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Ecological restoration policies and their implementation are influenced by ecological and socioeconomic
drivers. Top-down approach-based spatial planning, emphasizing hierarchical control within government
structures, and without a comprehensive consideration of social–ecological interactions may result in
implementation failure and low efficiency. Although many researchers have indicated the necessity to
engage social–ecological interactions between stakeholders in effective planning processes,
socioeconomic drivers of ecological restoration on a large scale are difficult to quantify because of data
scarcity and knowledge limitations. Here, we established a new ecological restoration planning approach
linking a social–ecological system framework to large-scale ecological restoration planning. The new
spatial planning approach integrates bottom-up approaches targeting stakeholder interests and provides
social considerations for stakeholder behavior analysis. Based on this approach, a meta-analysis is
introduced to recognize key socioeconomic and social–ecological factors influencing large-scale
ecological restoration implementation, and a stochastic model is constructed to analyze the impact of
socioeconomic drivers on the behavior of authorities and participants on a large scale. We used the
Yangtze River Basin-based Conversion of Cropland to Forest Program (CCFP), one of the largest payments
for ecosystem service programs worldwide, to quantify the socioeconomic impacts of large-scale
ecological restoration programs. Current CCFP planning without socioeconomic considerations failed to
achieve large-scale program goals and showed low investment efficiency, with 19.71% of the
implemented area reconverting to cropland after contract expiry. In contrast, spatial matching between
planned and actual restoration increased from 61.55% to 81.86% when socioeconomic drivers were
included. In addition, compared to that with the current CCFP implementation, the cost effectiveness
of spatial planning with social considerations improved by 46.94%. Thus, spatial optimization planning
that integrates both top-down and bottom-up approaches can result in more practical and effective
ecological restoration than top-down approaches alone. Our new approach incorporates socioeconomic
factors into large-scale ecological restoration planning with high practicality and efficiency.

� 2022 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction benefit the environment. Land conversion is implemented in inter-
Macro-scale ecological restoration programs have been imple-
mented worldwide to restore ecosystem services by paying partici-
pants compensation to alter their land management practices to
acting social–ecological systems (SESs) coupled across scales
where humans are a part of nature. Thus, the successful implemen-
tation and cost effectiveness of these programs depend on the
interactions between humans and natural systems [1].

Currently, top-down approaches originating from hierarchical
government structures [2] have created widespread and immedi-
ate conservation mandates and are thus widely applied in
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large-scale ecological restoration programs [3]. Specifically, a
higher-level government (‘‘buyer”), like the central government,
sets nationwide ecological restoration goals based on the biophys-
ical processes of land conversion. The lower-level government or
local-scale organizations, such as local governments, are tasked
with achieving these goals through negotiations with the partici-
pants (‘‘seller”), like landowners, to achieve certain conservation
mandates [4–6]. However, spatial mismatches in implementation
often occur on a broad scale, where decisions are based on coarse
scale information and the local scale, and the implementation of
on-the-ground restoration is impacted by resource limitations
and social complexity [7–9]. This mismatch often results in the
failure of large-scale restoration planning due to a failure to char-
acterize social–ecological interactions affecting stakeholder behav-
ior during the implementation processes and thus, fails to achieve
the desired goals [10,11]. To minimize implementation conflicts,
large-scale restoration planning should incorporate a comprehen-
sive analysis of social–ecological interactions, including socio-
economic constraints, participant willingness [12,13], and
decision-maker preferences [11].

To better understand the complex social–ecological interac-
tions involved in ecological restoration implementation, an SESs
framework, assuming that ecological and social systems are
linked to each other, should be coupled with large-scale ecologi-
cal restoration planning to achieve the desired outcomes. The
SESs framework clarifies the relationships between the ecological
process of land use conversion in biophysical systems, the socio-
economic processes among stakeholders (i.e., decision-makers and
participants) in social systems, and ecological restoration imple-
mentation [14]. Thus, the spatial planning of ecological restora-
tion based on the SESs framework can reduce implementation
conflicts and realize practical and effective goals with full consid-
eration of local cultural, socioeconomic, and ecological contexts
[15]. Based on the SESs framework, the socioeconomic process
of stakeholder consensus can be incorporated into large-scale
ecological restoration planning. Stakeholder behavior analysis
can be conducted through bottom-up approaches by engaging
stakeholders in a local area to address problems of local interest.
With the integration of top-down and bottom-up approaches,
land conversion spatial planning can easily create collaborative
and inclusive governance and collective action for large-scale
implementation and fulfill the needs of stakeholders at multiple
levels (such as higher-level government, local decision makers,
and landowners) [2,3].

Although bottom-up approach-based stakeholder behavior
analysis has been explored with regard to local vegetation
restoration practices, quantitative analysis of the complex social–
ecological interactions that influence large-scale stakeholder
behavior is challenging [16,17]. Both ecological and socioeconomic
heterogeneity make it difficult to identify key variables influencing
stakeholder behavior, and traditional data collection methods (e.g.,
household surveys) are often impractical for investigating overall
stakeholder needs. As such, new approaches are required to
incorporate quantitative analyses of social–ecological interactions
into large-scale spatial restoration planning.

Previous studies using household survey data (e.g., household
characteristics, government incentives, and local economic
development) have provided information on the effects of socio-
economic factors on stakeholder behavior in different regions
[18,19]. Meta-analysis can identify commonalities across different
case studies and determine which variables result in behaviors of
interest [20]. The collation of decentralized and scattered datasets
from discrete locations can be used to identify key social–
ecological variables that influence stakeholder behavior at large
scales. Such an analysis provides a practical way of overcoming
data limitations and cognitive deficiencies to estimate the
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effects of socioeconomic interactions on the implementation of
large-scale ecological restoration programs.

In the current study, based on the SESs framework, we inte-
grated top-down and bottom-up approaches to incorporate
social–ecological drivers into large-scale ecological restoration
planning. We selected the Yangtze River Basin-based Conversion
of Cropland to Forest Program (CCFP), one of the largest payments
for ecosystem service (PES) programs in the world, as a case study.
We first evaluated the practicality (spatial match) and cost effec-
tiveness of the current top-down-based CCFP planning. We then
used our integrated framework to analyze the social–ecological
impact on stakeholders and provided a new CCFP planning out-
come, including social–economic drivers. We analyzed and com-
pared the practicality and cost effectiveness of different CCFP
plans to determine the importance of socioeconomic impact on
the effectiveness of ecological restoration. We aimed to:① provide
a new approach to quantitatively analyze socioeconomic impacts
on ecological restoration program implementation at large scales
and ② demonstrate the importance of socioeconomic considera-
tions in improving the practicality and effectiveness of PES pro-
grams. Finally, we hope that integrating top-down and bottom-
up approaches in spatial planning will provide a feasible way to
develop effective large-scale ecological restoration policies.
2. Study area and methods

2.1. Yangtze River Basin and CCFP implementation based on top-down
approach

The Yangtze River Basin is the largest watershed in China,
encompassing nearly 1.8 � 106 km2 of land, and exhibits enormous
ecological and economic heterogeneity (Fig. 1). The basin is the
most populous and agriculturally productive economic belt in
China and contains over 40% of the nation’s population and agricul-
tural output [19]. The terrain gradually flattens from west to east,
and soil erosion has become a serious environmental problem, par-
ticularly in the upper reaches of the river. In 1998, catastrophic
flooding and soil erosion within the basin endured many lives
and caused more than 12 billion USD in economic losses [21]. In
an attempt to prevent further soil erosion and flooding, the CCFP
was implemented in the basin in 1999.

The CCFP, also known as the Grain for Green and Sloping Land
Conversion Program, covers a broad geographic span, a large num-
ber of participants, and tremendous financial commitments [22].
The program aims to convert sloping croplands into forests to
achieve soil erosion control [23]. For cost-effective management
and program operability, a top-down approach was adopted for
CCFP implementation. In the first round (1999–2013) of CCFP plan-
ning under the National Forestry Administration, target plots were
defined as cropland patches on slopes > 25�, excluding prime crop-
land (areas permanently protected against urban development),
where productivity was the lowest and erosion was the highest.
In 2014, the CCFP was re-launched with extended target areas,
croplands on slopes > 15� near water sources, and areas important
for water supply. Croplands were designated for conversion into
either ‘‘ecological forests” or ‘‘economic forests,” and landholders
who agreed to land-management conversion were eligible for
compensation either in cash or in-kind (e.g., grain subsidies and
seedlings for economic forest plantations) via contracts with the
local government [24]. The CCFP payments included a one-time
fee of 750 CNY�ha�1 (1 ha = 10 000 m2) for saplings or seeds, an
annual living allowance of 300 CNY�ha�1, and an annual grain/cash
subsidy of 1575 CNY�ha�1 [25]. After two rounds of the CCFP, eco-
logical restoration achievements, including improvements in water
and soil conservation, timber, carbon sequestration, biodiversity



Fig. 1. Location of the Yangtze River Basin, China.
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habitat, water quality [26–28], and economic development, includ-
ing rural livelihood improvement and poverty alleviation, have
been widely observed [29].

2.2. Analytical framework in SESs

Large-scale ecological restoration programs, such as the CCFP,
are typical SESs. Linking the SESs framework to large-scale ecologi-
cal restoration planning helps to better understand comprehensive
social–ecological interactions in program implementation [17].
Based on the SESs framework, the integration of top-down and
bottom-up approaches provides a quantitative way to analyze
the socioeconomic impacts on program implementation and guide
spatial planning.

In this study, we created a general framework for ecological
restoration planning in SESs by integrating the top-down and
bottom-up approaches. We used the CCFP in the Yangtze
River Basin as an example and put it into the SESs framework
(Fig. 2(a)). In this framework, the CCFP can be divided into three
sub-systems: a resource system and resource system unit (e.g.,
slope and grain yield), governors (e.g., local government), and
actors (e.g., farmers). The outcomes (practicality and efficiency)
of CCFP planning are controlled by social–ecological interactions
among these three subsystems.

Based on the SESs framework, we analyzed the complex social–
ecological interactions involved in CCFP implementation. For the
current CCFP policy with a top-down approach, the implementa-
tion rules developed at the central government level are based
on the ecological characteristics related to land use conversion in
the resource subsystems [30,31]. The central government dis-
tributed land enrollment quotas followed by subsequent distribu-
tion through counties, townships, and finally to participating
villages. The million decentralized volunteer farmers were core
agents of the program. Although the CCFP standards were set by
the central government, the actual implementation was still locally
variable and, in many ways, flexible in different places and regions,
especially at the county level, the main implementation unit of the
policy. Local (village and township) governments, serving as key
mediators between the central government and farmers, have
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the right to decide which plots are enrolled in the CCFP [32]. Farm-
ers also have the right to decide whether to participate in the CCFP.
CCFP implementation mismatch or failure occurred when the local
government chose target plots that did not coincide with the CCFP
standards, or the farmers were unwilling to participate in the CCFP
after the contract ended and reconverted the plot to cropland.
Thus, the behaviors, attitudes, and preferences in both the gover-
nance subsystem (local governments) and actor subsystem (farm-
ers) influenced by local political settings (such as trust between
government and farmers), social norms, and economic conditions
(such as gross domestic product (GDP) and household income)
heavily affect CCFP implementation [18].

To reduce the spatial mismatch and improve program efficiency
in large-scale ecological restoration implementation, it is necessary
to quantify the social–ecological impacts on the behavior of stake-
holders (local government and farmers). In this study, we inte-
grated fine-scale bottom-up approaches into large-scale spatial
planning. The integrated approaches allow quantitative analysis
of the impacts of stakeholder behaviors on CCFP implementation
by ① identifying key social–ecological variables using meta-
analysis, ② establishing stakeholder behavior modeling, and
③ predicting the probability of successful implementation
(Fig. 2(b)). We tested the practicality and cost effectiveness of
spatial planning using top-down and bottom-up integrated
approaches to determine the impact of socioeconomic processes
on CCFP implementation.

2.3. Identification of social–ecological variables influencing decision-
maker preference and participant willingness based on a bottom-up
approach

Socioeconomic impacts on program implementation can be
reflected in decision-maker preferences and participant willing-
ness. The CCFP is a government-led PES, yet the local government,
which decides the CCFP implementation plots, and landowners
who participate in the CCFP and receive compensation, are consid-
ered core agents of the program. We used meta-analysis to identify
key social–ecological factors affecting CCFP implementation and
constructed a stochastic model to estimate the probability of CCFP



Fig. 2. Integrated framework for top-down and bottom-up approaches within social–ecological systems based on a large-scale ecological restoration program. (a) An
analytical framework was established to integrate top-down (focusing on ecological characteristics) and bottom-up (considering behaviors of stakeholders) approaches to
increase practicality and efficiency of large-scale ecological restoration programs. (b) A three-step bottom-up approach to integrate impacts of stakeholder behaviors from
previous fine-scale research into large-scale ecological programs.

y https://CRAN.R-project.org/package=dismo.
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implementation in cropland plots based on social–ecological pro-
cess analysis. The selection of social–ecological variables may be
restricted by local government land enrollment strategies and
farmers’ willingness to participate [33].

Socio–ecological factors influencing decision-maker prefer-
ences. Based on previous fine-scale studies, we found that local
governments prefer to enroll high-slope, low-quality, and contigu-
ous land near roads [23,34,35]. Therefore, we selected social–
ecological variables, including biophysical (slope and average grain
yield from 2010 to 2015) and socioeconomic factors (distance of
croplands to roads and distance of croplands to households), as
key factors influencing decision-maker preferences.

Social–ecological factors influencing participant willingness.
To understand participant willingness on a large scale, social–
ecological variables were collected based on the SESs framework,
and a meta-analysis was used for key social–ecological variable
selection.

First, five categories (i.e., land features (resource units and
resource system), government characteristics (government sys-
tem), household characteristics (actors), socioeconomic and politi-
cal settings (social, economic, and political settings), and
socioeconomic interactions between the decision maker and par-
ticipants (interactions)) were set to classify the social–ecological
variables based on the first-level core subsystem of the SESs frame-
work (Fig. 2) [14]. The key social–ecological variables were
obtained from a meta-analysis of small-scale case studies [15].
We used ‘‘Sloping Land Conversion/Grain for Green Project,” ‘‘Con-
version of Cropland to Forest Program,” ‘‘householder,” ‘‘farmer,”
and ‘‘participation” as keywords to collect case studies from
the peer-reviewed scientific literature (‘‘Web of Science,”
‘‘ScienceDirect,” and China National Knowledge Infrastructure
(‘‘CNKI”)). The inclusion criteria were that the study had to provide
sufficient evidence to assess social–ecological impacts on CCFP
participant willingness and quantitatively analyze the relationship
between social–ecological factors and participation rates. In total,
47 case studies were selected for which the relevant social–
ecological factors influencing participant willingness could be
traced (Table S1 in Appendix A).

Second, key social–ecological variables influencing participant
willingness were selected based on two standards: a significant
correlation with participant willingness documented more than
ten times based on meta-analysis and data availability. Seven
social–ecological indices were chosen to reflect the key social-
ecological factors influencing participant willingness. The two bio-
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physical indices were slope and grain yield, which reflect the
impact of slope and opportunity costs, respectively. The five
socioeconomic indices were education level, off-farm labor alloca-
tion (labor allocation toward non-farm activities), household labor
endowments (the available labor for households), age, and house-
hold income level, reflected by the average illiteracy rate at the
county level, distance to the metropolis, population, average per-
centage of people aged above 65 at the county level, and GDP
(Table S2 in Appendix A).

2.4. Probability simulation of CCFP implementation in cropland plots

Based on the key social–ecological variables selected, we used
the MaxEnt model, a fuzzy classification algorithm based on the
principle of maximum entropy [35], to quantify the social–ecolog-
ical impacts on stakeholder behavior and simulate the probability
of successful CCFP implementation in sloping cropland plots, that
is, an enrolled plot will not be reconverted after the contract ends.
In this study, we used implemented CCFP plots from 2000 to 2010
as sample data, as the first phase of the CFFP ended in 2013. Suc-
cessfully implemented CCFP plots from 2000 to 2015 were
obtained from the CCFP plots from 2000 to 2015, extracting the
reconverted plots from 2010 to 2015. Land use data for 2000,
2010, and 2015 and slope data were obtained from national land
survey data. We used the Dismo packagey in R for correlation analy-
sis to select variables for the MaxEnt simulation. If the correlation
between two variables was above 0.95, only one of the variables
was selected for the simulation [36]. We found that GDP was signifi-
cantly correlated with the average village population, distance to
cities, and distance to roads, while the slope was highly related to
average grain yield and distance to roads.

Thus, we excluded the average grain yield, distance to road, and
average village population from key social–ecological variables and
selected GDP and slope as independent variables for regression
analysis. Finally, six social–ecological indices, including slope,
GDP, distance from cropland to household, illiteracy, age, and dis-
tance from household to metropolis, were chosen and used to esti-
mate CCFP implementation probability.

Two-thirds of the sample plots were selected to calibrate the
fuzzy classification algorithm and one-third were used to validate
the output probability map. Cross-validation was maintained in
the replicate run, and the number of iterations was fixed at 500.

https://CRAN.R-project.org/package=dismo
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We used 0.1 as the regularization number to avoid overfitting the
test data [37]. The area under the receiver operating characteristic
(ROC) curve was used to measure model accuracy, ranging from 0.5
(random prediction) to 1 (perfect discrimination) [38].

In this study, the ROC score demonstrated high accuracy in
CCFP implementation prediction (ROC score = 0.803). Based on
the modeling results, the contributions of social–ecological factors
and their impact on MaxEnt prediction were analyzed using the
Jackknife test (Table S3 in Appendix A). Response curve analysis
was also performed to explain the social–ecological impact on
decision-maker preferences.

2.5. Embedding a bottom-up approach into CCFP planning

Based on the probability map of successful CCFP implementa-
tion in sloping cropland plots, we adopted the multi-objective spa-
tial optimization method to select target plots for spatial planning
with socioeconomic dimensions. Target plots were selected based
on three objectives: ① target plot probability above 0.5, ② plots
with the highest implementation probability prioritized, and
③ overall plot area not larger than that of current CCFP target
plots, solely based on biophysical characteristics.

2.6. Practicality and efficiency of CCFP planning integrating top-down
and bottom-up approaches

To estimate the cost effectiveness of CCFP spatial planning with
embedded social considerations, we tested the cost effectiveness of
three CCFP spatial targeting scenarios: ① current CCFP targeting
plan, ② targeting plan embedded with socioeconomic drivers,
and ③ actual CCFP implementation from 2015 to 2017.

We used the actual CCFP implementation from 2015 to 2017 to
evaluate the practicality and efficiency of different spatial planning
approaches.

(1) Current CCFP spatial planning based on a top-down
approach. For current CCFP planning based on ecological analysis
alone, target plots were croplands, excluding prime croplands
(obtained from land survey data), with slopes > 15� in water-
source areas or > 25� in non-water-source areas [24]. Water source
areas were obtained from a list of the most important water
sources in China published by the Chinese Ministry of Water
Resources.

(2) CCFP spatial planning integrating top-down and bottom-up
approaches. The target cropland plots for spatial planning with an
embedded bottom-up approach, which also excluded prime crop-
lands, were selected based on the method mentioned in the previ-
ous steps.

(3) Actual CCFP implementation from 2015 to 2017. The actual
sloping cropland converted to forest from 2015 to 2017 was
obtained via land survey data analysis.

Practicality. We analyzed the degree of spatial matching
between CCFP spatial planning and actual implementation to
reflect planning practicality. We created a 1 km � 1 km fishnet
across the study area as grid cells. Grid cells containing actual CCFP
plots were selected as implementation cells, and cells containing
both actual and candidate CCFP plots were selected as matched
cells. Although this only provides an approximation because not
all cells are under the CCFP, it is a common approach applied in
pixel-based imagery classification [39]. The matching degree is
the percentage of matched cells in the actual implementation cells.

Efficiency. We also analyzed the efficiency of different CCFP
spatial plans based on the proxy indicator of benefit (soil retention,
the main goal of CCFP) and payment from CCFP. As there was no
specific CCFP spatial planning from 2015 to 2017, we used the tar-
get area from the CCFP task report [40] as the selection rule and
randomly selected candidate CCFP plans 30 times. The average cost
54
effectiveness of the selected CCFP plans was used to compare the
efficiency of different CCFP spatial plans. The efficiency of CCFP
implementation was computed using the following equations:

E ¼ B=C ð1Þ

C ¼ p � Ps þ 1� pð Þ � Pf ð2Þ
where E is the CCFP implementation efficiency, soil retained under
CCFP payments per hectare (kg�CNY�1); B is the benefit of soil reten-
tion increment (kg�(ha�a)�1) after CCFP implementation (calculated
by Kong’s method [41]); C is the CCFP investment per hectare; p is
the probability of target plots being successfully transitioned
through land-management conversion; Ps is the payment (CNY�
(ha�a)�1) for successful implementation of CCFP; and Pf is the pay-
ment (CNY�(ha�a)�1) for failed implementation of CCFP (five times
the current payment, the average payment value based on a previ-
ous participant willingness survey [35,42]).
3. Results

3.1. Practicality of first-round CCFP planning based on a top-down
approach

Based on the State Forestry Administration criteria, target crop-
lands for the first round of the CCFP and croplands on slopes > 25�,
excluding prime croplands (Fig. 3), were primarily distributed in
decentralized and mountainous areas. However, only 59.30% of
the CCFP plots enrolled between 2000 and 2010 fell within the
above target areas, indicating that 40.70% of the plots did not
follow the CCFP policy rules and were implemented on
slopes < 25�. Moreover, 19.71% of CCFP plots were reconverted to
cropland after contract expiry, indicating the low practicality of
current slope-based only CCFP planning and top-down approaches.

3.2. Impacts of socioeconomic factors on practicality of CCFP planning
based on a bottom-up approach

In SESs, both the CCFP land enrollment preferences of local gov-
ernments and farmers’ willingness to participate were significantly
influenced by social–ecological factors. The former was signifi-
cantly influenced by distance to road and opportunity costs of land,
whereas the latter was significantly influenced by slope, opportu-
nity costs of land, education level, off-farm labor allocation, house-
hold labor endowments, and household income level (Fig. 4(a),
Table S1). After exclusion of strongly correlated variables, CCFP
implementation was influenced by GDP (45.6%), distance from
households to cropland (13.8%), illiteracy (13.6%), and slope
(13.4%) (Fig. 4(b), Table S3). Taking these socioeconomic factors
into account in the bottom-up approach increased the accuracy
of the CCFP implementation prediction (ROC score = 0.803)
(Fig. 4(c)).

3.3. Practicality and efficiency of adjusted CCFP pattern integrating
top-down and bottom-up approaches

Compared to that with candidate CCFP croplands without
socioeconomic considerations (Fig. 5(a)), the spatial matching rate
of candidate croplands with socioeconomic factors to actual CCFP
croplands registered between 2015 and 2017 increased from
61.55% to 81.86% (Fig. 5(b)). These results suggest that incorporat-
ing bottom-up approaches could significantly improve the practi-
cality of CCFP spatial planning implementation.

The successful implementation rate from spatial planning inte-
grating the bottom-up approach increased from 52.82% to 77.53%
with socioeconomic impacts (Fig. 6(a)). Furthermore, based on



Fig. 3. Distribution patterns of CCFP candidate and actual croplands between 2000 and 2010 and reconverted croplands after the first-round CCFP.
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the average decrease in soil erosion under payment for each hec-
tare, the cost effectiveness of CCFP planning based solely on bio-
physical attributes, 10.38 kg�CNY�1 was the lowest, and that of
the spatial planning integrating the bottom-up approach improved
by 46.95% (Fig. 6(b)), compared to that with the actual CCFP imple-
mentation. The results indicate the importance of a bottom-up
approach with socioeconomic integration to improve spatial plan-
ning efficiency.
4. Discussion

For large-scale ecological restoration programs implemented in
SESs, a better understanding of social–ecological interactions is
essential to a successful implementation. Top-down approaches
based on biophysical characteristics can provide policymakers
with a better understanding of the ecological processes involved
in restoration [43]. However, spatial planning that relies solely
on the biophysical processes of ecological restoration may fail
despite considerable investment in time and effort [17]. In this
study, we examined the success of top-down prioritization of plots
for the CCFP policy based solely on biophysical attributes (i.e.,
slope). The results show that in the first round of the CCFP
(2000–2010), over 40% of the actually implemented plots in the
Yangtze River Basin (Fig. 3) failed to comply with policy rules
regarding specific minimum slopes, resulting in a failure to maxi-
mize outcomes for ecological restoration. In addition, over 19% of
the implemented CCFP plots were reconverted to cropland after
contract expiry. These results are similar to previous observations
in other CCFP case studies [33,44,45]. The mismatch and failure of
implementation highlights the low efficiency of spatial planning
based on ecological process analysis alone.

Effective program implementation requires information on the
effects of socioeconomic factors on stakeholder behavior, such as
preferences (e.g., maximizing income and minimizing investment)
and background experiences (e.g., socioeconomic norms) [46,47].
Bottom-up approaches are essential for obtaining information on
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stakeholder needs and reducing implementation conflicts. Most
agent-based models focusing on stakeholder behavior quantifica-
tion at the local scale cannot be applied on a large scale
because of data limitations and limited knowledge of complex
socioeconomic interactions [48,49]. Traditional data collection
methods, such as household surveys, are impractical for collecting
data on overall social–ecological factors for scientific modeling.
Consequently, the main challenge for quantifying large-scale eco-
logical restoration processes is to identify the indicators of key
social–ecological factors influencing agent behavior. In this study,
we provide a new method to collect data on stakeholder behavior
and model large-scale ecological restoration processes by using
meta-analysis and regression modeling and integrating top-down
and bottom-up approaches based on the SESs framework.

Compared to previous analytical frameworks in SESs [50,51],
our method provides a quantitative analysis of the social–ecologi-
cal impact of large-scale ecological restoration implementation
and spatial information on large-scale ecological restoration plan-
ning. Based on this approach, we find that the CCFP planning we
propose here shows an improvement in the spatial matching rate
(from 61.55% to 81.86%) (Fig. 5) as well as the cost effectiveness
(Fig. 6). The results emphasize the contribution of socioeconomic
impacts to large-scale PES program implementation. Based on
our regression model results, we find that social–ecologica factors,
such as household income level (GDP), distance to household, edu-
cation level, slope, and age (average percentage of people aged
above 65), significantly affect the implementation of CCFP in the
Yangtze River Basin by influencing local government preferences,
the willingness of residents to participate, and long-term adher-
ence to the program. In general, the CCFP was more likely to fail
in areas with low household income and education, high age, long
distances from settlements, and low slopes (Fig. 4(b)).

The empirical evidence from field surveys supports our findings.
In our study, distance to the household was highly related to the
local government’s preference for target plot selection. Similar
studies have shown that most village and township government
decision-makers prefer the easier-to-implement method of simply



Fig. 4. Social–ecological impact on CCFP implementation based on the bottom-up approach. (a) Based on meta-analysis, landowner participation willingness was strongly
influenced by social–ecological factors. Based on (b) the probability-response curves of key social–ecological factors, (c) these social–ecological factors were integrated in
CCFP implementation modeling through the predicted probability (from MaxEnt modeling) of successful CCFP implementation in sloping cropland plots.
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targeting all steep croplands in a densely populated area rather
than targeting enrollments based on conditions across the entire
catchment [34]. Therefore, the target plots far from households
might increase the opportunity costs for CCFP management and
thus were less likely to be chosen as CCFP plots, even if they met
the current CCFP standard. Household income, education level,
age, and slope also showed a high correlation with farmers’ will-
ingness to participate in the CCFP. Many studies found that if
post-conversion lands combined with non-agricultural benefits
did not provide farmers with enough food and income, they were
likely to revert forests back to cropland [23,48,52]. Therefore, social
factors related to household income, such as GDP, have a strong
impact on CCFP implementation [25]. Other social–ecological fac-
tors, such as education level, age, and slope, are related to the
opportunity costs of land conversion, affect non-agricultural bene-
fits for farmers, and thus indirectly influence CCFP implementation
[32,53]. Our modeling results provide evidence of the importance
of social–ecological analysis for large-scale ecological restoration
implementation and provide robust scientific information on com-
plex SES dynamics for ecological management.
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Although our study provides evidence that scientific design and
systematic surveys during large-scale ecological restoration plan-
ning can help improve practicality and efficiency, several study
limitations in model estimation accuracy are worth outlining. First,
as social–ecological factor indicators were based on a meta-
analysis, our quantification method cannot be applied to large-
scale ecological restoration programs without case studies at a
finer scale. For newly established restoration programs, the pro-
posed method may not predict stakeholder behavior with high
accuracy if there is a lack of available information on socioeco-
nomic interactions at the fine scale. Second, since multiple key
social–ecological indicators were chosen as the inputs for imple-
mentation estimation of large-scale PES programs in this study,
the different spatial resolutions of these indicators may have
impacted the accuracy of the model results. Although our simula-
tions showed high accuracy (ROC score = 0.803) in the prediction of
CCFP implementation, low-resolution social statistical data (e.g.,
county-level statistics and raster data) still provide information
on the spatial heterogeneity of related variables and increase
the uncertainty in estimation accuracy. For future studies, finer



Fig. 5. Distribution of actual and target CCFP cropland enrolled from 2015 to 2017.
Spatial matching between actual and target croplands under the new CCFP was only
(a) 61.55%, but this increased to (b) 81.86% after socioeconomic integration using
the bottom-up approach.
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resolution data are required to provide a more accurate estimation
for the precise management of large-scale PES programs. Third, our
observation data for the implementation of large-scale PES pro-
grams comes from discrete time series, which cannot represent
the actual situation since its implementation changes year by year.
For future studies, with continuous time series added, dynamic
changes in PES program implementation can be observed and used
to decrease uncertainty in social–ecological interaction analyses.
5. Conclusions

Our method integrates top-down and bottom-up approaches to
investigate the complex social–ecological processes of large-scale
ecological restoration, providing a solution for spatial planning
Fig. 6. (a) CCFP implementation rate and (b) cost effectiveness of CCFP implementation
spatial planning integrating the bottom-up approach.
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with socioeconomic considerations. Based on our analysis, the
practicality and efficiency of spatial planning could be greatly
increased by including socioeconomic considerations. This is an
important finding because macro-scale top-down spatial prioriti-
zation [54,55] is still the norm for many natural resource manage-
ment and payments for ecosystem service schemes. Our findings
demonstrate the possible inefficiencies of such approaches in the
CCFP program in the Yangtze River Basin, where program goals
are often not achieved. Our coupled top-down and bottom-up pri-
oritization method provides scientific support for improving the
practicality of spatial planning for effective ecological restoration
management in China and beyond.
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