19Þ

where J represents the loss function value, Nd indicates the batch
size of training data, and Nt means the total number of time steps
for a single prediction. y, y0, and y00 represent the outputs of the fea-
ture aggregation module and two feature extraction modules, and ŷ
is the ground truth. In this experiment, during the autoregressive
process of the Phy-Seisformer model, the number of time steps
for each input structure history response was 150, and the number
of time steps for each prediction was 20. In the physics estimator, c
and b were 0.5 and 0.25, respectively.

It is essential to normalize the model input because the input of
a single model is not a complete seismic wave, but a local seismic
wave. Owing to the variations in the amplitudes of the seismic
waves in the training set, the relationship between the seismic
waves and structural responses can only be fitted with normaliza-
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tion. The amplitude of all the seismic waves was input into the
Phy-Seisformer model, as described in Section 3.5. The amplitude
of the structural response was scaled using the same scaling ratio.
It should be noted that these adjustments were made only during
the calculation of the Phy-Seisformer model and not during the FE
calculations. Furthermore, when Phy-Seisformer outputs the pre-
diction results, they are divided by the previous scaling ratio to
restore the actual response values. The Adam optimizer [46] was
utilized for the experiment. The model training consisted of 100
epochs, with a learning rate of 0.00005. The FE calculations were
all completed using Abaqus software, and the training of the
Phy-Seisformer model was realized using Pytorch [47]. The exper-
iment was conducted on an Intel (R) Xeon (R) Gold 6248 CPU
@2.50 GHz, with an NVIDIA Telsa V100 GPU.
3.2. Structural response prediction experiments of the elastic model

3.2.1. Case 1: Elastic model of four-story masonry structure
This study conducted an experiment on a four-story masonry

structure (Fig. 7(a)). The structure consists of brick masonry as
the load-bearing construction material, with the story height of
3.85 m. In the FE model used for the experiment (Fig. 7(b)), the
elastic modulus and Poisson’s ratio of the brick masonry were set
to 6304 MPa and 0.15, respectively. Additionally, the masonry
structure included concrete structural columns and floor slabs.
C25 concrete with a standard compressive strength of 25 MPa
was selected for the concrete floors, while HPB300 steel bars with
a standard value of yield strength at 3 � 105 kPa were used for the
structure. Because the experiment employed an elastic FE model,
only the linear phase of the material was considered as a material
property. A damping ratio of 0.05 was adopted for the structure.
The seismic waves were applied to the building in the x-direction
because of its high vulnerability to seismic activity. All the nodes
on the fourth floor and roof of the building, comprising 386 and
446 nodes, respectively, were selected for the experiment. The
model was trained and tested for the acceleration, velocity, and
Fig. 8. Visualization of response time history prediction results of the elastic
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displacement time histories of all the nodes on these floors. The
response time histories considered in the experiment were abso-
lute acceleration, absolute velocity, and absolute displacement.
The detailed statistical results of the experiment are presented in
Tables 1–3. Fig. 8 provides a visualization of the results, depicting
the time history prediction results of the acceleration, velocity, and
displacement of a node located at the top of the structure (roof)
under the impact of the next generation attenuation (NGA)03806
seismic wave. The findings of the experiment demonstrated that
the method proposed in this paper could deliver highly accurate
response–time history predictions for masonry structures. Further-
more, the developed method exhibited a prediction speed was
approximately 5000 times faster than that of the FE calculations.
3.2.2. Case 2: Elastic model of eleven-story reinforced concrete
irregular structure

A schematic of the FE model of the eleven-story reinforced con-
crete irregular structure used in this test and a photograph of the
structure are shown in Fig. 9. The height of each floor of the build-
ing was 3.9 m, and the construction materials included C20 con-
crete (with the standard value of compressive strength of
20 MPa) and HPB300 steel bars (with the standard value of yield
strength of 3� 105 kPa). As an elastic FE model was employed, only
the linear phase of the material was considered. The elastic FE
model yielded better simulation results for earthquakes with small
amplitudes. The damping ratio of the structure was selected as
0.0605. All the seismic waves were applied in the y-direction,
which is the most unfavorable direction for the seismic resistance
of this building. All the nodes of the fourth floor, eighth floor, and
roof were selected to perform the experiments, as indicated by the
red markers in Fig. 9. This included eight nodes on the fourth floor,
50 nodes on the eighth floor, and 50 nodes on the top floor (roof).
The acceleration, velocity, and displacement time histories were
trained and predicted separately. The response time histories con-
sidered in the experiment were absolute acceleration, absolute
velocity, and absolute displacement. Tables 4–6 list the statistical
model of the four-story masonry structure. FEM: finite element method.



Table 4
Experimental results of the acceleration time history prediction for the elastic model
of the eleven-story irregular structure.

Location MAE MSE R gr

Floor 4 0.0706 0.0259 0.9847 5639.79
Floor 8 0.0479 0.0104 0.9963 5737.40
Roof 0.0518 0.0156 0.9979 5552.64

Table 5
Experimental results of the velocity time history prediction for the elastic model of
the eleven-story irregular structure.

Location MAE MSE R gr

Floor 4 0.0969 0.0470 0.9739 5554.45
Floor 8 0.0990 0.0532 0.9880 5461.33
Roof 0.0712 0.0279 0.9957 5756.87

Table 6
Experimental results of the displacement time history prediction for the elastic model
of the eleven-story irregular structure.

Location MAE MSE R gr

Floor 4 0.0248 0.0015 0.9995 5939.40
Floor 8 0.0749 0.0134 0.9967 5564.88
Roof 0.0588 0.0100 0.9964 5323.79

Fig. 9. Eleven-story reinforced concrete irregular structure: (a) photograph and (b)
the schematic of the FE model.
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values of the acceleration, velocity, and displacement response
time histories for each floors. A visualization of the prediction
results is presented in Fig. 10, which shows the time history pre-
diction results of the acceleration, velocity, and displacement of a
node on the top of the structure (roof) under the excitation of
the NR1.1–6 seismic wave. The experimental results showed that
the prediction of the Phy-Seisformer model closely matched the
calculation results of the FE model, with a significantly higher cal-
culation speed.

3.2.3. Case 3: Elastic model of twenty-one-story reinforced concrete
frame structure

A schematic of the FE model and a photograph of the twenty-
one-story reinforced concrete frame structure used in this experi-
ment are shown in Fig. 11. The height of each floor of the building
is 3.81 m, and the structure included a 2 m-high reinforcement
layer formed by trusses every three floors. The overall height of
the building is 98 m, with a plan size of 48.6 m� 48.6 m. The mate-
rials of the structure consists of C30 concrete (with the standard
value of compressive strength of 30 MPa), C40 concrete (with the
standard value of compressive strength of 40 MPa), and HPB300
steel bars (with the standard value of yield strength of 3 � 105
10
kPa). Similar to the previous experiment, an elastic FE model was
employed, considering only the linear phase of the material. The
damping ratio of the structure was selected as 0.0871. Because
the y-direction is the most unfavorable direction for the seismic
resistance of this building, all the seismic waves were applied in
the y-direction. All the nodes on the fifth, tenth, fifteenth, twenti-
eth, and roof floors were selected for the experiment, marked in
red in Fig. 11, which include 71 nodes on the fifth floor, 151 nodes
on the fifth floor, 73 nodes on the fifth floor, 73 nodes on the fifth
floor, and 73 nodes on the top floor (roof). In addition, the training
and prediction of the acceleration, velocity, and displacement time
histories were performed separately. In this experiment, the accel-
eration response time history was relative to the ground, while the
velocity and displacement response time histories were the abso-
lute velocities and absolute displacement, respectively. Tables 7–
9 list the statistical values of the acceleration, velocity, and dis-
placement response time histories for each floor. Fig. 12 provides
a visualization of the prediction results, displaying the time history
prediction results of the acceleration, velocity, and displacement of
a node on the top of the structure (roof) under the excitation of the
NGA01817 seismic wave. The accuracy and efficiency of the Phy-
Seisformer model in predicting the structural responses of high-
rise buildings were verified.

3.3. Structural response prediction experiments of elasto–plastic model

3.3.1. Case 4: Elasto–plastic model of a four-story masonry structure
The four-story masonry structure utilized in this study was

identical to the one employed in Section 3.2.1, except for the
elasto–plastic materials used in this experiment. Nonlinear model-
ing was adopted to simulate concrete material behavior based on
the specifications outlined in the ‘‘code for design of concrete
structures” [48]. Figs. 13 and 14 show the compressive and tensile
stress–strain curves of the concrete material and the bilinear iso-
tropic hardening model used for the nonlinear modeling of the
reinforcement. The complex nonlinear behavior of the masonry
was modeled in the same manner as that described by Clementi
[49]. The stress–strain constitutive relationships of the masonry



Fig. 10. Visualization of response time history prediction results of the elastic model of the eleven-story reinforced concrete irregular structure.

Fig. 11. Twenty-one-story reinforced concrete frame structure: (a) photograph and (b) the schematic of the FE model.
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materials under uniaxial compression and uniaxial tension in the
FE calculation are shown in Fig. 15. All the other test parameters
were the same as those described in Section 3.2.1. Tables 10–12 list
the statistical values of the acceleration, velocity, and displacement
response time history predictions for each floor. Additionally,
11
Fig. 16 illustrates the visualization of the predicted results, depict-
ing the time history predictions of the acceleration, velocity, and
displacement for a node at the top of the structure (roof) under
the impact of the NGA01585 seismic wave. The experimental
results verified that the proposed structural response prediction



Table 7
Experimental results of the acceleration time history prediction for the elastic model
of the twenty-one-story reinforced concrete frame structure.

Location MAE MSE R gr

Floor 5 0.1144 0.0572 0.9616 9670.59
Floor 10 0.1193 0.0539 0.9737 9912.78
Floor 15 0.1194 0.0478 0.9708 9318.69
Floor 20 0.0852 0.0281 0.9878 9491.70
Roof 0.0900 0.0346 0.9923 9367.77

Table 8
Experimental results of the velocity time history prediction for the elastic model of
the twenty-one-story reinforced concrete frame structure.

Location MAE MSE R gr

Floor 5 0.1556 0.0768 0.9551 10 004.39
Floor 10 0.0822 0.0239 0.9905 9 580.38
Floor 15 0.0993 0.0279 0.9940 9 488.10
Floor 20 0.0801 0.0225 0.9955 9 929.17
Roof 0.1543 0.0935 0.9865 9 483.48

Table 9
Experimental results of the displacement time history prediction for the elastic model
of the twenty-one-story reinforced concrete frame structure.

Location MAE MSE R gr

Floor 5 0.0485 0.0062 0.9974 10 026.70
Floor 10 0.1361 0.0322 0.9953 9 645.84
Floor 15 0.0766 0.0151 0.9966 9 882.80
Floor 20 0.1221 0.0395 0.9975 9 607.63
Roof 0.1375 0.0423 0.9956 9 381.10
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method could deliver high prediction accuracy for masonry struc-
tures considering elasto–plastic modeling. Furthermore, as FE
elasto–plastic calculation is notably more time-intensive than elas-
Fig. 12. Visualization of response time history prediction results for the elas
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tic calculations, the method proposed in this study is much faster
in predicting the structural response of models using elasto–plastic
materials compared to FE calculations.

3.3.2. Case 5: Elasto–plastic model of eleven-story reinforced concrete
irregular structure

The eleven-story reinforced concrete irregular structure used in
this experiment was the same building as described in Sec-
tion 3.2.2, but with elasto–plastic materials instead of elastic ones.
The nonlinear modeling approach for the concrete and steel rein-
forcement was identical to that described in Section 3.3.1. Except
for the material properties, the other test parameters were the
same as those in Section 3.2.2. Tables 13–15 list the statistical val-
ues of the acceleration, velocity, and displacement response time
histories for each floor. A visualization of the prediction results is
presented in Fig. 17, which shows the time history prediction
results of the acceleration, velocity, and displacement of a node
on the top of the structure (roof) under the excitation of the
NGA01585 seismic wave. It can be observed from the experimental
results that, compared to the prediction of the elastic FE model, the
structural response prediction accuracy of Phy-Seisformer with the
elasto–plastic model was lower. Nevertheless, the time history
predictions of velocity and displacement achieved relatively simi-
lar results.

3.3.3. Case 6: Elasto–the plastic model of a twenty-one-story
reinforced concrete frame structure

The twenty-two-story reinforced concrete frame structure used
in this test was the same as described in Section 3.2.3. The nonlin-
ear modeling of the materials in this building followed the same
curves as those described in Section 3.3.1. Apart from the elasto–
plastic materials, all other experimental parameters were the same
as in Section 3.2.3. Tables 16–18 list the statistical values of the
acceleration, velocity, and displacement response time histories
for each floor. A visualization of the prediction results is presented
in Fig. 18, which shows the time history prediction results of the
acceleration, velocity, and displacement for a node on the top of
tic model of the twenty-one-story reinforced concrete frame structure.



Fig. 13. Nonlinear modeling of concrete: (a) compressive behavior of concrete,
where r indicates the external stress, f �c is the uniaxial compressive strength of
concrete, and ec is the peak strain corresponding to f �c ; and (b) tensile behavior of
concrete, where f �t is the uniaxial tensile strength of concrete, and et is the peak
strain corresponding to f �t .

Fig. 14. Bilinear isotropic hardening model of the rebar, where f y;r is the yield
strength of the rebar, ey is the yield strain corresponding to f y;r , f st;t is the ultimate
strength and eu is the ultimate strain corresponding to f st;t .

Fig. 15. Nonlinear modeling of masonry: (a) compressive behavior of masonry,
where f m is the uniaxial compressive strength, and (b) tensile behavior of masonry,
where ft is the uniaxial tensile strenth.

Table 10
Experimental results of the acceleration time history prediction for the elasto–plastic
model of the four-story masonry structure.

Location MAE MSE R gr

Floor 4 0.1986 0.2647 0.9713 19 659.40
Roof 0.3100 0.8258 0.9663 19 568.49

Table 11
Experimental results of the velocity time history prediction for the elasto–plastic
model of the four-story masonry structure.

Location MAE MSE R gr

Floor 4 0.1470 0.1333 0.9573 20 407.85
Roof 0.1951 0.2706 0.9369 19 611.45

Table 12
Experimental results of the displacement time history prediction for the elasto–
plastic model of the four-story masonry structure.

Location MAE MSE R gr

Floor 4 0.0335 0.0066 0.9979 19 785.17
Roof 0.0452 0.0135 0.9962 19 573.26
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the structure (roof) under the excitation of the NGA02074 seismic
wave. The experimental results show that the proposed Phy-
Seisformer can achieve high prediction accuracy and real-time pre-
diction speed for super high-rise buildings using an elasto–plastic
model dataset.
13
4. Ablation study and comparative experiments

4.1. Ablation study

To verify the effectiveness of the physics estimator in the pro-
posed Phy-Seisformer model, we conducted an ablation study for
the physics estimator. The acceleration response time history of



Fig. 16. Visualization of response time history prediction results for the elasto–plastic model of the four-story masonry structure.

Table 13
Experimental results of the acceleration time history prediction for the elasto–plastic
model of the eleven-story irregular structure.

Location MAE MSE R gr

Floor 4 0.3300 0.3449 0.7803 24 905.07
Floor 8 0.4792 0.6612 0.7882 24 262.07
Roof 0.7942 1.7645 0.7714 24 016.90

Table 14
Experimental results of the velocity time history prediction for the elasto–plastic
model of the eleven-story irregular structure.

Location MAE MSE R gr

Floor 4 0.2118 0.1110 0.9456 24 880.35
Floor 8 0.3743 0.3672 0.8903 24 026.83
Roof 0.5808 0.9576 0.8522 23 982.54

Table 15
Experimental results of the displacement time history prediction for the elasto–
plastic model of the eleven-story irregular structure.

Location MAE MSE R gr

Floor 4 0.0801 0.0134 0.9974 23 292.74
Floor 8 0.1643 0.0826 0.9828 21 718.29
Roof 0.2443 0.1732 0.9702 22 029.75
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the roof in the eleven-story reinforced concrete irregular structure
of the elasto–plastic model was selected as the dataset for the
ablation experiment. The tested models were Phy-Seisformer and
Phy-Seisformer without the physics estimator and the correspond-
14
ing feature extraction module. The experimental results are pre-
sented in Table 19. A comparison of the prediction results of the
two models under the input of the NGA06163 and NGA02646 seis-
mic waves is shown in Fig. 19. The experimental results show that
the model with the added physics estimator can fully use struc-
tural information to significantly improve the accuracy of the
response time history prediction.
4.2. Comparative experiment of seismic wave amplitude

Owing to the damage and stiffness degradation of the compo-
nents in the time–history analysis of the elasto–plastic model,
the calculation results of the time–history analysis changed signif-
icantly with the transformation of the amplitude of the seismic
wave. This experiment aimed to explore the differences in predic-
tion accuracy under two seismic wave amplitude conditions. In the
code for the seismic design of buildings [50], Shanghai falls under
the seismic fortification intensity of seven degrees, which corre-
sponds to a seismic wave amplitude of 2200 mm�s�2 during struc-
ture design. Therefore, in this study, the same 200 seismic waves
were used to conduct comparative experiments under two ampli-
tude ranges, 350–2200 and 350–3500 mm�s�2. The dataset used
the acceleration time histories of all nodes on the top floor (roof)
of the eleven-story reinforced concrete irregular structure. The
results of the experiment are listed in Table 20, where the two data
points before and after the oblique line in each grid represent the
experimental results under the two cases of seismic wave ampli-
tude, 350–2200 and 350–3500 mm�s�2, respectively. The results
show that when the Phy-Seisformer model performs a time history
prediction for the elasto–plastic model, the prediction results var-
ied with changes in the seismic wave amplitude range.
The prediction accuracy is relatively high when the seismic wave
amplitude is small.



Fig. 17. Visualization of response time history prediction results for the elasto–plastic model of the eleven-story reinforced concrete irregular structure.

Table 16
Experimental results of the acceleration time history prediction for the elasto–plastic
model of the twenty-one-story reinforced concrete frame structure.

Location MAE MSE R gr

Floor 5 0.1613 0.0893 0.8890 13 619.43
Floor 10 0.1096 0.0396 0.9711 14 045.40
Floor 15 0.1362 0.0513 0.9589 14 182.30
Floor 20 0.1418 0.0596 0.9527 13 353.63
Roof 0.0956 0.0380 0.9820 13 352.81

Table 17
Experimental results of the velocity time history prediction for the elasto–plastic
model of the twenty-one-story reinforced concrete frame structure.

Location MAE MSE R gr

Floor 5 0.1888 0.0847 0.9446 14 012.95
Floor 10 0.1124 0.0408 0.9789 13 335.96
Floor 15 0.1109 0.0332 0.9858 13 473.11
Floor 20 0.1291 0.0516 0.9862 14 154.70
Roof 0.1316 0.0618 0.9883 14 118.02

Table 18
Experimental results of the displacement time history prediction for the elasto–
plastic model of the twenty-one-story reinforced concrete frame structure.

Location MAE MSE R gr

Floor 5 0.0732 0.0133 0.9948 14 266.02
Floor 10 0.1185 0.0344 0.9944 13 489.98
Floor 15 0.1272 0.0392 0.9932 14 020.40
Floor 20 0.1994 0.1026 0.9875 13 870.78
Roof 0.2323 0.1495 0.9892 13 957.52
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4.3. Comparative experiment of model selection

In the field of structural response prediction, the LSTM-based
model [33,34] is one of the most commonly used models and has
the highest prediction accuracy in existing research. To verify the
effectiveness of the Phy-Seisformer model proposed in this study
compared with that of existing models, a comparison experiment
was conducted. To ensure a fair comparison between Phy-
Seisformer and LSTM, only the SeisBlock part of Phy-Seisformer
was replaced by the LSTM model, whereas other parts of the
model, including the physics estimator, remained unchanged. The
LSTM model followed the same input and output as SeisBlock,
15
adopting a sequence-to-sequence architecture identical to that
presented by Meng et al. [51]. The acceleration response time his-
tory of the roof in the eleven-story reinforced concrete irregular
structure of the elasto–plastic model was selected as the dataset
for the comparative experiment. The experimental results are
listed in Table 21. demonstrating that Phy-Seisformer outper-
formed the LSTM-based model significantly in building structural
response prediction.

5. Discussion

This study presents a novel method for high-precision real-time
response prediction of multiple nodes in building structures. By
incorporating the physical information of the structures, the pro-
posed method enables rapid and accurate structural response pre-
diction. The effectiveness, accuracy, and computational efficiency
of the proposed model were validated through a series of experi-
ments conducted on various buildings. The effectiveness of the
proposed method was validated for different types of building
structures. The proposed method holds the potential for wide-
spread application in the civil engineering domain, particularly
for rapid prediction tasks related to a diverse range of building
structural responses. It could provide crucial support for structural
health monitoring, seismic damage assessment, and other essential
aspects of building maintenance and safety. However, the method



Table 19
Ablation study of the physics estimator in the Phy-Seisformer.

Model MAE MSE R gr

Phy-Seisformer (without physics estimator) 0.9486 2.2398 0.4866 51 869.25
Phy-Seisformer 0.7942 1.7645 0.7714 24 016.90

Fig. 18. Visualization of response time history prediction results for the elasto–plastic model of the twenty-one-story reinforced concrete frame structure.

Fig. 19. Visualization of the acceleration response time history prediction results for the Phy-Seisformer model with and without the physics estimator under the input of the
(a) NGA06163 and (b) NGA02646 seismic waves.
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proposed in this study did not consider the spatial relationships
between different nodes in the building structure. Thus, future
research should explore ways to incorporate these spatial relation-
ships to enhance the prediction accuracy of this method. In addi-
tion, the method presented in this study exhibits an important
16
limitation regarding its applicability to cases in which the response
of a building structure is so large that it collapses. However, this
method does not consider a large deformation of the structure,
which is a critical factor in such cases. Therefore, it cannot be uti-
lized to analyze and predict the behavior of a building subjected to



Table 20
Comparative experiment of seismic wave amplitude.

Maximum amplitude (mm�s�2) MAE MSE R

2200 0.7144 1.5176 0.8568
3500 0.7942 1.7645 0.7714

Table 21
Comparative experiment of model selection.

Model MAE MSE R

LSTM 1.1740 4.0273 0.3381
Phy-Seisformer 0.7942 1.7645 0.7714

Y. Zhou, S. Meng, Y. Lou et al. Engineering xxx (xxxx) xxx
extreme loading conditions. One potential research direction that
could enhance the practical applicability of the Phy-Seisformer
model is to enhance its transferability between different building
structures.

6. Conclusions

This study proposes a high-precision real-time structural
response time history prediction method under seismic action
based on deep learning and a physics estimator. The proposed
method can predict the acceleration, velocity, and displacement
response time histories of numerous nodes, thereby providing
the necessary input for subsequent structural damage assess-
ments. In addition, this study proposes a Phy-Seisformer model
based on the Transformer model and a numerical calculation
method. Structural physical information is integrated into the
data-driven calculation process through a physics estimator so that
the model can achieve better prediction results. Moreover, the pro-
posed method can be easily applied to the structural response pre-
diction of high-rise buildings. The experimental results
demonstrate that the proposed method delivers consistently accu-
rate predictions across various structures, including four-story
masonry, eleven-story reinforced concrete irregular, and twenty-
one-story reinforced concrete frame structures. Notably, when pre-
dicting a building’s response time history in the case of elasto–
plastic calculations, the Phy-Seisformer prediction speed can be
at least ten thousand times faster than that of FE calculations.
The effectiveness of the proposed method was validated for differ-
ent types of building structures. The ablation experiment showed
that the physics estimator in the Phy-Seisformer model proposed
in this study can effectively use structural physical information
to achieve better prediction results than a simple ground motion
input. This study also investigated the impact of different ampli-
tude ranges of the ground motion input on the prediction effect
of the model. The test results indicated that the prediction accu-
racy of the model was better when the seismic wave amplitude
was small. Future research should focus on improving the predic-
tion effect of real-time structural response prediction for a more
extensive range of seismic wave amplitudes.
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